Motivation. Lecture 23. The Stochastic Neuron ( ) Properties of Logistic Sigmoid. Logistic Sigmoid With Varying T. Logistic Sigmoid T = 0.

Size: px
Start display at page:

Download "Motivation. Lecture 23. The Stochastic Neuron ( ) Properties of Logistic Sigmoid. Logistic Sigmoid With Varying T. Logistic Sigmoid T = 0."

Transcription

1 Motivation Lecture 23 Idea: with low probability, go against the local field move up the energy surface make the wrong microdecision Potential value for optimization: escape from local optima Potential value for associative memory: escape from spurious states because they have higher energy than imprinted states /2/07 /2/07 2 The Stochastic Neuron Deterministic neuron : s " i = sgn h i Pr { s " i = +} = # h i Pr { s " i = $} =$ # h i Stochastic neuron : Pr { s " i = +} = #( h i ) Pr { s " i = $} =$# h i Logistic sigmoid : " h = + exp #2 h T σ(h) h Properties of As h +, σ(h) As h, σ(h) 0 σ(0) = /2 = " h + e #2h T /2/07 3 /2/07 4 With Varying T T = 0.5 T varying from 0.05 to (/T = β = 0,, 2,, 20) Slope at origin = / 2T /2/07 5 /2/07 6

2 T = 0.0 T = 0. /2/07 7 /2/07 8 T = T = 0 /2/07 9 /2/07 0 T = 00 Pseudo-Temperature Temperature = measure of thermal energy (heat) Thermal energy = vibrational energy of molecules A source of random motion Pseudo-temperature = a measure of nondirected (random) change Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution /2/07 /2/07 2 2

3 Transition Probability Recall, change in energy "E = #"s k h k = 2s k h k Pr { s " k = ±s k = m} = #( ±h k ) = #( $s k h k ) Pr{ s k " #s k } = + exp 2s k h k T = + exp $E T /2/07 3 Stability Are stochastic Hopfield nets stable? Thermal noise prevents absolute stability But with symmetric weights: average values s i become time - invariant /2/07 4 Does Thermal Noise Improve Memory Performance? Experiments by Bar-Yam (pp ): n = 00 p = 8 Random initial state To allow convergence, after 20 cycles set T = 0 How often does it converge to an imprinted pattern? /2/07 5 Probability of Random State Converging on Imprinted State (n=00, p=8) T = / β /2/07 (fig. from Bar-Yam) 6 Probability of Random State Converging on Imprinted State (n=00, p=8) Analysis of Stochastic Hopfield Network Complete analysis by Daniel J. Amit & colleagues in mid-80s See D. J. Amit, Modeling Brain Function: The World of Attractor Neural Networks, Cambridge Univ. Press, 989. The analysis is beyond the scope of this course /2/07 (fig. from Bar-Yam) 7 /2/07 8 3

4 Phase Diagram (D) all states melt Conceptual Diagrams of Energy Landscape (C) spin-glass states (A) imprinted = minima (B) imprinted, but s.g. = min. /2/07 (fig. from Domany & al. 99) 9 /2/07 (fig. from Hertz & al. Intr. Theory Neur. Comp.) 20 Phase Diagram Detail Simulated Annealing (Kirkpatrick, Gelatt & Vecchi, 983) /2/07 (fig. from Domany & al. 99) 2 /2/07 22 Dilemma In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it Solution: decrease the temperature gradually during search /2/07 23 Quenching vs. Annealing Quenching: rapid cooling of a hot material may result in defects & brittleness local order but global disorder locally low-energy, globally frustrated Annealing: slow cooling (or alternate heating & cooling) reaches equilibrium at each temperature allows global order to emerge achieves global low-energy state /2/

5 Multiple Domains Moving Domain Boundaries global incoherence local coherence /2/07 25 /2/07 26 Effect of Moderate Temperature Effect of High Temperature /2/07 (fig. from Anderson Intr. Neur. Comp.) 27 /2/07 (fig. from Anderson Intr. Neur. Comp.) 28 Effect of Low Temperature Annealing Schedule Controlled decrease of temperature Should be sufficiently slow to allow equilibrium to be reached at each temperature With sufficiently slow annealing, the global minimum will be found with probability Design of schedules is a topic of research /2/07 (fig. from Anderson Intr. Neur. Comp.) 29 /2/

6 Typical Practical Annealing Schedule Initial temperature T 0 sufficiently high so all transitions allowed Exponential cooling: T k+ = αt k typical 0.8 < α < 0.99 at least 0 accepted transitions at each temp. Final temperature: three successive temperatures without required number of accepted transitions Summary Non-directed change (random motion) permits escape from local optima and spurious states Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation /2/07 3 /2/07 32 Additional Bibliography. Anderson, J.A. An Introduction to Neural Networks, MIT, Arbib, M. (ed.) Handbook of Brain Theory & Neural Networks, MIT, Hertz, J., Krogh, A., & Palmer, R. G. Introduction to the Theory of Neural Computation, Addison-Wesley, 99. V. Genetics & Evolution /2/07 33 /2/07 34 The Second Law of Thermodynamics The Second Law and Open Systems closed system entropy H H open system energy concentration H waste /2/07 35 /2/

7 Nonequilibrium Thermodynamics Classical thermodynamics limited to systems in equilibrium Extended by thermodynamics of transport processes i.e. accounting for entropy changes when matter/energy transported into or out of an open system Flow of matter/energy can maintain a dissipative system far from equilibrium for long periods Hence, nonequilibrium thermodynamics An Energy Flow Can Create Structure /2/07 37 /2/07 (photo from Camazine & al. Self-Org. Bio. Sys.) 38 Bénard Convection Cells Persistent Nonequilibrium Systems If flow creates system so structured to maintain flow then positive feedback causes nonequilibrium system to persist indefinitely but not forever (2 nd law) Systems we tend to see are those most successful at maintaining nonequil. state Applies to species as well as organisms /2/07 (photo from Camazine & al. Self-Org. Bio. Sys.) 39 /2/07 40 Order Through Fluctuations Stabilization at Successively Higher Levels of Organization Fluctuations (esp. when system forced out of ordinary operating range) test boundaries & nonlinear effects May lead to stabilization of new structures /2/07 4 fig. < Hart & Gregor, Inf. Sys. Found. /2/07 42 fig. < Hart & Gregor, Inf. Sys. Found. 7

8 Order for Free Relatively simple sets of rules or equations can generate rich structures & behaviors Small changes can lead to qualitatively different structures & behaviors A diverse resource for selection A basis for later fine tuning (microevolution) See Kaufmann (At Home in the Universe, etc.) and Wolfram (A New Kind of Science) Evolution in Broad Sense Evolution in the broadest terms: blind variation selective retention Has been applied to nonbiological evolution evolutionary epistemology creativity memes /2/07 43 /2/07 44 Evolution atoms & molecules replicating molecules living things prebiotic evolution biotic evolution /2/07 45 /2/07 (from NECSI) 46 8

( ) T. Reading. Lecture 22. Definition of Covariance. Imprinting Multiple Patterns. Characteristics of Hopfield Memory

( ) T. Reading. Lecture 22. Definition of Covariance. Imprinting Multiple Patterns. Characteristics of Hopfield Memory Part 3: Autonomous Agents /8/07 Reading Lecture 22 Flake, ch. 20 ( Genetics and Evolution ) /8/07 /8/07 2 Imprinting Multiple Patterns Let x, x 2,, x p be patterns to be imprinted Define the sum-of-outer-products

More information

VI: Genetics & Evolution 11/12/03 1

VI: Genetics & Evolution 11/12/03 1 VI: Genetics & Evolution 11/12/03 1 Genotype vs. Phenotype Genotype = the genetic makeup of an individual organism Phenotype = the observed characteristic of the organism Through interaction with environment,

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. III. Recurrent Neural Networks A. The Hopfield Network 2/9/15 1 2/9/15 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs output net

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. Part 3A: Hopfield Network III. Recurrent Neural Networks A. The Hopfield Network 1 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs

More information

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i )

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i ) Symmetric Networks Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). How can we model an associative memory? Let M = {v 1,..., v m } be a

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing.

Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing. Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing. Hyuk Jae Lee and Ahmed Louri Department of Electrical and Computer Engineering University

More information

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Winter 2019 7 Recurrent etworks of Threshold (Binary) eurons: Basis for Associative Memory 7.1 The network The basic challenge in associative networks, also referred

More information

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines COMP9444 17s2 Boltzmann Machines 1 Outline Content Addressable Memory Hopfield Network Generative Models Boltzmann Machine Restricted Boltzmann

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

( ) ( ) ( ) ( ) Simulated Annealing. Introduction. Pseudotemperature, Free Energy and Entropy. A Short Detour into Statistical Mechanics.

( ) ( ) ( ) ( ) Simulated Annealing. Introduction. Pseudotemperature, Free Energy and Entropy. A Short Detour into Statistical Mechanics. Aims Reference Keywords Plan Simulated Annealing to obtain a mathematical framework for stochastic machines to study simulated annealing Parts of chapter of Haykin, S., Neural Networks: A Comprehensive

More information

SIMU L TED ATED ANNEA L NG ING

SIMU L TED ATED ANNEA L NG ING SIMULATED ANNEALING Fundamental Concept Motivation by an analogy to the statistical mechanics of annealing in solids. => to coerce a solid (i.e., in a poor, unordered state) into a low energy thermodynamic

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets Neural Networks for Machine Learning Lecture 11a Hopfield Nets Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Hopfield Nets A Hopfield net is composed of binary threshold

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Stochastic Networks Variations of the Hopfield model

Stochastic Networks Variations of the Hopfield model 4 Stochastic Networks 4. Variations of the Hopfield model In the previous chapter we showed that Hopfield networks can be used to provide solutions to combinatorial problems that can be expressed as the

More information

Energy-Decreasing Dynamics in Mean-Field Spin Models

Energy-Decreasing Dynamics in Mean-Field Spin Models arxiv:cond-mat/0210545 v1 24 Oct 2002 Energy-Decreasing Dynamics in Mean-Field Spin Models L. Bussolari, P. Contucci, M. Degli Esposti, C. Giardinà Dipartimento di Matematica dell Università di Bologna,

More information

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen Hopfield Networks (Excerpt from a Basic Course at IK 2008) Herbert Jaeger Jacobs University Bremen Building a model of associative memory should be simple enough... Our brain is a neural network Individual

More information

Branislav K. Nikolić

Branislav K. Nikolić Interdisciplinary Topics in Complex Systems: Cellular Automata, Self-Organized Criticality, Neural Networks and Spin Glasses Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware,

More information

Markov Chain Monte Carlo. Simulated Annealing.

Markov Chain Monte Carlo. Simulated Annealing. Aula 10. Simulated Annealing. 0 Markov Chain Monte Carlo. Simulated Annealing. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [RC] Stochastic search. General iterative formula for optimizing

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

immune response, spin glasses and, 174, 228 Ising model, definition of, 79-80

immune response, spin glasses and, 174, 228 Ising model, definition of, 79-80 Index Amit, D., 135-136 Anderson localization, 49-50, 245n9 Anderson, Philip, 5, 49, 79, 127-129, 155, 169-170, 223, 225-228, 248n2, 251n2 Anfinsen, C.B., 163 annealing, 119, 245n7 simulated, see simulated

More information

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Stochastic Model for Adaptation Using Basin Hopping Dynamics Stochastic Model for Adaptation Using Basin Hopping Dynamics Peter Davis NTT Communication Science Laboratories 2-4 Hikaridai, Keihanna Science City, Kyoto, Japan 619-0237 davis@cslab.kecl.ntt.co.jp Abstract

More information

Lecture 4: Simulated Annealing. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved

Lecture 4: Simulated Annealing. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved Lecture 4: Simulated Annealing Lec04/1 Neighborhood based search Step 1: s=s0; Step 2: Stop if terminating condition satisfied; Step 3: Generate N(s); Step 4: s =FindBetterSolution(N(s)); Step 5: s=s ;

More information

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due:

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due: 3.012 PS 6 THERMODYANMICS SOLUTIONS 3.012 Issued: 11.28.05 Fall 2005 Due: THERMODYNAMICS 1. Building a binary phase diagram. Given below are data for a binary system of two materials A and B. The two components

More information

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Boulder 2009 Summer

More information

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.2 Advanced Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Acceptance Function Initial Temperature Equilibrium State Cooling Schedule Stopping Condition Handling Constraints

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms 1 What is Combinatorial Optimization? Combinatorial Optimization deals with problems where we have to search

More information

Good vibrations: the issue of optimizing dynamical reservoirs

Good vibrations: the issue of optimizing dynamical reservoirs Good vibrations: the issue of optimizing dynamical reservoirs Workshop on ESNs / LSMs, NIPS 2006 Herbert Jaeger International University Bremen (Jacobs University Bremen, as of Spring 2007) The basic idea:

More information

7.1 Basis for Boltzmann machine. 7. Boltzmann machines

7.1 Basis for Boltzmann machine. 7. Boltzmann machines 7. Boltzmann machines this section we will become acquainted with classical Boltzmann machines which can be seen obsolete being rarely applied in neurocomputing. It is interesting, after all, because is

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz Spin Glas Dynamics and Stochastic Optimization Schemes Karl Heinz Hoffmann TU Chemnitz 1 Spin Glasses spin glass e.g. AuFe AuMn CuMn nobel metal (no spin) transition metal (spin) 0.1-10 at% ferromagnetic

More information

Entropy. Governing Rules Series. Instructor s Guide. Table of Contents

Entropy. Governing Rules Series. Instructor s Guide. Table of Contents Entropy Governing Rules Series Instructor s Guide Table of duction.... 2 When to Use this Video.... 2 Learning Objectives.... 2 Motivation.... 2 Student Experience... 2 Key Information.... 2 Video Highlights....

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Associative Memories (I) Hopfield Networks

Associative Memories (I) Hopfield Networks Associative Memories (I) Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Applied Brain Science - Computational Neuroscience (CNS) A Pun Associative Memories Introduction

More information

Onsager theory: overview

Onsager theory: overview Onsager theory: overview Pearu Peterson December 18, 2006 1 Introduction Our aim is to study matter that consists of large number of molecules. A complete mechanical description of such a system is practically

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Emergence of complex structure through co-evolution:

Emergence of complex structure through co-evolution: Emergence of complex structure through co-evolution: The Tangled Nature model of evolutionary ecology Institute for Mathematical Sciences & Department of Mathematics Collaborators: Paul Anderson, Kim Christensen,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Nov 1996

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Nov 1996 arxiv:cond-mat/9611130v1 [cond-mat.dis-nn] 18 Nov 1996 Learning by dilution in a Neural Network B López and W Kinzel Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg

More information

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

Relaxation in Glass: Review of Thermodynamics. Lecture 11: Thermodynamics in the Glass Transition Region

Relaxation in Glass: Review of Thermodynamics. Lecture 11: Thermodynamics in the Glass Transition Region Relaxation in Glass: Review of hermodynamics Lecture 11: hermodynamics in the Glass ransition Region hermodynamic Functions 1 st Derivatives emperature Dependence of the Entropy swmartin@iastate.edu MI:

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

T sg. α c (0)= T=1/β. α c (T ) α=p/n

T sg. α c (0)= T=1/β. α c (T ) α=p/n Taejon, Korea, vol. 2 of 2, pp. 779{784, Nov. 2. Capacity Analysis of Bidirectional Associative Memory Toshiyuki Tanaka y, Shinsuke Kakiya y, and Yoshiyuki Kabashima z ygraduate School of Engineering,

More information

Logic Learning in Hopfield Networks

Logic Learning in Hopfield Networks Logic Learning in Hopfield Networks Saratha Sathasivam (Corresponding author) School of Mathematical Sciences, University of Science Malaysia, Penang, Malaysia E-mail: saratha@cs.usm.my Wan Ahmad Tajuddin

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Energy Landscapes of Deep Networks

Energy Landscapes of Deep Networks Energy Landscapes of Deep Networks Pratik Chaudhari February 29, 2016 References Auffinger, A., Arous, G. B., & Černý, J. (2013). Random matrices and complexity of spin glasses. arxiv:1003.1129.# Choromanska,

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

Boltzmann Machine and Hyperbolic Activation Function in Higher Order Network

Boltzmann Machine and Hyperbolic Activation Function in Higher Order Network Modern Applied Science; Vol. 8, No. 3; 2014 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Boltzmann Machine and Hyperbolic Activation Function in Higher Order Network

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

SYSTEMS SCIENCE AND CYBERNETICS Vol. III Simulated Annealing: From Statistical Thermodynamics to Combinatory Problems Solving - D.

SYSTEMS SCIENCE AND CYBERNETICS Vol. III Simulated Annealing: From Statistical Thermodynamics to Combinatory Problems Solving - D. SIMULATED ANNEALING: FROM STATISTICAL THERMODYNAMICS TO COMBINATORY PROBLEMS SOLVING D. Thiel ENITIAA, Nantes, France Keywords: Combinatory Problem, Optimizing Problem, Global Search Method, Statistical

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems Self-Organization in Nonequilibrium Systems From Dissipative Structures to Order through Fluctuations G. Nicolis Universite Libre de Bruxelles Belgium I. Prigogine Universite Libre de Bruxelles Belgium

More information

CSC321 Lecture 7: Optimization

CSC321 Lecture 7: Optimization CSC321 Lecture 7: Optimization Roger Grosse Roger Grosse CSC321 Lecture 7: Optimization 1 / 25 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Part II. Combinatorial Models. 5 A Sketch of Basic Statistical Physics. 5.1 Thermodynamics

Part II. Combinatorial Models. 5 A Sketch of Basic Statistical Physics. 5.1 Thermodynamics Part II Combinatorial Models 5 A Sketch of Basic Statistical Physics Statistical physics = Thermodynamics (macroscopic) + Statistical mechanics (microscopic) 5.1 Thermodynamics A thermodynamic system is

More information

Through Kaleidoscope Eyes Spin Glasses Experimental Results and Theoretical Concepts

Through Kaleidoscope Eyes Spin Glasses Experimental Results and Theoretical Concepts Through Kaleidoscope Eyes Spin Glasses Experimental Results and Theoretical Concepts Benjamin Hsu December 11, 2007 Abstract A spin glass describes a system of spins on a lattice (or a crystal) where the

More information

HOPFIELD neural networks (HNNs) are a class of nonlinear

HOPFIELD neural networks (HNNs) are a class of nonlinear IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 4, APRIL 2005 213 Stochastic Noise Process Enhancement of Hopfield Neural Networks Vladimir Pavlović, Member, IEEE, Dan Schonfeld,

More information

Mineral Stability and Phase Diagrams Introduction

Mineral Stability and Phase Diagrams Introduction 1 of 10 10/10/2002 2:50 PM Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy and Phase Diagrams Introduction This document last updated on 10-Oct-2002 As we discussed previously, there are

More information

Statistical Thermodynamics

Statistical Thermodynamics Statistical Thermodynamics Basic Theory and Equations: A White Paper Alianna J. Maren, Ph.D. Themasis December, 2013 THM TR2013-001(ajm) 1 Goal of This Paper Identify and present basic equations from statistical

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

Neural Networks. Textbook. Other Textbooks and Books. Course Info. (click on

Neural Networks. Textbook. Other Textbooks and Books. Course Info.  (click on 636-600 Neural Networks Textbook Instructor: Yoonsuck Choe Contact info: HRBB 322B, 45-5466, choe@tamu.edu Web page: http://faculty.cs.tamu.edu/choe Simon Haykin, Neural Networks: A Comprehensive Foundation,

More information

Single Solution-based Metaheuristics

Single Solution-based Metaheuristics Parallel Cooperative Optimization Research Group Single Solution-based Metaheuristics E-G. Talbi Laboratoire d Informatique Fondamentale de Lille Single solution-based metaheuristics Improvement of a solution.

More information

Casting Polymer Nets To Optimize Molecular Codes

Casting Polymer Nets To Optimize Molecular Codes Casting Polymer Nets To Optimize Molecular Codes The physical language of molecules Mathematical Biology Forum (PRL 2007, PNAS 2008, Phys Bio 2008, J Theo Bio 2007, E J Lin Alg 2007) Biological information

More information

Simulated Annealing. 2.1 Introduction

Simulated Annealing. 2.1 Introduction Simulated Annealing 2 This chapter is dedicated to simulated annealing (SA) metaheuristic for optimization. SA is a probabilistic single-solution-based search method inspired by the annealing process in

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Deriving Thermodynamics from Linear Dissipativity Theory

Deriving Thermodynamics from Linear Dissipativity Theory Deriving Thermodynamics from Linear Dissipativity Theory Jean-Charles Delvenne Université catholique de Louvain Belgium Henrik Sandberg KTH Sweden IEEE CDC 2015, Osaka, Japan «Every mathematician knows

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

Storage Capacity of Letter Recognition in Hopfield Networks

Storage Capacity of Letter Recognition in Hopfield Networks Storage Capacity of Letter Recognition in Hopfield Networks Gang Wei (gwei@cs.dal.ca) Zheyuan Yu (zyu@cs.dal.ca) Faculty of Computer Science, Dalhousie University, Halifax, N.S., Canada B3H 1W5 Abstract:

More information

Advanced computational methods X Selected Topics: SGD

Advanced computational methods X Selected Topics: SGD Advanced computational methods X071521-Selected Topics: SGD. In this lecture, we look at the stochastic gradient descent (SGD) method 1 An illustrating example The MNIST is a simple dataset of variety

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes Chemical thermodynamics is concerned with energy relationships in chemical reactions. We consider enthalpy and we also consider entropy in

More information

Markov Chain Monte Carlo Lecture 4

Markov Chain Monte Carlo Lecture 4 The local-trap problem refers to that in simulations of a complex system whose energy landscape is rugged, the sampler gets trapped in a local energy minimum indefinitely, rendering the simulation ineffective.

More information

IN THIS PAPER, we consider a class of continuous-time recurrent

IN THIS PAPER, we consider a class of continuous-time recurrent IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 51, NO. 4, APRIL 2004 161 Global Output Convergence of a Class of Continuous-Time Recurrent Neural Networks With Time-Varying Thresholds

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE Bruce Hajek* University of Illinois at Champaign-Urbana A Monte Carlo optimization technique called "simulated

More information

SAMPLE ANSWERS TO HW SET 3B

SAMPLE ANSWERS TO HW SET 3B SAMPLE ANSWERS TO HW SET 3B First- Please accept my most sincere apologies for taking so long to get these homework sets back to you. I have no excuses that are acceptable. Like last time, I have copied

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Terminal attractor optical associative memory with adaptive control parameter

Terminal attractor optical associative memory with adaptive control parameter 1 June 1998 Ž. Optics Communications 151 1998 353 365 Full length article Terminal attractor optical associative memory with adaptive control parameter Xin Lin a,), Junji Ohtsubo b, Masahiko Mori a a Electrotechnical

More information

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures)

Landscape Approach to Glass Transition and Relaxation. Lecture # 4, April 1 (last of four lectures) Landscape Approach to Glass Transition and Relaxation Lecture # 4, April 1 (last of four lectures) Relaxation in the glassy state Instructor: Prabhat Gupta The Ohio State University (gupta.3@osu.edu) Review

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Vertex Routing Models and Polyhomeostatic Optimization. Claudius Gros. Institute for Theoretical Physics Goethe University Frankfurt, Germany

Vertex Routing Models and Polyhomeostatic Optimization. Claudius Gros. Institute for Theoretical Physics Goethe University Frankfurt, Germany Vertex Routing Models and Polyhomeostatic Optimization Claudius Gros Institute for Theoretical Physics Goethe University Frankfurt, Germany 1 topics in complex system theory Vertex Routing Models modelling

More information

4. References. words, the pseudo Laplacian is given by max {! 2 x,! 2 y}.

4. References. words, the pseudo Laplacian is given by max {! 2 x,! 2 y}. words, the pseudo Laplacian is given by ma {! 2,! 2 y}. 4. References [Ar72] Arbib, M.A., The Metaphorical Brain, John Wiley, New York, 1972. [BB82] Ballard, D. H. and Brown, C. M., Computer Vision, Prentice-Hall,

More information

Fundamentals of Metaheuristics

Fundamentals of Metaheuristics Fundamentals of Metaheuristics Part I - Basic concepts and Single-State Methods A seminar for Neural Networks Simone Scardapane Academic year 2012-2013 ABOUT THIS SEMINAR The seminar is divided in three

More information

Web Course Physical Properties of Glass. Range Behavior

Web Course Physical Properties of Glass. Range Behavior Web Course Physical Properties of Glass Glass Transformation- Range Behavior Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering Glass Transformation-1

More information

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems Lecture 2: Learning from Evaluative Feedback or Bandit Problems 1 Edward L. Thorndike (1874-1949) Puzzle Box 2 Learning by Trial-and-Error Law of Effect: Of several responses to the same situation, those

More information

Artificial Neural Network Simulation of Battery Performance

Artificial Neural Network Simulation of Battery Performance Artificial work Simulation of Battery Performance C.C. O Gorman, D. Ingersoll, R.G. Jungst and T.L. Paez Sandia National Laboratories PO Box 58 Albuquerque, NM 8785 Abstract Although they appear deceptively

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information