Erzeugung intensiver Protonenpulse durch Kompression

Size: px
Start display at page:

Download "Erzeugung intensiver Protonenpulse durch Kompression"

Transcription

1 Erzeugung intensiver Protonenpulse durch Kompression L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner MAMI-Seminar, Mainz, Germany 2010/05/06

2 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Rebuncher Cavities Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 2

3 Frankfurt Neutron Source at the Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High intensity proton beam 7 Li target Neutron beam Measurement of neutron capture cross sections, nuclear astrophysics, material research and detector development. Development of high power targets. Expertise of IAP in linac design Technology and knowledge transfer from Karlsruhe. P. Fischer, A. Schempp 4-rod RFQ U. Ratzinger IH-DTL 4π BaF 2 Detector 3

4 Who is FRANZ? Continuation and extension of the physics programme started around 1980 at the 3.7 MV Van-de-Graaff Laboratory at FZ Karlsruhe. FRANZ Käppeler Franz Käppeler retired since 2008: his research group is dissolved. Technology and knowledge transfer to GSI and Goethe-University. FRANZ will increase the intensities by about 3 orders of magnitude. Allows investigations on radioactive samples with N about : Sub-milligramm sample of short-lived isotopes. 4

5 Comparison with existing intense neutron sources Facility FZ Karlsruhe DANCE, Los Alamos n_tof, CERN GELINA, Geel ORELA, Oak Ridge Elbe Dresden FRANZ, Frankfurt Neutron flux at sample position ) [cm -2 s -1 ] Repetition Rate [Hz] Flight path [m] Pulse Width [ns] Neutron energy range [kev] th , th th th (500) ) Integrated flux between 1 kev and 100 kev only 5

6 Planed astrophysical Experiments at FRANZ The Frankfurt neutron source will provide the highest neutron flux in the astrophysically relevant kev region (1 500 kev) worldwide. Factor of 1000 higher than at FZK!!! Neutron capture measurements of small cross sections: Big Bang nucleosynthesis: 1 H(n, ) Neutron poisons for the s-process: 12 C(n, ), 16 O(n, ), 22 Ne(n, ). ToF measurements of medium mass nuclei for the weak s-process. Neutron capture measurements with small sample masses: Radio-isotopes for -ray astronomy 59 Fe(n, ) and 60 Fe(n, ) Branch point nuclei, e.g. 85 Kr(n, ), 95 Zr(n, ), 147 Pm(n, ), 154 Eu(n, ), 155 Eu(n, ), 153 Gd(n, ), 185 W(n, ) Ref.: René Reifarth (GSI / U. Frankfurt) 6

7 Frankfurt Neutron Source FRANZ dc extraction & transport cw operation I b ~ 3-30 ma pulsed operation, rep. rate 250 khz, t = 1ns <I b > ~ 2 ma Activation Mode Neutrons: n / cm 2 s Compressor Mode Neutrons: 10 7 n / cm 2 l=0.8m Operation Modes of the Frankfurt Neutron Source FRANZ. 7

8 Volume-Type Ion Source K. Volk, R. Nörenberg Operation mode dc Ion species / fraction Protons / 90 % Discharge power kw Extraction current 200 ma Extraction voltage 62 kv Extraction field strength 5 kv/mm Beam energy 120 kev Input emittance (norm. rms) 0.07 p mm mrad Aspect ratio 0.2 Cross-sectional view of the ion source Filament driven discharge: high brilliance ion beam Filter magnet: high proton fraction First beam tests are running. K. Volk, W. Schweizer 8

9 Ion Beam Extraction v 2eU m p simulated beam extraction using a pentode system extracted beam current with 3% noise (simulated) n p I 1 A I I K peak 3/ 2 2pe v r 4 p 0 2q U I0 b proton density n p = m -3 gen. Perveance K = compression ratio = 1 Pentode extraction system: extraction properties independent to end energy Space charge compensation adjustable. 9

10 Low Energy Beam Transport C. Wiesner, O. Meusel dc extraction & transport W b,max = 120 kev I b,max = 200 ma pulsed beam operation t min = 100 ns rep. rate = 250 khz scheme of LEBT section aperture 100 mm, B z = 0.6 T Double telescopic system. Solenoidal transport section to provide space charge compensation. Pulsed Wien-filter: DC-beam => 100ns macro bunches with 250kHz repetition. 10

11 Pulsed Wien-Filter: E B-Kicker C. Wiesner scheme of LEBT section Kicker Frequency Solenoid2 Solenoid3 Dipole C-magnet U max Beam Energy 250 khz 422 mt 537 mt 60 mt 300 mt ± 6 kv 120 kev Static magnetic field, temporally compensated by electric field. C-magnet : deflection enhancement. Fast switch array (MOSFET) + nano-crystaline tape wound core. 11

12 Pulsed Wien-Filter: E B-Kicker C. Wiesner C-Magnet Beam Dump Solenoid3 RFQ scheme of LEBT section Kicker Frequency 250 khz Solenoid2 Dipole Pulsed Beam Solenoid2 422 mt Solenoid3 537 mt Dipole 60 mt C-magnet U max 300 mt ± 6 kv DC-Beam Half-Pipe Septum Beam Energy 120 kev Deflector incl. Switch Array Static magnetic field, temporally compensated by electric field. C-magnet : deflection enhancement. Fast switch array (MOSFET) + nano-crystaline tape wound core. 12

13 Radio Frequency Quadrupole - RFQ A. Schempp / NTG company RFQ test module RFQ technical design Beam dynamics Design studies Construction in progress Power test at scaled model proton source LEBT RFQ 13

14 Focusing, Compression and Acceleration d = 0.51 m l RFQ = 1.7 m l IH = 0.6 m Proton Beam 100ns P 150kW P 45kW W b = 120 kev f 0 = 175 MHz W b = 700 kev W b = 2 MeV RFQ: Micro bunching + pre-acceleration. RFQ-IH combination (coupled cavities): one power amplifier, shorter drift space. IH-cavity: main acceleration, KONUS dynamics. 14

15 IH-DTL and CH-Rebuncher final energy 2 MeV U. Ratzinger, M. Heilmann energy variation ± 0.2 MeV H. Podlech, A. Metz H 111 H gap and internal msq triplet output beam energy 2MeV IH-cavity: main acceleration. CH type cavity 4gap KONUS (Combined Zero degree structure) dynamics: high efficiency acceleration. CH-cavity: rebunching and variation of end energy (activation mode). 15

16 FRANZ: Requirements at the Target 175MHz-DTL N bunch = 9 rep.rate = 250kHz E ~ 2.0MeV I = 150mA s 0ns ΔT = ns => ΔT rms 1ns A (beam at target) < 3x3cm 2 Makro Bunch Mikro Bunch I (per pulse) 8A 100ns ΔW < ± 5% 16

17 High Power Target at FZ Karlsruhe and KALLA-Laboratory Intensity D. Petrich, F. Käppeler r = 10 mm y profile x / mm transverse beam profile (simulated) target prototype for beam power up to 6 kw avg. power ~ 4 kw peak power ~ 20 MW Scaled prototype was built and tested. D. Petrich et al., Nucl. Instr. Methods A 596, (2008) 17

18 4πBaF 2 Detector Array 4p colorimetrical measurements: good energy resolution. high granularity (#42): signal to noise ratio. fast timing ( < 1ns) to achieve acceptable TOF resolution. suppression of other-reaction-signals E n (kev) 80 cm flight path 10 cm inner detector radius E max = 200 kev E min = 1 kev prompt flash other reactions (n, ) on sample TOF (ns) M. Heil et al., Nucl. Instr. Methods A459, 229(2001). R. Reifarth et al., Publication of Astrophysical Society of Australia, 26, (2009). 18

19 Systems Perspective source is constructed LEBT vacuum tests RFQ test module First Beam 2010 compressor design high power target test detector reassembled 19

20 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Rebuncher Cavities Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 20

21 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Rebuncher Cavities Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 21

22 Realistic particle distribution after the LINAC Beam size r 0 1cm Average current over one RF-period: I = 150mA Center energy of the Bunch: W = 2MeV Velocity/speed of light : = Charge per micro bunch: Q bunch = 0.85nC Number of protons per Bunch: N proton = Path length(1. traj.) : L 4m Electric field on the surface of the bunch: E 0 = 76.4kV/m Acceleration (proton on surface): a = m/s 2 Potential Energy (proton on surface): W pot =763.9 ev Max. velocity due to space charge forces: v max = m/s Significant Space charge forces! => max. Beam size after 4m drift: r 1 5cm

23 Types of Bunch Compression 23

24 Estimation: Additional Energy Spread for Typ1 BC 24

25 Reasonable Energy Spread for Driver Beam E p = 2 ± 0.2 MeV H 3Li 4Be 0n 1, 646 MeV Threshold: MeV DE n Variable driver beam energy : Adjustable Neutron Spectra + TOF high resolution energy dependent Neutron capture cross sections. 25

26 Combination of both Bunch Compression Concepts 26

27 Estimation: Trajectory Separation due to Energy Variation 27

28 Estimation: Trajectory Separation due to Energy Variation 28

29 Estimation: Trajectory Separation due to Energy Variation 29

30 Mobley Type Bunch Compressor Mobley-Buncher: ( A-Proton beams) Kicker Separation of the micro bunches Bending system (1 Dipole) weak focusing path length differences longitudinal compression 30

31 Mobley Type Bunch Compressor Mobley-Buncher: ( A-Proton beams) Kicker Separation of the micro bunches Bending system (1 Dipole) weak focusing path length differences longitudinal compression Studied Systems: 1 Dipole: variable shape or gradient 2 Dipoles: rectangular magnets 3 Dipoles: 2 homogenous + 1 gradient => insufficient separation => big gradient for every trajectory => ( s/ a) const => longitudinal defocusing 31

32 Mobley Type Bunch Compressor Mobley-Buncher: ( A-Proton beams) Kicker Separation of the micro bunches Bending system (1 Dipole) weak focusing path length differences longitudinal compression Improvements for 150mA Proton beams: 2 main dipoles (Gradient) more parameters for beam dynamics 2 auxiliary dipoles (homogeneous) linear separation of the trajectories momentum exchange in trans. plane 2 rebuncher cavities longitudinal Beam dynamics Studied Systems: 1 Dipole: variable shape or gradient 2 Dipoles: rectangular magnets 3 Dipoles: 2 homogenous + 1 gradient => insufficient separation => big gradient for every trajectory => ( s/ a) const => longitudinal defocusing 32

33 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> 33

34 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> <c4_h>: Geometrical parameters trajectories, angles, distances magnetic fields, gradients shape of the dipoles 34

35 Bunch Compressor: Design / Optimization Cycles Geometry: g9_5x <c4_h> Δ α max = deg B 1 = mT Geometry-design Drifts, bends, angles B 2 = ± 98.4mT <kicker_traj2> <c4_h>: Geometrical parameters trajectories, angles, distances magnetic fields, gradients shape of the dipoles 35

36 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> <c4_h>: Geometrical parameters trajectories, angles, distances magnetic fields, gradients shape of the dipoles <kicker_traj2>: kicker properties max. deflection angles max. voltages shape of the plates 36

37 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> Kicker-shape, U max, Φ 0 <transp.: kicker> 37

38 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> Kicker-shape, U max, Φ 0 <transp.: kicker> <transp.:kicker>: Particle in Cell (PIC) dynamic lattice finite differences Poisson solver U(t) + kicker-shape Particle distribution 38

39 Bunch Compressor: Design / Optimization Cycles Bunch (1) Bunch (5) Bunch (9) <c4_h> Geometry-design Drifts, bends, angles <LORASR> LINAC: Rebuncher, Quadrupoles LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution <kicker_traj2> Kicker-shape, U max, Φ 0 <transp.:kicker>: Particle in Cell (PIC) dynamic lattice finite differences Poisson solver U(t) + kicker-shape <transp.: kicker> Particle distribution L = 20cm U max = 250kV f = 5MHz d min = 18mm α 1 = 29.5deg α 2 = 11.5deg a = 1.2m -1 I = 150mA N particle 10k N grid = 60x60x60 Δ x stepsize = 1mm Δ t calc+plot 7s 39

40 Designs Studies for the 5MHz-Kicker Bunch (1) Bunch (5) Bunch (9) Analytical estimations: - RLC-Resonator - Geometrical parameters: diameter, lengths coil geometry number of windings - Inductance L and Capacitance C - RF-properties: f, Q 0, P <LORASR> cv L = 20cm U max = 250kV f = 5MHz d min = 18mm α 1 = 29.5deg α 2 = 11.5deg a = 1.2m -1 I = 150mA N particle 10k N grid = 60x60x60 Δ x stepsize = 1mm Δ t calc+plot 7s 40

41 Designs Studies for the 5MHz-Kicker Analytical estimations: - RLC-Resonator - Geometrical parameters: diameter, lengths coil geometry number of windings - Inductance L and Capacitance C - RF-properties: f, Q 0, P Scaled Model (analytical): Number of turns 8 Length of the coil 200 mm Radius 150 mm Effective Resistivity Effective Inductance 12.9 H Effective Capacitance 28.8 pf Frequency 9.09 MHz Intrinsic Quality Factor 2986 Shunt impedance 4.4 M Power 250kV 14.8 kw 41

42 Designs Studies for the 5MHz-Kicker Analytical estimations: - RLC-Resonator - Geometrical parameters: diameter, lengths coil geometry number of windings - Inductance L and Capacitance C - RF-properties: f, Q 0, P Numerical estimation: - 3D Cavity designs with CST Studios Scaled Model (analytical): Number of turns 8 Length of the coil 200 mm Radius 150 mm Effective Resistivity Effective Inductance 12.9 H Effective Capacitance 28.8 pf Frequency 9.09 MHz Intrinsic Quality Factor 2986 Shunt impedance 4.4 M Power 250kV 14.8 kw 42

43 Measurement at scaled kicker model P f Bidirectional Coupler P r P f AMP Scaled cavity P f P r P t Generator Powermeter P t : U(t) = U 0 exp(-t/t) E(t) Perturbation Capacitor method => shunt impedance W(t) E(t) 2 => t = 2 t L t L : decay time of the stored energy in the cavity Q L = t L : loaded quality factor Q 0 = Q L (1+ ) : intrinsic quality factor P on r = P off r <=> =1 (critical coupling) => Q 0 =2Q L f R per p 2p U P 2 1 L( C DC) 2Q0 C C ( f DC f ) per

44 Measurement at scaled kicker model Analytical MWS Measured (Powermeter) Effective Inductance H Effective Capacitance pf Frequency MHz Intrinsic Quality Factor Shunt impedance M Good agreement for the Inductance Stray Capacitance underestimated => higher frequency 60% of the calculated intrinsic quality factor can be reached Measurements with network analyzer give comparable results Analytic formulas are good enough for first shot estimations big loops ( mm 2 ) are needed for critical coupling => mechanical problems + RF-properties of the loop alternative coupling methods ( capacitive, galvanic ) have to be investigated 44

45 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Rebuncher Cavities Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 45

46 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> Particle distribution Particle distribution <LORASR> 46

47 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution <LORASR> 47

48 Alternative Approach for Optimization 16 parameters for every trajectory: 1 calculation several minutes brute force solution unworkable! smart algorithm like Particle Swarm - Optimization (PSO) 48

49 Bunch Compressor: Envelopes(95%) bunch(1) IH + CH dip1 dip2 Multi-aperture Rebuncher: (87.5MHz, 100kV) reb2:(87.5mhz, 120kV) quadrupoles triplets LORASR 49

50 Bunch Compressor: Envelopes(95%) all bunches LORASR 50

51 Single Bunch Projections at the Target Bunch(1) Bunch(5) Rebuncher(2) f/[mhz] U eff /[kv] ε x,rms /[π mm mrad] % ε y,rms /[π mm mrad] % ε z,rms /[π kev ns] % Rebuncher(2) f/[mhz] U eff /[kv] ε x,rms /[π mm rad] % ε y,rms /[π mm rad] % ε z,rms /[π kev ns] % Bunch(9) Single Bunch Beam Dynamics: N bunch = 9 ΔT = ns => ΔT 1ns Rebuncher(2) f/[mhz] U eff /[kv] ε x,rms /[π mm mrad] % A (beam at target) < 3x3cm 2 I (per pulse) 8A ε y,rms /[πmm mrad] % ε z,rms /[π kev ns] % ΔW < ± 5% 51

52 Alternative Method: Particle-Swarm-Optimization o N points in search space (e.g. in  16 ) position x = set of parameter in  16 velocity v = change of the position in one iteration o Initialize x and v with random values o Iteration: x x v i 1 i i 1 Ü v v c empirical parameters: w = , c 1 =2, c 2 =2 random diagonal matrix: A, B o Collective Memory : Local best result on path in search space Global best result in all iterations o Collective movement of the x s in search space like fish swarm chasing a bait A ( xbest, local xi ) c2 B ( xbest, x i 1 i 1 global i ) 52

53 Optimization of the central trajectory 53

54 Neighboring Trajectories 54

55 Preliminary Results Transverse beam dynamics: Longest trajectory => hardest to optimize Longitudinal beam dynamics: Shortest trajectory => hardest to optimize Result vectors near by each other 55

56 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution <LORASR> 56

57 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution Multi-Bunch Beam dynamics <LORASR> <transp.: merge> 57

58 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> Particle distribution Particle distribution Multi-Bunch Beam dynamics <LORASR> <transp.: merge> 58

59 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 <transp.: kicker> <transp.:merge>: Particle in Cell (PIC) dynamic lattice finite differences Poisson solver Particle distribution <LORASR> Particle distribution Multi-Bunch Beam dynamics <transp.: merge> 59

60 Bunch Compressor: Design / Optimization Cycles L <c4_h> Geometry-design <kicker_traj2> Kicker-shape, U max, Φ 0 = 35cm I = 9x150mA N particle 90k N grid = 100x100x100 Δ x stepsize = 1mm Δ t calc+plot 50s <transp.:merge>: Particle in Cell (PIC) dynamic lattice finite differences Poisson solver Drifts, bends, angles <transp.: kicker> merge Particle Projections at target distribution projections <LORASR> Single-Bunch Beam dynamics <LORASR> LINAC: Rebuncher, Quadrupoles Requirement Particle distribution LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Multi-Bunch Beam dynamics <transp.: merge> 60

61 Merge: Projections at the Target Requirements 61

62 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Rebuncher Cavities Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 62

63 Rebuncher Cavities D. U eff = 120kV P 7.7kW R p 1.9MW Broad-Gap-Rebuncher D. l/4-cavity longitudinal Beam Dynamics U eff = kV, P 11kW, R p 1.3MW Multi-Aperture-Rebuncher Energy variation of the final Pulse 63

64 Outlines: o FRANZ: Overview & Status o Bunch Compressor: Design & Optimization Concepts: Geometry 5MHz Kicker Single Bunch Beam Dynamics Merging Scenario Magnet Design Beam Dynamics with Realistic Field Distributions o Outlook 64

65 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 Magnet-Design <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution Multi-Bunch Beam dynamics <CST:EMST> <LORASR> <transp.: merge> 65

66 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 Magnet-Design <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution Multi-Bunch Beam dynamics <CST:EMST> <LORASR> <transp.: merge> 66

67 Preliminary Magnet Design 849mm Geometry: g9_5x 660mm Δ α max = deg B 1 = mT B 2 = ± 98.4mT 1117mm 660mm 67

68 Preliminary Magnet Design 849mm 660mm Dipole(1) B 1 /[mt] 515 g/[mm] 60 N I/*A A coil /[mm 2 ] A wind /[mm 2 ] 7 7 N 153 I/[A] 68 Geometry: g9_5x 1117mm 660mm Dipole(2) B 2 /[mt] 650 g/[mm] 60 N I/*A A coil /[mm 2 ] A wind /[mm 2 ] 7 7 N 408 I/[A]

69 B / [ T ] Field along the first Trajectory large fringing field Connected fringing field region => Effects of fringing fields on beam dynamics? 69

70 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 Magnet-Design <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution Multi-Bunch Beam dynamics <CST:EMST> <LORASR> <transp.: merge> 70

71 Bunch Compressor: Design / Optimization Cycles <c4_h> Geometry-design <kicker_traj2> Drifts, bends, angles <LORASR> Single-Bunch Beam dynamics LINAC: Rebuncher, Quadrupoles Requirement LINAC: (Ratzinger, Heilmann) Geometry, KONUS dynamics, Voltage distribution, quadrupole sizes, particle distribution Particle distribution Kicker-shape, U max, Φ 0 Magnet-Design <transp.: kicker> Particle distribution 16 Parameters: 3 3 Quadrupoles 2 2 Edge Angles 3x Rebunchers Particle distribution Multi-Bunch Beam dynamics <CST:EMST> <LORASR> 3d-field distribution <transp.: dipole> <transp.: merge> 71

72 Beam Dynamics: paraxial Approach vs. realistic Fields The complete effect of the fringing field is applied in one instantaneous kick in the transverse planes: x x x( x 0 k, 0) g y y y ( y Dy 0 k,, K) Dx Comparison with realistic field distribution: 0mA: real field dist. vs. matrix Parameters of the first dipole: Fringing field Integral K = Edge angle entrance = [deg] Edge angle exit = [deg] Magnetic field B 0 = [mt] Gap g = 60.0 [mm] 150mA: real field dist. vs. matrix real field dist.: 0mA vs. 150mA 72

73 Beam Dynamics: paraxial Approach vs. realistic Fields Center motion significantly changed by large fringing field. paraxial approach over estimate the emittance growth in transverse plane. bigger emittance growth in long. plane with realistic fields. field enhancement nearby the edges due to saturation Insufficiently described by first order matrix formalism. 73

74 Improvement in Magnet Design Iron: m r,max =13k, B s = 1.6T Non magnetic vacuum chamber Vacoflux50: m r,max =15k, B s =2.2T Modular pole face Additional return yoke 74

75 Improvement in Magnet Design K=1.034 K=0.098 Without additional return yoke Center motion Transport: paraxial approach vs. realistic field 75

76 Summery Improvement of the Mobley bunch compressor for high current applications: - Several A beam current => 150mA per micro bunch - Additional dipoles => transverse beam dynamics - Rebuncher cavities => longitudinal beam dynamics Single Bunch beam dynamics + merging scenario => fulfills the requirements Smart Algorithm for multi dimensional optimization applied on Bunch Compressor Code Development: space charge dominated transport in realistic external Fields first step for technical realization of the bunch Compressor Kicker: design studies + numerical studies + measurements at scaled model => Results in good agreement with analytical and numerical estimations Dipoles: numerical studies with CST:EMS => Realistic field distributions <=> beam dynamics => Technical realization of the hardwares Cavities: feasible design with CST:MWS => optimization of the power consumptions 76

77 Outlook: Improve magnet design, magnet with gradient Beam dynamics: Front to end simulation Kicker + dipoles + rebunchers + merging scenario 77

78 Thank you for your attention. on behalf of: M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner IAP, Goethe University Frankfurt acknowledgment: Franz Käppeler(FZK) R. Reifarth (GSI / U. Frankfurt) M. Heil (GSI) Y. Nie, H. Podlech, A. Schempp, S. Schmidt IAP, Goethe University Frankfurt LINAC-AG AG-Schempp NNP-AG

79 79

80 Bunch Compressor: geometrical parameters g9_5x B 1 = [T] α max = 25.69[deg] < α > = 3.21[deg] al tp dr1 dr2 dr3 b1 b2 bet1 bet2 R2 B2 d_x1 d_x2 d_x3 d_x4 d_x5 d_a d_x1p d_tp psi11 psi12 psi21 psi22 [deg] [m] [m] [m] [m] [m] [m] [deg] [deg] [m] [T] [m] [m] [m] [m] [m] [deg] [m] [m] [deg] [deg] [deg] [deg]

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ Proton LINAC for the Frankfurt Neutron Source FRANZ - IAEA - International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators Oliver Meusel 4-8 May 2009 Vienna, Austria Motivation

More information

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in 2009/12/16 Proton Linac for the Frankfurt Neutron Source Christoph Wiesner Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton

More information

Bunch Compressor for Intense Proton Beams

Bunch Compressor for Intense Proton Beams Bunch Compressor for Intense Proton Beams L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner chau@iap.uni-frankfurt.de LINAC10, Tsukuba, Japan 2010/09/16 Outlines: o Frankfurt Neutron Source

More information

Chopping High-Intensity Ion Beams at FRANZ

Chopping High-Intensity Ion Beams at FRANZ Chopping High-Intensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, Goethe-Universität Frankfurt am Main Outline 1) Introduction: The FRANZ facility

More information

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ 1 Proton LINAC for the Frankfurt Neutron Source FRANZ O. Meusel 1, A. Bechtold 1, L.P. Chau 1, M. Heilmann 1, H. Podlech 1, U. Ratzinger 1, A. Schempp 1, C. Wiesner 1, S. Schmidt 1, K. Volk 1, M. Heil

More information

C. Wiesner, FRANZ and Small-Scale Accelerator-Driven Neutron Sources

C. Wiesner, FRANZ and Small-Scale Accelerator-Driven Neutron Sources FRANZ and Small-Scale Accelerator-Driven Neutron Sources C. Wiesner*, S. Alzubaidi, M. Droba, M. Heilmann, O. Hinrichs, B. Klump, O. Meusel, D. Noll, O. Payir, H. Podlech, U. Ratzinger, R. Reifarth, A.

More information

CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ

CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider, IAP, Goethe-University, Frankfurt am Main, Germany Abstract The accelerator-driven

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

Recent neutron capture measurements at FZK

Recent neutron capture measurements at FZK René Reifarth Recent neutron capture measurements at FZK Outline: Overview of s-process nucleosynthesis Nuclear data needs for the s-process where do we stand? Recent (n,γ) cross section measurements at

More information

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* O. Kester, D. Habs, T. Sieber, S. Emhofer, K. Rudolph, LMU München, Garching Germany R. von Hahn, H. Podlech, R. Repnow, D. Schwalm, MPI- K, Heidelberg,

More information

Buncher-System for FRANZ

Buncher-System for FRANZ Buncher-System for FRANZ Concept Beam-Dynamics Chopper-System Buncher-System for FRANZ 150 kv Terminal Wb = 120 kev Pb = 2.4 x 104 W Wb = 1 MeV Pb,max = 1 x 104 W Wb = 1.87-2.1 MeV Pb,max = 2.1 x 104 W

More information

Design of a Fast Chopper System for High Intensity Applications

Design of a Fast Chopper System for High Intensity Applications 2007/05/11 Design of a Fast System for High Intensity Applications Christoph Wiesner IAP Frankfurt Contents Introduction Design and Layout of the Multi-Particle Simulation LEBT Outlook Frankfurt Neutron

More information

Beam Dynamics and Emittance Growth

Beam Dynamics and Emittance Growth 2010/03/09 Beam Dynamics and Emittance Growth Christoph Wiesner 1. Solenoidal Focusing and Emittance Growth 2. Beam Deflection and Emittance Growth 3. Time-dependent Kicker Fields, Electron Effects and

More information

FRANZ AND SMALL-SCALE ACCELERATOR-DRIVEN NEUTRON SOURCES

FRANZ AND SMALL-SCALE ACCELERATOR-DRIVEN NEUTRON SOURCES FRANZ AND SMALL-SCALE ACCELERATOR-DRIVEN NEUTRON SOURCES C. Wiesner, S. Alzubaidi, M. Droba, M. Heilmann, O. Hinrichs, B. Klump, O. Meusel, D. Noll, O. Payir, H. Podlech, U. Ratzinger, R. Reifarth, A.

More information

Design of a Low-Energy Chopper System for FRANZ

Design of a Low-Energy Chopper System for FRANZ 05.03.2007 Design of a Low-Energy System for FRANZ Christoph Wiesner Contents Introduction Design and Layout of the Multi-Particle Simulation LEBT Outlook Function of the Input: 150 ma cw proton beam,

More information

Institute of Modern Physics, China Academy of Science, Lanzhou , China

Institute of Modern Physics, China Academy of Science, Lanzhou , China Submitted to Chinese Physics C KONUS Beam Dynamics Design of Uranium IH-DTL for HIAF Dou Wei-Ping( 窦为平 ) a He Yuan( 何源 ) a Lu Yuan-Rong( 陆元荣 ) b, a Institute of Modern Physics, China Academy of Science,

More information

arxiv: v1 [physics.acc-ph] 20 Jun 2013

arxiv: v1 [physics.acc-ph] 20 Jun 2013 Beam dynamics design of the main accelerating section with KONUS in the CSR-LINAC arxiv:1306.4729v1 [physics.acc-ph] 20 Jun 2013 ZHANG Xiao-Hu 1,2;1) YUAN You-Jin 1 XIA Jia-Wen 1 YIN Xue-Jun 1 DU Heng

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY TU31 Proceedings of LINAC 26, Knoxville, Tennessee USA HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY R. Hollinger, W. Barth, L. Dahl, M. Galonska, L. Groening, P. Spaedtke, GSI,

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

SPIRAL-2 FOR NEUTRON PRODUCTION

SPIRAL-2 FOR NEUTRON PRODUCTION SPIRAL-2 FOR NEUTRON PRODUCTION X. Ledoux and the NFS collaboration Outline The SPIRAL-2 facility The Neutrons For Science Facility OUTLINE SPIRAL-2 The Neutrons For Science facility The SPIRAL-2 project

More information

OVERVIEW OF RECENT RFQ PROJECTS *

OVERVIEW OF RECENT RFQ PROJECTS * OVERVIEW OF RECENT RFQ PROJECTS * A. Schempp Institut für Angewandte Physik, J. W. Goethe-Universität, D-60486 Frankfurt am Main, Germany Abstract RFQs are the new standard injector for a number of projects.

More information

Compact Linac for Deuterons (Based on IH Structures with PMQ Focusing)

Compact Linac for Deuterons (Based on IH Structures with PMQ Focusing) Compact Linac for Deuterons (Based on IH Structures with PMQ Focusing) S. Kurennoy, J. O Hara, L. Rybarcyk LANL, Los Alamos, NM Thanks to D. Barlow, F. Neri, and T. Wangler We are developing a compact

More information

Recent High Power RFQ Development

Recent High Power RFQ Development Recent High Power RFQ Development Alexander Bechtold on behalf of Prof. Alwin Schempp Outline Introduction RFQ Design RFQ Projects SARAF RFQ for SOREQ Israel HLI for GSI in Darmstadt FRANZ RFQ for the

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

The SARAF 40 MeV Proton/Deuteron Accelerator

The SARAF 40 MeV Proton/Deuteron Accelerator The SARAF 40 MeV Proton/Deuteron Accelerator I. Mardor, D. Berkovits, I. Gertz, A. Grin, S. Halfon, G. Lempert, A. Nagler, A. Perry, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler,

More information

Linac JUAS lecture summary

Linac JUAS lecture summary Linac JUAS lecture summary Part1: Introduction to Linacs Linac is the acronym for Linear accelerator, a device where charged particles acquire energy moving on a linear path. There are more than 20 000

More information

Notes on the HIE-ISOLDE HEBT

Notes on the HIE-ISOLDE HEBT EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIE-ISOLDE-PROJECT-Note-13 Notes on the HIE-ISOLDE HEBT M.A. Fraser Abstract The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Beam dynamics studies of H-beam chopping in a LEBT for project X

Beam dynamics studies of H-beam chopping in a LEBT for project X Beam dynamics studies of H-beam chopping in a LEBT for project X Qing Ji, David Grote, John Staples, Thomas Schenkel, Andrew Lambert, and Derun Li Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

More information

A new sc cw-linac for Super Heavy Element Research. S. Jacke LINAC department, GSI Helmholtz-Institut Mainz (HIM) Germany

A new sc cw-linac for Super Heavy Element Research. S. Jacke LINAC department, GSI Helmholtz-Institut Mainz (HIM) Germany A new sc cw-linac for Super Heavy Element Research S. Jacke LINAC department, GSI Helmholtz-Institut Mainz (HIM) Germany Tasca-Workshop, 14.10.2011 Content - Introduction - General project planning - cw-linac@gsi

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Ionenstrahlsimulationen außerhalb. Martin Droba

Ionenstrahlsimulationen außerhalb. Martin Droba Ionenstrahlsimulationen außerhalb verfügbarer Standardprogramme Martin Droba Contents Motivation LORASR Magnetic codes TNSA LASIN Conclusion & Outlook Standard Tracking Programs TRACE3D, PARMILA, PARMTEQ,

More information

The SARAF CW 40 MeV Proton/Deuteron Accelerator

The SARAF CW 40 MeV Proton/Deuteron Accelerator The SARAF CW 40 MeV Proton/Deuteron Accelerator A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler, F. Kremer, C. Piel, P. vom Stein Accel

More information

Preliminary design of proton and ion linacs for SPPC Injector

Preliminary design of proton and ion linacs for SPPC Injector Preliminary design of proton and ion linacs for SPPC Injector Y.R. Lu, X.W.Zhu,H.P. Li, Q. Fu, J. Liu, F.J.Jia, K. Zhu, Z. Wang State Key Lab of Nuclear Physics and Technology, Peking University J.Y. Tang,

More information

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling G.A. Westenskow, D.P. Grote; LLNL J.W. Kwan, F. Bieniosek; LBNL PAC07 - FRYAB01 Albuquerque, New Mexico June 29, 2007 This work has

More information

Beam Dynamics for CSNS Linac. Jun Peng September. 18, 2012

Beam Dynamics for CSNS Linac. Jun Peng September. 18, 2012 Beam Dynamics for CSNS Linac Jun Peng September. 18, 2012 Outline Beam loss study MEBT optimization DTL optimization Geometry Accelerating field and synchronous phase Focusing scheme End to end simulation

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

BEAM DYNAMICS ISSUES IN THE SNS LINAC

BEAM DYNAMICS ISSUES IN THE SNS LINAC BEAM DYNAMICS ISSUES IN THE SNS LINAC A. Shishlo # on behalf of the SNS Accelerator Group, ORNL, Oak Ridge, TN 37831, U.S.A. Abstract A review of the Spallation Neutron Source (SNS) linac beam dynamics

More information

Figure-8 Storage RingF8SRNon Neutral Plasma Confinement in Curvilinear Guiding Fields

Figure-8 Storage RingF8SRNon Neutral Plasma Confinement in Curvilinear Guiding Fields Figure-8 Storage Ring F8SR Non Neutral Plasma Confinement in Curvilinear Guiding Fields Joschka F. Wagner Institute of Applied Physics (IAP) Workgroup Prof. Ulrich Ratzinger Non Neutral Plasma-Group (NNP)

More information

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status & Testing of the RFQ Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 Overview TITAN Background

More information

Developmental Studies of High Current Proton Linac for ADS Program

Developmental Studies of High Current Proton Linac for ADS Program 1 Developmental Studies of High Current Proton Linac for ADS Program P. Singh, S.V.L.S. Rao, Rajni Pande, Shweta Roy, Rajesh Kumar, Piyush Jain, P.K. Nema, S. Krishnagopal, R.K. Choudhury, S. Kailas, V.C.

More information

RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS

RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS Chuan Zhang # Institut für Angewandte Physik, Goethe-Universität, D-60438 Frankfurt a. M., Germany Abstract Serving

More information

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS*

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS* NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS* A. Schempp Institut für Angewandte Physik, J. W. Goethe-Universität, D-60054 Frankfurt am Main, Germany Abstract RFQs are the standard solution for new ion

More information

KONUS BEAM DYNAMICS DESIGNS USING H-MODE CAVITIES

KONUS BEAM DYNAMICS DESIGNS USING H-MODE CAVITIES Proceedings of Hadron Beam 28, Nashville, Tennessee, USA WGB11 KONUS BEAM DYNAMICS DESIGNS USING H-MODE CAVITIES R. Tiede, U. Ratzinger, H. Podlech, C. Zhang, IAP, Universität Frankfurt/Main, Germany,

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and step-like magnet IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet N. Chauvin 1 R. Duperrier 1 P.A.P. Nghiem 1 J. Y. Tang 2 D. Uriot 1 Z.Yang 2 1 Commissariat

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Low energy electron storage ring with tunable compaction factor

Low energy electron storage ring with tunable compaction factor REVIEW OF SCIENTIFIC INSTRUMENTS 78, 075107 2007 Low energy electron storage ring with tunable compaction factor S. Y. Lee, J. Kolski, Z. Liu, X. Pang, C. Park, W. Tam, and F. Wang Department of Physics,

More information

Development of the UNILAC towards a Megawatt Beam Injector

Development of the UNILAC towards a Megawatt Beam Injector Development of the UNILAC towards a Megawatt Beam Injector W. Barth, GSI - Darmstadt 1. GSI Accelerator Facility Injector for FAIR 2. Heavy Ion Linear Accelerator UNILAC 3. SIS 18 Intensity Upgrade Program

More information

Issues of Electron Cooling

Issues of Electron Cooling Issues of Electron Cooling Yaroslav Derbenev derbenev@jlab.org JLEIC Spring 2016 Collaboration Meeting JLab, March 29-31, 2016 Outline Friction force Magnetized cooling Misalignment impact Cooling rates

More information

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se 3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising

More information

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University) ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University) Introduction Electron Polarization is important for ILC. NEA GaAs is practically the only solution. Positron polarization

More information

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC PRAMANA cfl Indian Academy of Sciences Vol. 59, No. 5 journal of November 2002 physics pp. 859 869 Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC S A PANDE,

More information

Heavy ion linac as a high current proton beam injector

Heavy ion linac as a high current proton beam injector PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 18, 050102 (2015) Heavy ion linac as a high current proton beam injector Winfried Barth, 1,2 Aleksey Adonin, 1 Sabrina Appel, 1 Peter Gerhard, 1

More information

Overview of Acceleration

Overview of Acceleration Overview of Acceleration R B Palmer, Scott Berg, Steve Kahn (presented by Steve Kahn) Nufact-04 RF Frequency Acc types and System Studies Linacs RLA s FFAG s Injection/Extraction US Study 2a acceleration

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

RF LINACS. Alessandra Lombardi BE/ ABP CERN

RF LINACS. Alessandra Lombardi BE/ ABP CERN 1 RF LINACS Alessandra Lombardi BE/ ABP CERN Contents PART 1 (yesterday) : Introduction : why?,what?, how?, when? Building bloc I (1/) : Radio Frequency cavity From an RF cavity to an accelerator PART

More information

PoS(NIC XI)248. Cross section measurements of 103 Rh(p, γ) 104 Pd with the Karlsruhe 4πBaF 2 detector

PoS(NIC XI)248. Cross section measurements of 103 Rh(p, γ) 104 Pd with the Karlsruhe 4πBaF 2 detector Cross section measurements of 103 Rh(p, γ) 104 Pd with the Karlsruhe 4πBaF 2 detector a,b, S. Walter c, F. Käppeler c, R. Plag a,b, R. Reifarth a,b, E-mail: m.weigand@gsi.de a GSI Helmholtzzentrum für

More information

Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities *

Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities * Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities * LI Zhi-Hui( ) 1) The Key Labratory of Radiation Physics and Technology of Ministy of Eduction, Institute

More information

In-Flight Fragment Separator and ISOL Cyclotron for RISP

In-Flight Fragment Separator and ISOL Cyclotron for RISP In-Flight Fragment Separator and ISOL Cyclotron for RISP Jong-Won Kim Daejeon, May 9, 2012 Scope of Presentation in the RI Science Project Area of the IF Separator and ISOL cyclotron Two kinds of beam

More information

PoS(NIC XII)184. Neutron capture on the s-process branch point nucleus 63 Ni

PoS(NIC XII)184. Neutron capture on the s-process branch point nucleus 63 Ni Neutron capture on the s-process branch point nucleus 63 Ni a, T. A. Bredeweg c, A. Couture c, M. Jandel c, F. Käppeler b, C. Lederer a, G. Korschinek d, M. Krticka e, J. M. O Donnell c, R. Reifarth a,

More information

Studying Neutron-Induced Reactions for Basic Science and Societal Applications

Studying Neutron-Induced Reactions for Basic Science and Societal Applications Studying Neutron-Induced Reactions for Basic Science and Societal Applications Correlations in Hadronic and Partonic Interactions 2018 A. Couture Yerevan, Armenia 28 September 2018 Operated by Los Alamos

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young Novel, Hybrid RF Injector as a High-average average-current Electron Source Dinh Nguyen Los Alamos National Laboratory Lloyd Young TechSource Energy Recovery Linac Workshop Thomas Jefferson National Accelerator

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

Upgrade of the HIT Injector Linac-Frontend

Upgrade of the HIT Injector Linac-Frontend Upgrade of the HIT Injector Linac-Frontend S. Yaramyshev, W. Barth, M. Maier, A. Orzhekhovskaya, B. Schlitt, H. Vormann (GSI, Darmstadt) R. Cee, A. Peters (HIT, Heidelberg) HIT - Therapy Accelerator in

More information

The CIS project and the design of other low energy proton synchrotrons

The CIS project and the design of other low energy proton synchrotrons The CIS project and the design of other low energy proton synchrotrons 1. Introduction 2. The CIS project 3. Possible CMS 4. Conclusion S.Y. Lee IU Ref. X. Kang, Ph.D. thesis, Indiana University (1998).

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR

DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR I.Alexander,K.Aulenbacher,V.Bechthold,B.Ledroit,C.Matejcek InstitutfürKernphysik,JohannesGutenberg-Universität,D-55099Mainz,Germany Abstract With the test-beam-line

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC

COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC X.Yin 1,2, L. Groening 2, I. Hofmann 2, W. Bayer 2, W. Barth 2,S.Richter 2, S. Yaramishev 2, A. Franchi 3, A. Sauer 4 1 Institute of

More information

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000)

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Accelerators There are some 30 000 accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Scientific research community (~ 100) Synchrotron light sources Ion beam

More information

arxiv: v2 [physics.acc-ph] 21 Jun 2017

arxiv: v2 [physics.acc-ph] 21 Jun 2017 Pulsed Beam Tests at the SANAEM RFQ Beamline arxiv:1705.06462v2 [physics.acc-ph] 21 Jun 2017 G Turemen 1,2, Y Akgun 1, A Alacakir 1, I Kilic 1, B Yasatekin 1,2, E Ergenlik 3, S Ogur 3, E Sunar 3, V Yildiz

More information

TeV Scale Muon RLA Complex Large Emittance MC Scenario

TeV Scale Muon RLA Complex Large Emittance MC Scenario TeV Scale Muon RLA Complex Large Emittance MC Scenario Alex Bogacz and Kevin Beard Muon Collider Design Workshop, BNL, December 1-3, 29 Outline Large Emittance MC Neuffer s Collider Acceleration Scheme

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note - 819 THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC A. Vivoli 1, I. Chaikovska 2, R. Chehab 3, O. Dadoun 2, P. Lepercq 2, F.

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Investigation on the spiral inflector and central region of the IsoDAR test-bench cyclotron

Investigation on the spiral inflector and central region of the IsoDAR test-bench cyclotron Investigation on the spiral inflector and central region of the IsoDAR test-bench cyclotron Grazia D Agostino, W. Kleeven, E. Forton, V. Nuttens, S. Zaremba, L. Calabretta, A. Calanna for IsoDAR / DAEδALUS

More information

Design Status of the PEFP RCS

Design Status of the PEFP RCS Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1), H.S. Kim 1), H.J. Kwon 1), Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr) Contents PEFP (proton engineering frontier

More information

X-band Experience at FEL

X-band Experience at FEL X-band Experience at FERMI@Elettra FEL Gerardo D Auria Elettra - Sincrotrone Trieste GdA_TIARA Workshop, Ångström Laboratory, June 17-19, 2013 1 Outline The FERMI@Elettra FEL project Machine layout and

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Development and application of the RFQs for FAIR and GSI Projects

Development and application of the RFQs for FAIR and GSI Projects Development and application of the RFQs for FAIR and GSI Projects Stepan Yaramyshev GSI, Darmstadt Facility for Antiproton and Ion Research at Darmstadt The FAIR Accelerator Complex GSI Today SIS 100 SIS18

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU Xiaoyu Wu National Superconducting Cyclotron Laboratory Michigan State University on behalf of the NSCL ReA3 team X. Wu, Cyclotrons

More information

Physics design of a CW high-power proton Linac for accelerator-driven system

Physics design of a CW high-power proton Linac for accelerator-driven system PRAMANA c Indian Academy of Sciences Vol. 78, No. 2 journal of February 2012 physics pp. 247 255 for accelerator-driven system RAJNI PANDE, SHWETA ROY, S V L S RAO, P SINGH and S KAILAS Physics Group,

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC V.P. Bolotin, N.A. Vinokurov, N.G. Gavrilov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V. V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.N. Matveenko, L.E.

More information

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR M. Abo-Bakr FRAAC4 Michael Abo-Bakr 2012 ICAP Warnemünde 1 Content: Introduction ERL s Introduction BERLinPro Motivation Computational Aspects

More information

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND S. Yaramyshev, W. Barth, M. Maier, A. Orzhekhovskaya, B. Schlitt, H. Vormann, GSI, Darmstadt R. Cee, A. Peters, HIT, Heidelberg Abstract The Therapy Linac in

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Lecture 5: Photoinjector Technology J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Technologies Magnetostatic devices Computational modeling Map generation RF cavities 2 cell devices Multicell

More information