2.7 The Friedman and Kasiski Tests

Size: px
Start display at page:

Download "2.7 The Friedman and Kasiski Tests"

Transcription

1 Math 135, Summer The Friedman and Kasiski Tests 1. In each of the following suppose you have a ciphertext with the given number of letters n and the given index of coincidence I. Assuming that the Vigenère encipherment was used on English, estimate the length of the keyword. (1) n 473, I.0422 (2) n 1284, I.0518 (3) n 583, I.0611 (4) n 20849, I.0648 Solution: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Calculate the index of coincidence for the following ciphertext and use it to estimate the keyword length. NGTSA IPNGE PBSFW NCPBN RSAGF ASGEW JSVSF NRCNI WKGPW KIGEW PSWWM SYEWN NFUNG EPBSF WNCPB NRSWS PWSWR GMNRS USVGH VSBRG MNRSU KCPTS SDNSP BSBMR CNNRS IFHIY INWCF SNGMR IKRGP SWMSR CVSCN NCKRS BNCTG GWCPB MRCNN RSUKC PNSCK REWCT GENNR SFCVI WRIPA MGFHB MSRCV SNRSX FIVIH SASNG IPRCT IN Solution: The ciphertext has a total of 237 characters and the following table gives the letter frequencies: Letter # of times Letter # of times Letter # of times A 5 J 1 S 34 B K 7 T 5 C 18 L 0 U 4 D 1 M 9 V 7 E 7 N 29 W 17 F O 0 X 1 G 17 P 15 Y 2 H 4 Q 0 Z 0 I 13 R 21 Using the above information we can calculate I: Z ia I n i(n i 1) n(n 1)

2 Using the Friedman test we can use this to estimate the keyword length:.0265 n (.065 I) + n (I.0385) ( ) + n ( ) We estimate the keyword length to be one (that is, we think this is a monoalphabetic substitution cipher). 8. Use the Kasiski test to estimate the keyword length used to produce the following ciphertext. ANIIX GFXVH XCGZD CWYTU KLZKW HFXSG FARXX GLBRH PTWLI IXGFX VHXCG ZDCWY TUKLZ KWCJY OBWHC CCCSF ZDPBO BPTCG FWVXZ LOUJK PRLCE KCCKO CXDRZ YPAPP WQFVV GFANM EFLBV MYQLL LQPLL NYIJZ MCCXE FWCEW EPMGV RERZY POYCO QYICC WPVVJ RZCEK HYKNY IJIFY NLZUW PVVJR ZCEKH MJEVH EFWLV ALQFI VRRGF YVVTL NICZP BWRTI AREUP FPFWQ RWHMJ EZRRR ZYIIE MG Solution: The ciphertext string IIXGF XVHXC GZDCW YTUKL ZKW occurs at positions 3 and 45. We estimate that the keyword length divides 42. The ciphertext string WPVVJ RZCEK H occurs at positions 181 and 205. We estimate that the keyword length divides 24. The greatest common divisor of these two number is 6. So we estimate that the keyword length must be a divisor of 6. The choices are 1, 2, 3, and Hill Ciphers; Matrices 1. Calculate the matrix products modulo the given modulus [ 0 1 0] (mod 7) (mod 12) (mod 2) (mod 2) 6. 5 [15 ] 20

3 (mod 17) Solution: (mod 7) 5 3 [ 12 ] (mod 12) (mod 2) [ [ ] 0 1] (mod 2) [15 ] 5 [ 11 ] [ 1 4 ] 2 6 [ ] [ 8 3 ] (mod 17) 3. Calculate the determinants of the following matrices modulo the given modulus. 1 0 (a) A, m 2 Solution: det(a) 1 (mod 2) [ ] 4 3 (b) B, m 5 Solution: det(b) (mod 5) [ 1 3 ] 6 (c) C, m 11 Solution: det(c) (mod 11) [ 5 3 ] 11 (d) D, m 26 Solution: det(d) [ 7 ] (e) E, m 26 Solution: det(e) [ 6 8] 0 1 (f) F, m 26 Solution: det(f )

4 5. Encipher the message WASHINGTON using the Hill Cipher with key matrix A Solution: We break the plaintext into pairs of letters and position encode them: [ [ [ W 22 S 18 I 8 G 6 O 14 A 0 H] 7 N] 13 T 19] N 13 and then multiply them by the matrix A: [ ] Which gives us the encrypted text OQZQLUVYDW. [ O Q] Z Q [ L U] V Y D W 6. Decipher the message VPNNNHTPQF, which was enciphered by the Hill cipher with key matrix 3 5 A. 7 8 Solution: The first step is to find A 1 this will allow us to decrypt the ciphertext. det(a) So det(a) 1 7. A We [ now ] [ break the ciphertext [ up [ into ] [ pairs ] and position [ encode: V 21 N N 13 T 19 Q 16 P 15] N 13] H 7 P 15] F 5 In order to find the plaintext that corresponds to the pairs we multiply by A 1 on the left: [ B O] [ N A] [ P E] T I [ [ T 3 5] 5 23 X]

5 and we get the plaintext BONAPETITX. Or with spaces and minus the padding letter at the end Bon apetit. 9. Suppose you know that ABLE enciphers as ZXTQ by using the Hill cipher with a key matrix A. Determine A. [ 0 Solution: We have that A 1] Multiply both sides of this equation by on the right to get: A and A 23 4 A [ We concatenate these two systems and get: 16 [ 25 ] ] 1 [ 5 ] Calculate the determinants of the following matrices modulo the given modulus, m. For those with determinant relatively prime to m, find the inverse matrix (a) A, m (b) A 0 2 0, m (c) A 1 0 0, m Solution: (a) () () det(a) 1 det + 2 det (mod 4) A (mod 4) (b) det(a) (mod 13) A (mod 13) 0 0 (c) det(a) 1 A 1 A 2 The last one can be seen as the matrix A just switches the rows of anything it multiplies: x 1 x 2 x 3 x for all possible vectors x. We call any such matrix a permutation matrix. x 3 x Encipher AUTUMN LEAVES by the matrix A

6 2. Decipher OASUDC using the above encryption scheme. Solution: We break the plaintext up into blocks of three letter and then position encode: A U 0 20 U M L E 11 4 V E 21 4 T 19 N 13 A 0 S 18 Then we multiply the resulting vectors by the matrix A to get the corresponding ciphertext: M U 9 13 N U S 3 19 T L T P F H 8 17 R Which gives the encrypted text MUNUS TLTPF HR. To decrypt we first must find A 1. We know from a previous exercise that det(a) 1 1. So the inverse is: A O 14 U 20 We break the ciphertext into blocks of three letters and position encode: A 0 D 3 S 18 C 2 And then multiply them by A 1 on the left K G C O L D This gives us KGCOLD as the plaintext.

Security of Networks (12) Exercises

Security of Networks (12) Exercises (12) Exercises 1.1 Below are given four examples of ciphertext, one obtained from a Substitution Cipher, one from a Vigenere Cipher, one from an Affine Cipher, and one unspecified. In each case, the task

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1 Cryptography CS 555 Topic 2: Evolution of Classical Cryptography Topic 2 1 Lecture Outline Basics of probability Vigenere cipher. Attacks on Vigenere: Kasisky Test and Index of Coincidence Cipher machines:

More information

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009)

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009) Make sure that this examination has 10 numbered pages University of Regina Department of Mathematics & Statistics Final Examination 200910 (April 21, 2009) Mathematics 124 The Art and Science of Secret

More information

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and )

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) A Better Cipher The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) To the first letter, add 1 To the second letter, add 14 To the third

More information

Sol: First, calculate the number of integers which are relative prime with = (1 1 7 ) (1 1 3 ) = = 2268

Sol: First, calculate the number of integers which are relative prime with = (1 1 7 ) (1 1 3 ) = = 2268 ò{çd@àt ø 2005.0.3. Suppose the plaintext alphabets include a z, A Z, 0 9, and the space character, therefore, we work on 63 instead of 26 for an affine cipher. How many keys are possible? What if we add

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CSG 252 Fall 2006 Riccardo Pucella Goals of Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to communications Alice and Bob share a key K Alice

More information

A block cipher enciphers each block with the same key.

A block cipher enciphers each block with the same key. Ciphers are classified as block or stream ciphers. All ciphers split long messages into blocks and encipher each block separately. Block sizes range from one bit to thousands of bits per block. A block

More information

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment.

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment. CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES A selection of the following questions will be chosen by the lecturer to form the Cryptology Assignment. The Cryptology Assignment is due by 5pm Sunday 1

More information

Chapter 2 Classical Cryptosystems

Chapter 2 Classical Cryptosystems Chapter 2 Classical Cryptosystems Note We will use the convention that plaintext will be lowercase and ciphertext will be in all capitals. 2.1 Shift Ciphers The idea of the Caesar cipher: To encrypt, shift

More information

MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS. CIS 400/628 Spring 2005 Introduction to Cryptography

MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS. CIS 400/628 Spring 2005 Introduction to Cryptography MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 1 of Lewand and Chapter 1 of Garrett. MONOALPHABETIC SUBSTITUTION CIPHERS These

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-22 Recap Two methods for attacking the Vigenère cipher Frequency analysis Dot Product Playfair Cipher Classical Cryptosystems - Section

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-27 Recap ADFGX Cipher Block Cipher Modes of Operation Hill Cipher Inverting a Matrix (mod n) Encryption: Hill Cipher Example Multiple

More information

Polyalphabetic Ciphers

Polyalphabetic Ciphers Polyalphabetic Ciphers 1 Basic Idea: The substitution alphabet used for enciphering successive letters of plaintext changes. The selection of alphabets may depend on a keyword, a key stream, or electromechanical

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and Elementary Matrices In this special handout of material not contained in the text, we introduce the concept of elementary matrix. Elementary matrices are useful in several ways that will be shown in this

More information

ECE 646 Lecture 5. Motivation: Mathematical Background: Modular Arithmetic. Public-key ciphers. RSA keys. RSA as a trap-door one-way function

ECE 646 Lecture 5. Motivation: Mathematical Background: Modular Arithmetic. Public-key ciphers. RSA keys. RSA as a trap-door one-way function ECE Lecture 5 Mathematical Background: Modular Arithmetic Motivation: Public-key ciphers RSA as a trap-door one-way function PUBLIC KEY message ciphertext M C = f(m) = M e mod N C RSA keys PUBLIC KEY PRIVATE

More information

Friedman s Index of Coincidence and. Estimation of Keyword Length

Friedman s Index of Coincidence and. Estimation of Keyword Length Friedman s Index of Coincidence and Estimation of Keyword Length 1 William Friedman, 1891-1969 Photo: NSA 2 A sample of ordinary English contains the following distribution of letters letter count letter

More information

Introduction to Cryptology. Lecture 2

Introduction to Cryptology. Lecture 2 Introduction to Cryptology Lecture 2 Announcements 2 nd vs. 1 st edition of textbook HW1 due Tuesday 2/9 Readings/quizzes (on Canvas) due Friday 2/12 Agenda Last time Historical ciphers and their cryptanalysis

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2010 2011 CRYPTOGRAPHY Time allowed: 2 hours Attempt THREE questions. Candidates must show on each answer book the type of calculator

More information

Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm. David Morgan

Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm. David Morgan Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm David Morgan XOR as a cipher Bit element encipherment elements are 0 and 1 use modulo-2 arithmetic Example: 1

More information

CSCI3381-Cryptography

CSCI3381-Cryptography CSCI3381-Cryptography Lecture 2: Classical Cryptosystems September 3, 2014 This describes some cryptographic systems in use before the advent of computers. All of these methods are quite insecure, from

More information

... Assignment 3 - Cryptography. Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc.

... Assignment 3 - Cryptography. Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc. Assignment 3 - Cryptography Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc. Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe-University Frankfurt a. M.

More information

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3 Shift Cipher For 0 i 25, the ith plaintext character is shifted by some value 0 k 25 (mod 26). E.g. k = 3 a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y

More information

} has dimension = k rank A > 0 over F. For any vector b!

} has dimension = k rank A > 0 over F. For any vector b! FINAL EXAM Math 115B, UCSB, Winter 2009 - SOLUTIONS Due in SH6518 or as an email attachment at 12:00pm, March 16, 2009. You are to work on your own, and may only consult your notes, text and the class

More information

ECE 646 Lecture 5. Mathematical Background: Modular Arithmetic

ECE 646 Lecture 5. Mathematical Background: Modular Arithmetic ECE 646 Lecture 5 Mathematical Background: Modular Arithmetic Motivation: Public-key ciphers RSA as a trap-door one-way function PUBLIC KEY message ciphertext M C = f(m) = M e mod N C M = f -1 (C) = C

More information

What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL

What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL Definition: Cryptosystem Cryptography means secret writing and it is the art of concealing meaning. A Cryptosystem is a 5-tuple(E, D,M,K,C),

More information

Math 1350 (FALL 2008) Prelim 1 (10/6/2008) 1. Solution. For the Atbash cipher for the Roman alphabet we have

Math 1350 (FALL 2008) Prelim 1 (10/6/2008) 1. Solution. For the Atbash cipher for the Roman alphabet we have Math 1350 (FALL 2008) Prelim 1 (10/6/2008) 1 1. (8 pts) Decrypt the following message, which was enciphered using the Atbash cipher. GSVYZ WMVDH RHGRN VUORV HGSVT LLWMV DHRHB LFIVG SVKRO LG Solution. For

More information

MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now?

MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now? MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now? The time you use everyday is a cycle of 12 hours, divided up into a cycle of 60 minutes. For every time you pass

More information

Homework Problems, Math 134, Spring 2007 (Robert Boltje)

Homework Problems, Math 134, Spring 2007 (Robert Boltje) Homework Problems, Math 134, Spring 2007 (Robert Boltje) 1. Write a computer program that uses the Euclidean Algorithm to compute the greatest common divisor d of two natural numbers a and b and also integers

More information

Classic Cryptography Tutorial. c Eli Biham - May 3, Classic Cryptography Tutorial (3)

Classic Cryptography Tutorial. c Eli Biham - May 3, Classic Cryptography Tutorial (3) Classic Cryptography Tutorial c Eli Biham - May 3, 2005 68 Classic Cryptography Tutorial (3) Ciphertext-Only Attack on Substitution Cipher Monoalphabetic substitution ciphers cannot protect against known

More information

Simple Codes MTH 440

Simple Codes MTH 440 Simple Codes MTH 440 Not all codes are for the purpose of secrecy Morse Code ASCII Zip codes Area codes Library book codes Credit Cards ASCII Code Steganography: Hidden in plain sight (example from http://www.bbc.co.uk/news/10

More information

5. Classical Cryptographic Techniques from modular arithmetic perspective

5. Classical Cryptographic Techniques from modular arithmetic perspective . Classical Cryptographic Techniques from modular arithmetic perspective By classical cryptography we mean methods of encipherment that have been used from antiquity through the middle of the twentieth

More information

The Hill Cipher A Linear Algebra Perspective

The Hill Cipher A Linear Algebra Perspective The Hill Cipher A Linear Algebra Perspective Contents 1 Introduction to Classical Cryptography 3 1.1 Alice, Bob & Eve................................. 3 1.2 Types of Attacks.................................

More information

Data and information security: 2. Classical cryptography

Data and information security: 2. Classical cryptography ICS 423: s Data and information security: 2. Classical cryptography UHM ICS 423 Fall 2014 Outline ICS 423: s s and crypto systems ciphers ciphers Breaking ciphers What did we learn? Outline ICS 423: s

More information

Using Matrices for Cryptography

Using Matrices for Cryptography Using Matrices for Cryptography In the newspaper, usually on the comics page, there will be a puzzle that looks similar to this: BRJDJ WT X BWUJ AHD PJYXDBODJ JQJV ZRJV GRJDJ T VH EJDBXWV YSXEJ BH FH 1

More information

2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm.

2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm. CHAPTER 2 CLASSICAL ENCRYPTION TECHNIQUES ANSWERS TO QUESTIONS 2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm. 2.2 Permutation and substitution. 2.3 One key for symmetric

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 CPSC 418/MATH 318 L01 October 17, 2018 Time: 50 minutes

More information

Implementation Tutorial on RSA

Implementation Tutorial on RSA Implementation Tutorial on Maciek Adamczyk; m adamczyk@umail.ucsb.edu Marianne Magnussen; mariannemagnussen@umail.ucsb.edu Adamczyk and Magnussen Spring 2018 1 / 13 Overview Implementation Tutorial Introduction

More information

Jay Daigle Occidental College Math 401: Cryptology

Jay Daigle Occidental College Math 401: Cryptology 3 Block Ciphers Every encryption method we ve studied so far has been a substitution cipher: that is, each letter is replaced by exactly one other letter. In fact, we ve studied stream ciphers, which produce

More information

Written examination. Tuesday, August 18, 2015, 08:30 a.m.

Written examination. Tuesday, August 18, 2015, 08:30 a.m. Advanced Methods of Cryptography Univ.-Prof. Dr. rer. nat. Rudolf Mathar 1 2 3 4 19 20 11 20 70 Written examination Tuesday, August 18, 2015, 08:30 a.m. Name: Matr.-No.: Field of study: Please pay attention

More information

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so: A broadcasts RSA method,

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 3 January 22, 2013 CPSC 467b, Lecture 3 1/35 Perfect secrecy Caesar cipher Loss of perfection Classical ciphers One-time pad Affine

More information

Introduction to Cryptography

Introduction to Cryptography Introduction to Cryptography Hong-Jian Lai West Virginia University, Morgantown, WV 26506-6310 Version 2007 March 2, 2007 TABLE OF CONTENTS I. Divisibility.............................................................................

More information

Classical Cryptography

Classical Cryptography JASS 05 Seminar: Algorithms for IT Security Classical Cryptography Ilya Saverchenko June 6, 2005 Abstract Cryptography is a study of secret writing. It allows two people, usually referred to as Alice and

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

Math 223, Spring 2009 Final Exam Solutions

Math 223, Spring 2009 Final Exam Solutions Math 223, Spring 2009 Final Exam Solutions Name: Student ID: Directions: Check that your test has 16 pages, including this one and the blank one on the bottom (which you can use as scratch paper or to

More information

DM49-2. Obligatoriske Opgave

DM49-2. Obligatoriske Opgave DM49-2. Obligatoriske Opgave Jacob Christiansen, moffe42, 130282 Thomas Nordahl Pedersen, nordahl, 270282 1/4-05 Indhold 1 Opgave 1 - Public Exponent 2 1.1 a.................................. 2 1.2 b..................................

More information

monoalphabetic cryptanalysis Character Frequencies (English) Security in Computing Common English Digrams and Trigrams Chapter 2

monoalphabetic cryptanalysis Character Frequencies (English) Security in Computing Common English Digrams and Trigrams Chapter 2 Common English Digrams and Trigrams Digrams EN RE ER NT TH ON IN TF AN OR Trigrams ENT ION AND ING IVE TIO FOR OUR THI ONE monoalphabetic cryptanalysis See class example Pfleeger, Security in Computing,

More information

Solutions for week 1, Cryptography Course - TDA 352/DIT 250

Solutions for week 1, Cryptography Course - TDA 352/DIT 250 Solutions for week, Cryptography Course - TDA 352/DIT 250 In this weekly exercise sheet: you will use some historical ciphers, the OTP, the definition of semantic security and some combinatorial problems.

More information

NET 311D INFORMATION SECURITY

NET 311D INFORMATION SECURITY 1 NET 311D INFORMATION SECURITY Networks and Communication Department TUTORIAL 3 : Asymmetric Ciphers (RSA) A Symmetric-Key Cryptography (Public-Key Cryptography) Asymmetric-key (public key cryptography)

More information

1/16 2/17 3/17 4/7 5/10 6/14 7/19 % Please do not write in the spaces above.

1/16 2/17 3/17 4/7 5/10 6/14 7/19 % Please do not write in the spaces above. 1/16 2/17 3/17 4/7 5/10 6/14 7/19 % Please do not write in the spaces above. Directions: You have 75 minutes in which to complete this exam. Please make sure that you read through this entire exam before

More information

Shannon s Theory of Secrecy Systems

Shannon s Theory of Secrecy Systems Shannon s Theory of Secrecy Systems See: C. E. Shannon, Communication Theory of Secrecy Systems, Bell Systems Technical Journal, Vol. 28, pp. 656 715, 1948. c Eli Biham - March 1, 2011 59 Shannon s Theory

More information

Outline. CPSC 418/MATH 318 Introduction to Cryptography. Information Theory. Partial Information. Perfect Secrecy, One-Time Pad

Outline. CPSC 418/MATH 318 Introduction to Cryptography. Information Theory. Partial Information. Perfect Secrecy, One-Time Pad Outline CPSC 418/MATH 318 Introduction to Cryptography, One-Time Pad Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in part on slides

More information

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS Math 40 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS WARNING: Remember, it s best to rely as little as possible on my solutions. Therefore, I urge you to try the problems on your

More information

Exercise Sheet Cryptography 1, 2011

Exercise Sheet Cryptography 1, 2011 Cryptography 1 http://www.cs.ut.ee/~unruh/crypto1-11/ Exercise Sheet Cryptography 1, 2011 Exercise 1 DES The Data Encryption Standard (DES) is a very famous and widely used block cipher. It maps 64-bit

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x].

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x]. The second exam will be on Friday, October 28, 2. It will cover Sections.7,.8, 3., 3.2, 3.4 (except 3.4.), 4. and 4.2 plus the handout on calculation of high powers of an integer modulo n via successive

More information

COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5

COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5 COMM1003 Information Theory Dr. Wassim Alexan Spring 2018 Lecture 5 The Baconian Cipher A mono alphabetic cipher invented by Sir Francis Bacon In this cipher, each letter is replaced by a sequence of five

More information

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Lecture 05 Problem discussion on Affine cipher and perfect secrecy

More information

Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that

Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that det(a) = 2, det(b) = 2, det(c) = 1, det(d) = 4. 2 (a) Compute det(ad)+det((b

More information

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc.

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc. Innovation and Cryptoventures Cryptology Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc January 20, 2017 Overview Cryptology Cryptography Cryptanalysis Symmetric

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 08 Shannon s Theory (Contd.)

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

An Introduction to Cryptography

An Introduction to Cryptography An Introduction to Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics Spring 2008 What is Cryptography? cryptography: study of methods for sending messages in a form that only

More information

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 177 CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 178 12.1 Introduction The study of cryptography of gray level images [110, 112, 118] by using block ciphers has gained considerable

More information

Classical Cryptography

Classical Cryptography Outline [1] Introduction: Some Simple Cryptosystems The Shift Cipher The Substitution Cipher The Affine Cipher The Vigenère Cipher The Hill Cipher The Permutation Cipher [2] Cryptanalysis

More information

Hidden Markov Models for Vigenère Cryptanalysis

Hidden Markov Models for Vigenère Cryptanalysis Hidden Markov Models for Vigenère Cryptanalysis Mark Stamp Fabio Di Troia Department of Computer Science San Jose State University San Jose, California mark.stamp@sjsu.edu fabioditroia@msn.com Miles Stamp

More information

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2 0368.3049.01 Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod Assignment #2 Published Sunday, February 17, 2008 and very slightly revised Feb. 18. Due Tues., March 4, in Rani Hod

More information

The Evolution of Cryptology

The Evolution of Cryptology California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of Graduate Studies 6-2016 The Evolution of Cryptology Gwendolyn Rae Souza California

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 8 1 The following are equivalent (TFAE) 2 Inverses 3 More on Multiplicative Inverses 4 Linear Congruence Theorem 2 [LCT2] 5 Fermat

More information

MATH3302 Cryptography Problem Set 2

MATH3302 Cryptography Problem Set 2 MATH3302 Cryptography Problem Set 2 These questions are based on the material in Section 4: Shannon s Theory, Section 5: Modern Cryptography, Section 6: The Data Encryption Standard, Section 7: International

More information

The Web Cryptology Game CODEBREAKERS.EU edition 2015

The Web Cryptology Game CODEBREAKERS.EU edition 2015 Lecture 5 in which we return to the dream about le chiffre indechiffrable. We will see this dream come true and next we will try, step by step, to break this unbreakable cipher. As you might remember,

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

INVERSE OF A MATRIX [2.2] 8-1

INVERSE OF A MATRIX [2.2] 8-1 INVERSE OF A MATRIX [2.2] 8-1 The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now)

More information

Clock Arithmetic and Euclid s Algorithm

Clock Arithmetic and Euclid s Algorithm Clock Arithmetic and Euclid s Algorithm Lecture notes for Access 2008 by Erin Chamberlain. Earlier we discussed Caesar Shifts and other substitution ciphers, and we saw how easy it was to break these ciphers

More information

Weaknesses in Hadamard Based Symmetric Key Encryption Schemes

Weaknesses in Hadamard Based Symmetric Key Encryption Schemes Weaknesses in Hadamard Based Symmetric Key Encryption Schemes Gajraj Kuldeep, Devendra Kumar Yadav, A. K. Sharma SAG DRDO In this paper security aspects of the existing symmetric key encryption schemes

More information

MATH WRITTEN HW 4: APPLICATIONS

MATH WRITTEN HW 4: APPLICATIONS MATH 235.9 WRITTEN HW 4: APPLICATIONS ANDREW J. HAVENS This is a collection of short projects rather than a regular problem set. It will be due on the last day of class. Please choose at least three to

More information

Week 7 An Application to Cryptography

Week 7 An Application to Cryptography SECTION 9. EULER S GENERALIZATION OF FERMAT S THEOREM 55 Week 7 An Application to Cryptography Cryptography the study of the design and analysis of mathematical techniques that ensure secure communications

More information

Cook-Levin Theorem. SAT is NP-complete

Cook-Levin Theorem. SAT is NP-complete Cook-Levin Theorem SAT is NP-complete In other words SAT NP A NP A P SAT 1 Consider any A NP NTM N that decides A in polytime n k For any input w Σ * valid tableau of configurations 2 Properties of an

More information

AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY

AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY ! """#$# AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY *Kallam Ravindra Babu 1, Dr. S. Udaya Kumar 2, Dr. A. Vinaya Babu 3 and Dr. M. Thirupathi Reddy 4 1 Research Scholar (JNTUH),

More information

Lattices. A Lattice is a discrete subgroup of the additive group of n-dimensional space R n.

Lattices. A Lattice is a discrete subgroup of the additive group of n-dimensional space R n. Lattices A Lattice is a discrete subgroup of the additive group of n-dimensional space R n. Lattices have many uses in cryptography. They may be used to define cryptosystems and to break other ciphers.

More information

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9.

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9. ( c ) E p s t e i n, C a r t e r, B o l l i n g e r, A u r i s p a C h a p t e r 17: I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science 17.1 Binary Codes Normal numbers we use

More information

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3 Outline Computer Science 48 More on Perfect Secrecy, One-Time Pad, Mike Jacobson Department of Computer Science University of Calgary Week 3 2 3 Mike Jacobson (University of Calgary) Computer Science 48

More information

NHMZK LWOGM PLMXG OBMLE LLOXA RURRJ MIZKL OGYHM KL

NHMZK LWOGM PLMXG OBMLE LLOXA RURRJ MIZKL OGYHM KL Math 139 Solution Final Exam May 2003 1. Decrypt the following, which has been enchipered using a shift cipher. CQNCA XDKUN FRCQC QNAJC AJLNR BCQJC NENWR OHXDF RWHXD ANBCR UUJAJ C Solution: Here s a frequency

More information

CRYPTOGRAPHY AND NUMBER THEORY

CRYPTOGRAPHY AND NUMBER THEORY CRYPTOGRAPHY AND NUMBER THEORY XINYU SHI Abstract. In this paper, we will discuss a few examples of cryptographic systems, categorized into two different types: symmetric and asymmetric cryptography. We

More information

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration Journal of Computer Science 4 (1): 15-20, 2008 ISSN 1549-3636 2008 Science Publications Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration V.U.K. Sastry and N. Ravi Shankar

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 CRYPTOGRAPHY MTHD6025A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt

More information

Fall 2017 September 20, Written Homework 02

Fall 2017 September 20, Written Homework 02 CS1800 Discrete Structures Profs. Aslam, Gold, & Pavlu Fall 2017 September 20, 2017 Assigned: Wed 20 Sep 2017 Due: Fri 06 Oct 2017 Instructions: Written Homework 02 The assignment has to be uploaded to

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

The security of RSA (part 1) The security of RSA (part 1)

The security of RSA (part 1) The security of RSA (part 1) The modulus n and its totient value φ(n) are known φ(n) = p q (p + q) + 1 = n (p + q) + 1 The modulus n and its totient value φ(n) are known φ(n) = p q (p + q) + 1 = n (p + q) + 1 i.e. q = (n φ(n) + 1)

More information

Introduction to Cryptography

Introduction to Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Introduction to Cryptography EECE 412 1 Module Outline Historical background Classic ciphers One-time pad The Random Oracle model Random functions:

More information

1/18 2/16 3/20 4/17 5/6 6/9 7/14 % Please do not write in the spaces above.

1/18 2/16 3/20 4/17 5/6 6/9 7/14 % Please do not write in the spaces above. 1/18 2/16 3/20 4/17 5/6 6/9 7/14 % Please do not write in the spaces above. Directions: You have 50 minutes in which to complete this exam. Please make sure that you read through this entire exam before

More information

Math.3336: Discrete Mathematics. Mathematical Induction

Math.3336: Discrete Mathematics. Mathematical Induction Math.3336: Discrete Mathematics Mathematical Induction Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

then the hard copy will not be correct whenever your instructor modifies the assignments.

then the hard copy will not be correct whenever your instructor modifies the assignments. Assignments for Math 2030 then the hard copy will not be correct whenever your instructor modifies the assignments. exams, but working through the problems is a good way to prepare for the exams. It is

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

Lecture 8 - Cryptography and Information Theory

Lecture 8 - Cryptography and Information Theory Lecture 8 - Cryptography and Information Theory Jan Bouda FI MU April 22, 2010 Jan Bouda (FI MU) Lecture 8 - Cryptography and Information Theory April 22, 2010 1 / 25 Part I Cryptosystem Jan Bouda (FI

More information

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors Math.3336: Discrete Mathematics Primes and Greatest Common Divisors Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information