COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5

Size: px
Start display at page:

Download "COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5"

Transcription

1 COMM1003 Information Theory Dr. Wassim Alexan Spring 2018 Lecture 5

2 The Baconian Cipher A mono alphabetic cipher invented by Sir Francis Bacon In this cipher, each letter is replaced by a sequence of five characters In the original Baconian cipher, the letters were replaced by As and Bs, as follows: a = aaaaa, b = aaaab, c = aaaba, d = aaabb... A nicer modification is to use 0s and 1s, as follows a = , b = , c = , d = This is the same as counting from 0 to 25 in binary, to accommodate the 26 letters of the English language Wassim Alexan 2

3 The Baconian Cipher: A Quick Question! Is it possible to use the Baconian cipher to encrypt a message written in Russian? Knowing that the Russian alphabet consists of 33 letters What about a message in Dutch (26 letters), French (31 letters) or Arabic (28 letters)? Wassim Alexan 3

4 Exercise 1 You received the following ciphertext Can you identify the cipher used here? Carry out cryptanalysis to reveal the plaintext Wassim Alexan 4

5 Exercise 1 Solutions Since the cleartext is only composed of two characters, os and 1s, then this might be the Baconian cipher. As we decrypt it, the plaintext reveals itself to be Removing the spaces, we get ideclarethewaroncheating i declare the war on cheating Wassim Alexan 5

6 Breaking Mono Alphabetic Substitution Ciphers Substitution ciphers without a key are very weak and easily broken A brute force attack on a mono alphabetic substitution cipher with a key would require a maximum of 26! 2 88 trials Nevertheless, a simple letter frequency analysis would easily reveal the contents of a ciphertext made with a mono alphabetic substitution cipher By counting the frequency of letters in a large enough body of text, one could obtain the frequency of each letter in any given language Fig. 1 shows the frequency of each letter in the English language A third option would be to employ the Hill Climbing Algorithm Wassim Alexan 6

7 Letter Frequency Analysis Fig. 1. Frequency of letters in the English language. Wassim Alexan 7

8 Letter Frequency Analysis A quick examination of Fig. 2 reveals that the letter e is the most frequent in the English language (~ 0.13), followed by t (~0.09), a (~0.08) and o (0.075~) Fig. 2. Frequency of letters in the English language, in descending order. Wassim Alexan 8

9 Letter Frequency Analysis Thus, given a ciphertext of sufficient length, one could go about counting the occurrences of each of the letters and attempt mapping them to their substitutes based on the values shown in Fig. 3 Fig. 3. Frequency of letters in the English language. Wassim Alexan 9

10 Exercise 2 You received the following ciphertext which was encoded with a shift cipher XULTPAAJCXITLTLXAARPJHTIWTGXKTGHIDHIPXCIWTVGTPILPITGHLXIWIW TXGQADDS Perform an attack against this cipher based on a letter frequency count. How many letters do you have to identify through a frequency count to recover the key? What is the cleartext? Wassim Alexan 10

11 Exercise 2 Solutions We carry out a letter frequency analysis, obtaining the following numerical results {letter, counts, frequency} T I X P L G A W H D J C V U S R Q K Since we already know that this is a shift cipher, then all we need to do is identify the shift key. This is actually pretty easy, since there is a big enough gap between the most frequent letter in the English alphabet and the next most frequent letter. By mapping the cipherletter T to the plainletter e, we get the following key A B C D E F G H I J K L M N O P Q R S T U V W X Y Z l m n o p q r s t u v w x y z a b c d e f g h i j k Wassim Alexan 11

12 Exercise 2 Solutions Decrypting the text, we get ifweallunitewewillcausetheriverstostainthegreatwaterswiththeirblood. Removing the spaces, we get if we all unite we will cause the rivers to stain the great waters with their blood. Wassim Alexan 12

13 The Hill Climbing Algorithm This algorithm searches for the key to the cipher An initial key is chosen at random and is used to decipher the ciphertext A statistical analysis is carried out on the obtained plaintext and is compared to the statistics of the English language (or whatever language is assumed to be used in this context) If the obtained plaintext seems to fit the statistical profile of the English language, then the key is updated by making a small change to it This process is iteratively repeated until a key gives the best statistical fit Wassim Alexan 13

14 The Hill Climbing Algorithm in Steps 1. Generate a random key, called the parent, decipher the ciphertext using this key. Rate the fitness of the deciphered text, store the result 2. Change the key slightly (swap two characters in the key at random), measure the fitness of the deciphered text using this new key, called the child 3. If the fitness is higher with the modified key, discard the old parent key and store the modified key as the new parent 4. Go back to step 2, unless no improvement in fitness occurred in that last 1000 iterations Wassim Alexan 14

15 The Hill Climbing Algorithm Notes This algorithm depends on the fitness function correctly distinguishing whether the plaintext obtained from one key is better than the plaintext from another key This is done by comparing quad gram statistics from the obtained plaintext with those of the target language However, this system fails when the true plaintext has an unsual statistical profile Consider this sample text from Simon Singh s book The Code Book From Zanzibar to Zambia to Zaire, ozone zones make zebras run zany zigzags This sample text is full of unusual quad grams, so it is expected to have a very low score! The Hill Climbing algorithm will most likely find a key that gives a piece of garbled plaintext that scores much higher than the true plaintext Wassim Alexan 15

16 The Hill Climbing Algorithm: An Example Consider the following ciphertext SOWFBRKAWFCZFSBSCSBQITBKOWLBFXTBKOWLSOXSOXFZWWIBICFWUQLR XINOCIJLWJFQUNWXLFBSZXFBTXAANTQIFBFSFQUFCZFSBSCSBIMWHWLNK AXBISWGSTOXLXTSWLUQLXJBUUWLWISTBKOWLSWGSTOXLXTSWLBSJBUU WLFULQRTXWFXLTBKOWLBISOXSSOWTBKOWLXAKOXZWSBFIQSFBRKANSO WXAKOXZWSFOBUSWJBSBFTQRKAWSWANECRZAWJ To begin the algorithm, we generate a random key, for example a b c d e f g h i j k l m n o p q r s t u v w x y z Y B X O N G S W K C P Z F M T D H R Q U J V E L I A Wassim Alexan 16

17 The Hill Climbing Algorithm: An Example Then, we decipher the ciphertext using this key, getting gdhmbrizhmjlmgbgjgbsyobidhxbmcobidhxgdcgdcmlhhybyjmhtsxrcyedjyuxhumstehc xmbglcmboczzeosymbmgmstmjlmgbgjgbynhqhxeizcbyghfgodcxcoghxtsxcubtthxhygo bidhxghfgodcxcoghxbgubtthxmtxsrochmcxobidhxbygdcggdhobidhxczidclhgbmysgmb rizegdhczidclhgmdbtghubgbmosrizhghzewjrlzhu The fitness of our first plaintext attempt is We now make a random change to the key, for example, by swapping the letters y and b in the key and try again This time, we get a fitness of An improvement! But the text is still not readable so we keep on carrying out more and more iterations, getting better and better fitness values Wassim Alexan 17

18 The Hill Climbing Algorithm: An Example After many iterations, the final key is found to be a b c d e f g h i j k l m n o p q r s t u v w x y z X Z T J W U M O B E P A R I Q K D L F S C H Y G N V Which results in the plaintext thesimplesubstitutioncipherisacipherthathasbeeninuseformanyhundredsofyearsitbasi callyconsistsofsubstitutingeveryplaintextcharacterforadifferentciphertextcharacteritdi ffersfromcaesarcipherinthatthecipheralphabetisnotsimplythealphabetshifteditiscompl etelyjumbled Wassim Alexan 18

19 The Hill Climbing Algorithm: An Example Adding spaces, the plaintext is quiet readable now as the simple substitution cipher is a cipher that has been in use for many hundreds of years it basically consists of substituting every plaintext character for a different ciphertext character it differs from caesar cipher in that the cipher alphabet is not simply the alphabet shifted it is completely jumbled Wassim Alexan 19

20 The Hill Cipher A poly alphabetic cipher invented by Lester Hill in 1929 The encryption process is based on a mathematical formula where E(l) = K l mod m (1) l is a vector containing n letters from the plaintext K is the n n key matrix m is the length of the alphabet Wassim Alexan 20

21 The Hill Cipher The decryption is based on the mathematical formula D(E(l)) = K -1 E(l ) (2) Note that K -1 is not the linear algebraic inverse of K The full decryption details of this cipher is left as a reading exercise for the students Wassim Alexan 21

22 The Hill Cipher: An Example Consider the following plaintext that we are interested in applying the Hill cipher onto attack the main gate of the castle at seven pm Let the key matrix be (3) Take the first 3 letters of the plaintext (n = 3) and assign them numbers that refer to their locations in the alphabet to form l, then carry out the encryption as in (1) a b c d e f g h i j k l m n o p q r s t u v w x y z Wassim Alexan 22

23 The Hill Cipher: An Example att ack the mai nga teo fth eca stl eat sev enp m E (l) = (K l) mod m = = = = P F 0 mod mod 26 Wassim Alexan 23

24 Exercise 6 Continue the encryption process using the Hill cipher for the plaintext attack the main gate of the castle at seven pm Wassim Alexan 24

25 Exercise 6 Solutions We should start off by dividing the plaintext into groups of 3 letters att ack the mai nga teo fth eca stl eat sev enp m and pad the last group with a couple of extra a letters, so that each group would still be made up of 3 letters each att ack the mai nga teo fth eca stl eat sev enp maa We would then continue encrypting as before. The full ciphertext would be PFO GOA IHC MMO YZL ULP RMX QOU LDM ZDP BJJ FZA YEK Removing the spaces we get PFOGOAIHCMMOYZLULPRMXQOULDMZDPBJJFZAYEK Wassim Alexan 25

26 The Homophonic Substitution Cipher This is a poly alphabetic cipher The encryption process is based on a substitution, such that one plaintext letter could correspond to multiple ciphertext letters By introducing multiple substitutions for the high frequency letters, we effectively flatten the frequency distribution of the alphabet, thus making a letter frequency analysis almost obsolete! a b c d e f g h i j k l m n o p q r s t u v w x y z D X S F Z E H C V I T P G A Q L K J R U O W M Y B N Wassim Alexan 26

27 Exercise 7 Given the following ciphertext, attempt an attack on it, knowing that its encryption was carried out using the Homophonic substitution cipher outlined in the previous slide F7EZ5FUC21DR6M9PP0E6CZSD4UP1 Wassim Alexan 27

28 Exercise 7 Solutions Using the table on slide 26, we decrypt the ciphertext getting defendtheeastwallofthecastle Adding spaces, we get defend the east wall of the castle Wassim Alexan 28

29 The Rail Fence Cipher The rail fence cipher is an easy to apply transposition cipher that jumbles up the order of the letters of a message in a quick and convenient way The key is the number of lines used It works by writing the plaintext on alternate lines across the page, then reading off each line in turn For example, the plaintext defend the east wall is written as shown below, with all spaces removed and a key = 2 Then, the ciphertext would be D F N T E A T A L E E D H E S W L DFNTEATALEEDHESWL Wassim Alexan 29

30 The Rail Fence Cipher The same plaintext could be encoded with a key = 3, padding the last couple of cells with the letter x Then, the ciphertext would be D N E T L E E D H E S W L X F T A A X DNETLEEDHESWLXFTAAX Wassim Alexan 30

31 Exercise 8 Give the following ciphertext, attempt an attack on it, knowing that its encryption was carried out using a Rail Fence cipher with a prime number key less than 7 DAEAISOETRXCUWLUTNHOUAESULBEOCNOMBEOGTDTYSYEX Wassim Alexan 31

32 Exercise 8 Solutions Since we do not know the key, we will have to attempt decrypting the ciphertext trying the keys 2, 3 and 5 The correct key is 5 which represents the number of rows of the matrix, but in order for us to know the number of columns, we have to count the characters in the ciphertext, which turns up to be 45 The next step is to write down the matrix and fill it with the ciphertext row by row as follows D A E A I S O E T R X C U W L U T N H O U A E S U L B E O C N O M B E O G T D T Y S Y E X Wassim Alexan 32

33 Exercise 8 Solutions Finally, we read off the plaintext from the matrix, in a zigzag fashion, getting donotcheatonyourexamsbecauseyouwillgetbusted Adding spaces, we get do not cheat on your exams because you will get busted Wassim Alexan 33

26 HIDDEN MARKOV MODELS

26 HIDDEN MARKOV MODELS 26 HIDDEN MARKOV MODELS techniques to HMMs. Consequently, a clear understanding of the material in this chapter is crucial before proceeding with the remainder of the book. The homework problem will help

More information

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1 Cryptography CS 555 Topic 2: Evolution of Classical Cryptography Topic 2 1 Lecture Outline Basics of probability Vigenere cipher. Attacks on Vigenere: Kasisky Test and Index of Coincidence Cipher machines:

More information

Efficient Cryptanalysis of Homophonic Substitution Ciphers

Efficient Cryptanalysis of Homophonic Substitution Ciphers Efficient Cryptanalysis of Homophonic Substitution Ciphers Amrapali Dhavare Richard M. Low Mark Stamp Abstract Substitution ciphers are among the earliest methods of encryption. Examples of classic substitution

More information

CSCI3381-Cryptography

CSCI3381-Cryptography CSCI3381-Cryptography Lecture 2: Classical Cryptosystems September 3, 2014 This describes some cryptographic systems in use before the advent of computers. All of these methods are quite insecure, from

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-27 Recap ADFGX Cipher Block Cipher Modes of Operation Hill Cipher Inverting a Matrix (mod n) Encryption: Hill Cipher Example Multiple

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-22 Recap Two methods for attacking the Vigenère cipher Frequency analysis Dot Product Playfair Cipher Classical Cryptosystems - Section

More information

MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now?

MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now? MODULAR ARITHMETIC. Suppose I told you it was 10:00 a.m. What time is it 6 hours from now? The time you use everyday is a cycle of 12 hours, divided up into a cycle of 60 minutes. For every time you pass

More information

Sol: First, calculate the number of integers which are relative prime with = (1 1 7 ) (1 1 3 ) = = 2268

Sol: First, calculate the number of integers which are relative prime with = (1 1 7 ) (1 1 3 ) = = 2268 ò{çd@àt ø 2005.0.3. Suppose the plaintext alphabets include a z, A Z, 0 9, and the space character, therefore, we work on 63 instead of 26 for an affine cipher. How many keys are possible? What if we add

More information

Chapter 2 Classical Cryptosystems

Chapter 2 Classical Cryptosystems Chapter 2 Classical Cryptosystems Note We will use the convention that plaintext will be lowercase and ciphertext will be in all capitals. 2.1 Shift Ciphers The idea of the Caesar cipher: To encrypt, shift

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

5. Classical Cryptographic Techniques from modular arithmetic perspective

5. Classical Cryptographic Techniques from modular arithmetic perspective . Classical Cryptographic Techniques from modular arithmetic perspective By classical cryptography we mean methods of encipherment that have been used from antiquity through the middle of the twentieth

More information

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 177 CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 178 12.1 Introduction The study of cryptography of gray level images [110, 112, 118] by using block ciphers has gained considerable

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 08 Shannon s Theory (Contd.)

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 3 January 22, 2013 CPSC 467b, Lecture 3 1/35 Perfect secrecy Caesar cipher Loss of perfection Classical ciphers One-time pad Affine

More information

Introduction to Cryptology. Lecture 2

Introduction to Cryptology. Lecture 2 Introduction to Cryptology Lecture 2 Announcements 2 nd vs. 1 st edition of textbook HW1 due Tuesday 2/9 Readings/quizzes (on Canvas) due Friday 2/12 Agenda Last time Historical ciphers and their cryptanalysis

More information

Jay Daigle Occidental College Math 401: Cryptology

Jay Daigle Occidental College Math 401: Cryptology 3 Block Ciphers Every encryption method we ve studied so far has been a substitution cipher: that is, each letter is replaced by exactly one other letter. In fact, we ve studied stream ciphers, which produce

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 12 Page 1 of 8 Number theory (Chapter 4) Review Compute 6 11 mod 13 in an efficient way What is the prime factorization of 100? 138? What is gcd(100, 138)? What is lcm(100,138)?

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

Cryptography. P. Danziger. Transmit...Bob...

Cryptography. P. Danziger. Transmit...Bob... 10.4 Cryptography P. Danziger 1 Cipher Schemes A cryptographic scheme is an example of a code. The special requirement is that the encoded message be difficult to retrieve without some special piece of

More information

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 82 CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 83 5.1 Introduction In a pioneering paper, Hill [5] developed a block cipher by using the modular arithmetic inverse

More information

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and )

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) A Better Cipher The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) To the first letter, add 1 To the second letter, add 14 To the third

More information

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment.

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment. CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES A selection of the following questions will be chosen by the lecturer to form the Cryptology Assignment. The Cryptology Assignment is due by 5pm Sunday 1

More information

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3 Shift Cipher For 0 i 25, the ith plaintext character is shifted by some value 0 k 25 (mod 26). E.g. k = 3 a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y

More information

The Hill Cipher A Linear Algebra Perspective

The Hill Cipher A Linear Algebra Perspective The Hill Cipher A Linear Algebra Perspective Contents 1 Introduction to Classical Cryptography 3 1.1 Alice, Bob & Eve................................. 3 1.2 Types of Attacks.................................

More information

A Block Cipher using an Iterative Method involving a Permutation

A Block Cipher using an Iterative Method involving a Permutation Journal of Discrete Mathematical Sciences & Cryptography Vol. 18 (015), No. 3, pp. 75 9 DOI : 10.1080/097059.014.96853 A Block Cipher using an Iterative Method involving a Permutation Lakshmi Bhavani Madhuri

More information

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix S. Udaya Kumar V. U. K. Sastry A. Vinaya babu Abstract In this paper, we have developed a block cipher

More information

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration Journal of Computer Science 4 (1): 15-20, 2008 ISSN 1549-3636 2008 Science Publications Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration V.U.K. Sastry and N. Ravi Shankar

More information

Data and information security: 2. Classical cryptography

Data and information security: 2. Classical cryptography ICS 423: s Data and information security: 2. Classical cryptography UHM ICS 423 Fall 2014 Outline ICS 423: s s and crypto systems ciphers ciphers Breaking ciphers What did we learn? Outline ICS 423: s

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2010 2011 CRYPTOGRAPHY Time allowed: 2 hours Attempt THREE questions. Candidates must show on each answer book the type of calculator

More information

Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm. David Morgan

Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm. David Morgan Real scripts backgrounder 3 - Polyalphabetic encipherment - XOR as a cipher - RSA algorithm David Morgan XOR as a cipher Bit element encipherment elements are 0 and 1 use modulo-2 arithmetic Example: 1

More information

monoalphabetic cryptanalysis Character Frequencies (English) Security in Computing Common English Digrams and Trigrams Chapter 2

monoalphabetic cryptanalysis Character Frequencies (English) Security in Computing Common English Digrams and Trigrams Chapter 2 Common English Digrams and Trigrams Digrams EN RE ER NT TH ON IN TF AN OR Trigrams ENT ION AND ING IVE TIO FOR OUR THI ONE monoalphabetic cryptanalysis See class example Pfleeger, Security in Computing,

More information

AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY

AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY ! """#$# AN ENHANCED CRYPTOGRAPHIC SUBSTITUTION METHOD FOR INFORMATION SECURITY *Kallam Ravindra Babu 1, Dr. S. Udaya Kumar 2, Dr. A. Vinaya Babu 3 and Dr. M. Thirupathi Reddy 4 1 Research Scholar (JNTUH),

More information

Lecture (04) Classical Encryption Techniques (III)

Lecture (04) Classical Encryption Techniques (III) Lecture (04) Classical Encryption Techniques (III) Dr. Ahmed M. ElShafee ١ Playfair Cipher one approach to improve security was to encrypt multiple letters the Playfair Cipher is an example invented by

More information

one approach to improve security was to encrypt multiple letters invented by Charles Wheatstone in 1854, but named after his

one approach to improve security was to encrypt multiple letters invented by Charles Wheatstone in 1854, but named after his Lecture (04) Classical Encryption Techniques (III) Dr. Ahmed M. ElShafee ١ The rules for filling in this 5x5 matrix are: L to R, top to bottom, first with keyword after duplicate letters have been removed,

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm.

2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm. CHAPTER 2 CLASSICAL ENCRYPTION TECHNIQUES ANSWERS TO QUESTIONS 2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm. 2.2 Permutation and substitution. 2.3 One key for symmetric

More information

Cook-Levin Theorem. SAT is NP-complete

Cook-Levin Theorem. SAT is NP-complete Cook-Levin Theorem SAT is NP-complete In other words SAT NP A NP A P SAT 1 Consider any A NP NTM N that decides A in polytime n k For any input w Σ * valid tableau of configurations 2 Properties of an

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS. CIS 400/628 Spring 2005 Introduction to Cryptography

MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS. CIS 400/628 Spring 2005 Introduction to Cryptography MONOALPHABETIC CIPHERS AND THEIR MATHEMATICS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 1 of Lewand and Chapter 1 of Garrett. MONOALPHABETIC SUBSTITUTION CIPHERS These

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CSG 252 Fall 2006 Riccardo Pucella Goals of Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to communications Alice and Bob share a key K Alice

More information

A block cipher enciphers each block with the same key.

A block cipher enciphers each block with the same key. Ciphers are classified as block or stream ciphers. All ciphers split long messages into blocks and encipher each block separately. Block sizes range from one bit to thousands of bits per block. A block

More information

Solutions to the Midterm Test (March 5, 2011)

Solutions to the Midterm Test (March 5, 2011) MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough Solutions to the Midterm Test (March 5, 2011) YOUR NAME: DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. INSTRUCTIONS:

More information

Cryptanalysis. A walk through time. Arka Rai Choudhuri

Cryptanalysis. A walk through time. Arka Rai Choudhuri Cryptanalysis A walk through time Arka Rai Choudhuri arkarai.choudhuri@gmail.com How many can you identify? History (or how I will give you hope of becoming world famous and earning $70 million along

More information

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009)

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009) Make sure that this examination has 10 numbered pages University of Regina Department of Mathematics & Statistics Final Examination 200910 (April 21, 2009) Mathematics 124 The Art and Science of Secret

More information

Cryptography. pieces from work by Gordon Royle

Cryptography. pieces from work by Gordon Royle Cryptography pieces from work by Gordon Royle The set-up Cryptography is the mathematics of devising secure communication systems, whereas cryptanalysis is the mathematics of breaking such systems. We

More information

Simple Codes MTH 440

Simple Codes MTH 440 Simple Codes MTH 440 Not all codes are for the purpose of secrecy Morse Code ASCII Zip codes Area codes Library book codes Credit Cards ASCII Code Steganography: Hidden in plain sight (example from http://www.bbc.co.uk/news/10

More information

Introduction to Cryptography

Introduction to Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Introduction to Cryptography EECE 412 1 Module Outline Historical background Classic ciphers One-time pad The Random Oracle model Random functions:

More information

CHAPTER 10 A GENERALIZED PLAYFAIR CIPHER INVOLVING INTERTWINING, INTERWEAVING AND ITERATION

CHAPTER 10 A GENERALIZED PLAYFAIR CIPHER INVOLVING INTERTWINING, INTERWEAVING AND ITERATION 151 CHAPTE 10 A GENEALIZED PLAYFAI CIPHE INVOLVING INTETWINING, INTEWEAVING AND ITEATION 152 10.1. INTODUCTION The Playfair cipher, which enjoyed its prominence during the Second World War, encrypts data

More information

THE ZODIAC KILLER CIPHERS. 1. Background

THE ZODIAC KILLER CIPHERS. 1. Background Tatra Mt. Math. Publ. 45 (2010), 75 91 DOI: 10.2478/v10127-010-0007-8 t m Mathematical Publications THE ZODIAC KILLER CIPHERS Håvard Raddum Marek Sýs ABSTRACT. We describe the background of the Zodiac

More information

Lecture 12: Block ciphers

Lecture 12: Block ciphers Lecture 12: Block ciphers Thomas Johansson T. Johansson (Lund University) 1 / 19 Block ciphers A block cipher encrypts a block of plaintext bits x to a block of ciphertext bits y. The transformation is

More information

Chapter 3 Cryptography

Chapter 3 Cryptography Chapter 3 Cryptography Introduction: Cryptography is an ancient art of keeping secrets. Cryptography ensures security of communication over insecure medium. Terms used in Cryptography: 1) Plain Text: The

More information

... Assignment 3 - Cryptography. Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc.

... Assignment 3 - Cryptography. Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc. Assignment 3 - Cryptography Information & Communication Security (WS 2018/19) Abtin Shahkarami, M.Sc. Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe-University Frankfurt a. M.

More information

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9.

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9. ( c ) E p s t e i n, C a r t e r, B o l l i n g e r, A u r i s p a C h a p t e r 17: I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science 17.1 Binary Codes Normal numbers we use

More information

last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK

last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK 8 a b c d e f g h i j k l m n o p q r s t u v w x y z 1 b c d e f g h i j k l m n o p q

More information

Video intypedia001en EXERCISES

Video intypedia001en EXERCISES Video intypedia001en LESSON 1: HISTORY OF CRYPTOGRAPHY AND ITS EARLY STAGES IN EUROPE EXERCISES Dr. Arturo Ribagorda Garnacho, Carlos III University of Madrid, Spain. EXERCISE 1 The discovery that in each

More information

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc.

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc. Innovation and Cryptoventures Cryptology Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc January 20, 2017 Overview Cryptology Cryptography Cryptanalysis Symmetric

More information

Implementation Tutorial on RSA

Implementation Tutorial on RSA Implementation Tutorial on Maciek Adamczyk; m adamczyk@umail.ucsb.edu Marianne Magnussen; mariannemagnussen@umail.ucsb.edu Adamczyk and Magnussen Spring 2018 1 / 13 Overview Implementation Tutorial Introduction

More information

Hidden Markov Models for Vigenère Cryptanalysis

Hidden Markov Models for Vigenère Cryptanalysis Hidden Markov Models for Vigenère Cryptanalysis Mark Stamp Fabio Di Troia Department of Computer Science San Jose State University San Jose, California mark.stamp@sjsu.edu fabioditroia@msn.com Miles Stamp

More information

Polyalphabetic Ciphers

Polyalphabetic Ciphers Polyalphabetic Ciphers 1 Basic Idea: The substitution alphabet used for enciphering successive letters of plaintext changes. The selection of alphabets may depend on a keyword, a key stream, or electromechanical

More information

Modified Hill Cipher with Interlacing and Iteration

Modified Hill Cipher with Interlacing and Iteration Journal of Computer Science 3 (11): 854-859, 2007 ISSN 1549-3636 2007 Science Publications Modified Hill Cipher with Interlacing and Iteration 1 V.U.K. Sastry and 2 N. Ravi Shankar 1 Department of R and

More information

Chapter 3 Cryptography

Chapter 3 Cryptography Chapter 3 Cryptography Introduction: Cryptography is an ancient art of keeping secrets. Cryptography ensures security of communication over insecure medium. Terms used in Cryptography: 1) Plain text Plain

More information

Using Matrices for Cryptography

Using Matrices for Cryptography Using Matrices for Cryptography In the newspaper, usually on the comics page, there will be a puzzle that looks similar to this: BRJDJ WT X BWUJ AHD PJYXDBODJ JQJV ZRJV GRJDJ T VH EJDBXWV YSXEJ BH FH 1

More information

Fall 2017 September 20, Written Homework 02

Fall 2017 September 20, Written Homework 02 CS1800 Discrete Structures Profs. Aslam, Gold, & Pavlu Fall 2017 September 20, 2017 Assigned: Wed 20 Sep 2017 Due: Fri 06 Oct 2017 Instructions: Written Homework 02 The assignment has to be uploaded to

More information

About Vigenere cipher modifications

About Vigenere cipher modifications Proceedings of the Workshop on Foundations of Informatics FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova About Vigenere cipher modifications Eugene Kuznetsov Abstract TheaimofthisworkisamodificationoftheclassicalVigenere

More information

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Lecture 05 Problem discussion on Affine cipher and perfect secrecy

More information

Klein s and PTW Attacks on WEP

Klein s and PTW Attacks on WEP TTM4137 Wireless Security Klein s and PTW Attacks on WEP Anton Stolbunov NTNU, Department of Telematics version 1, September 7, 2009 Abstract These notes should help for an in-depth understanding of the

More information

Modern symmetric encryption

Modern symmetric encryption 56 CHAPTER 2 MODERN SYMMETRIC ENCRYPTION Chapter 2 Modern symmetric encryption 21 Binary numbers and message streams For all the classical ciphers covered in the previous chapter, we dealt with encryption

More information

CLASSICAL ENCRYPTION. Mihir Bellare UCSD 1

CLASSICAL ENCRYPTION. Mihir Bellare UCSD 1 CLASSICAL ENCRYPTION Mihir Bellare UCSD 1 Syntax A symmetric encryption scheme SE = (K, E, D) consists of three algorithms: (Adversary) Mihir Bellare UCSD 2 Correct decryption requirement For all K, M

More information

Solution to Midterm Examination

Solution to Midterm Examination YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Handout #13 Xueyuan Su November 4, 2008 Instructions: Solution to Midterm Examination This is a closed book

More information

What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL

What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL What is Cryptography? by Amit Konar, Dept. of Math and CS, UMSL Definition: Cryptosystem Cryptography means secret writing and it is the art of concealing meaning. A Cryptosystem is a 5-tuple(E, D,M,K,C),

More information

Security of Networks (12) Exercises

Security of Networks (12) Exercises (12) Exercises 1.1 Below are given four examples of ciphertext, one obtained from a Substitution Cipher, one from a Vigenere Cipher, one from an Affine Cipher, and one unspecified. In each case, the task

More information

} has dimension = k rank A > 0 over F. For any vector b!

} has dimension = k rank A > 0 over F. For any vector b! FINAL EXAM Math 115B, UCSB, Winter 2009 - SOLUTIONS Due in SH6518 or as an email attachment at 12:00pm, March 16, 2009. You are to work on your own, and may only consult your notes, text and the class

More information

AN INTRODUCTION TO THE UNDERLYING COMPUTATIONAL PROBLEM OF THE ELGAMAL CRYPTOSYSTEM

AN INTRODUCTION TO THE UNDERLYING COMPUTATIONAL PROBLEM OF THE ELGAMAL CRYPTOSYSTEM AN INTRODUCTION TO THE UNDERLYING COMPUTATIONAL PROBLEM OF THE ELGAMAL CRYPTOSYSTEM VORA,VRUSHANK APPRENTICE PROGRAM Abstract. This paper will analyze the strengths and weaknesses of the underlying computational

More information

Week 7 An Application to Cryptography

Week 7 An Application to Cryptography SECTION 9. EULER S GENERALIZATION OF FERMAT S THEOREM 55 Week 7 An Application to Cryptography Cryptography the study of the design and analysis of mathematical techniques that ensure secure communications

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

19 Lorenz Cipher Machine

19 Lorenz Cipher Machine 9 Lorenz Cipher Machine During the Second World War, the codebreakers at Bletchley Park devised a variety of techniques that enabled the Allies to break the major codes used by the Germans. Not only was

More information

Cryptography: A Fairy Tale for Mathematicians and Starring Mathematicians!

Cryptography: A Fairy Tale for Mathematicians and Starring Mathematicians! Cryptography: A Fairy Tale for Mathematicians and Starring Mathematicians! University of California, Berkeley Mathematics Undergraduate Student Association October 27, 2014 Why Crypto? So why on earth

More information

Number Theory in Cryptography

Number Theory in Cryptography Number Theory in Cryptography Introduction September 20, 2006 Universidad de los Andes 1 Guessing Numbers 2 Guessing Numbers (person x) (last 6 digits of phone number of x) 3 Guessing Numbers (person x)

More information

10 Modular Arithmetic and Cryptography

10 Modular Arithmetic and Cryptography 10 Modular Arithmetic and Cryptography 10.1 Encryption and Decryption Encryption is used to send messages secretly. The sender has a message or plaintext. Encryption by the sender takes the plaintext and

More information

Elliptic Curve Computations (1) View the graph and an elliptic curve Graph the elliptic curve y 2 = x 3 x over the real number field R.

Elliptic Curve Computations (1) View the graph and an elliptic curve Graph the elliptic curve y 2 = x 3 x over the real number field R. Elliptic Curve Computations (1) View the graph and an elliptic curve Graph the elliptic curve y 2 = x 3 x over the real number field R. >> v = y^2 - x*(x-1)*(x+1) v = y^2 - x*(x-1)*(x+1) >> ezplot(v, [-1,3,-5,5])

More information

Powers in Modular Arithmetic, and RSA Public Key Cryptography

Powers in Modular Arithmetic, and RSA Public Key Cryptography 1 Powers in Modular Arithmetic, and RSA Public Key Cryptography Lecture notes for Access 2006, by Nick Korevaar. It was a long time from Mary Queen of Scotts and substitution ciphers until the end of the

More information

Can You Hear Me Now?

Can You Hear Me Now? Can You Hear Me Now? An Introduction to Coding Theory William J. Turner Department of Mathematics & Computer Science Wabash College Crawfordsville, IN 47933 19 October 2004 W. J. Turner (Wabash College)

More information

Security Implications of Quantum Technologies

Security Implications of Quantum Technologies Security Implications of Quantum Technologies Jim Alves-Foss Center for Secure and Dependable Software Department of Computer Science University of Idaho Moscow, ID 83844-1010 email: jimaf@cs.uidaho.edu

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Dr Richard Clayton. 8 October 2009

Dr Richard Clayton. 8 October 2009 Introducing Cryptanalysis Dr Richard Clayton richard.clayton@cl.cam.ac.ukclayton@cl cam ac Hills Road Sixth Form College 8 October 2009 It s all Greek to me! ΡΙΧΑΡ Secret communication Steganography: hiding

More information

Chapter 2. A Look Back. 2.1 Substitution ciphers

Chapter 2. A Look Back. 2.1 Substitution ciphers Chapter 2 A Look Back In this chapter we take a quick look at some classical encryption techniques, illustrating their weakness and using these examples to initiate questions about how to define privacy.

More information

ECE 646 Lecture 5. Motivation: Mathematical Background: Modular Arithmetic. Public-key ciphers. RSA keys. RSA as a trap-door one-way function

ECE 646 Lecture 5. Motivation: Mathematical Background: Modular Arithmetic. Public-key ciphers. RSA keys. RSA as a trap-door one-way function ECE Lecture 5 Mathematical Background: Modular Arithmetic Motivation: Public-key ciphers RSA as a trap-door one-way function PUBLIC KEY message ciphertext M C = f(m) = M e mod N C RSA keys PUBLIC KEY PRIVATE

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information

Block Cipher Cryptanalysis: An Overview

Block Cipher Cryptanalysis: An Overview 0/52 Block Cipher Cryptanalysis: An Overview Subhabrata Samajder Indian Statistical Institute, Kolkata 17 th May, 2017 0/52 Outline Iterated Block Cipher 1 Iterated Block Cipher 2 S-Boxes 3 A Basic Substitution

More information

Cryptography 2017 Lecture 2

Cryptography 2017 Lecture 2 Cryptography 2017 Lecture 2 One Time Pad - Perfect Secrecy Stream Ciphers November 3, 2017 1 / 39 What have seen? What are we discussing today? Lecture 1 Course Intro Historical Ciphers Lecture 2 One Time

More information

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9.

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. ASSIGNMENT 1 1. Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. 2. (i) If d a and d b, prove that d (a + b). (ii) More generally,

More information

Cryptography and Secure Communication Protocols

Cryptography and Secure Communication Protocols Cryptography and Secure Communication Protocols Jayadev Misra The University of Texas at Austin October 1, 2003 Contents 1 Introduction 1 2 Early Encryption Schemes 2 2.1 Substitution cyphers.........................

More information

secretsaremadetobefoundoutwithtime UGETGVUCTGOCFGVQDGHQWPFQWVYKVJVKOG Breaking the Code

secretsaremadetobefoundoutwithtime UGETGVUCTGOCFGVQDGHQWPFQWVYKVJVKOG Breaking the Code Breaking the Code To keep your secret is wisdom; but to expect others to keep it is folly. Samuel Johnson Secrets are made to be found out with time Charles Sanford Codes have been used by the military

More information

Lecture 8 - Cryptography and Information Theory

Lecture 8 - Cryptography and Information Theory Lecture 8 - Cryptography and Information Theory Jan Bouda FI MU April 22, 2010 Jan Bouda (FI MU) Lecture 8 - Cryptography and Information Theory April 22, 2010 1 / 25 Part I Cryptosystem Jan Bouda (FI

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 CPSC 418/MATH 318 L01 October 17, 2018 Time: 50 minutes

More information

Lecture 4: DES and block ciphers

Lecture 4: DES and block ciphers Lecture 4: DES and block ciphers Johan Håstad, transcribed by Ernir Erlingsson 2006-01-25 1 DES DES is a 64 bit block cipher with a 56 bit key. It selects a 64 bit block and modifies it depending on the

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

THE HAGELIN CIPHER MACHINE (M-209) Cryptanalysis from Ciphertext Alone

THE HAGELIN CIPHER MACHINE (M-209) Cryptanalysis from Ciphertext Alone \.~) THE HAGELI CIPHER MACHIE (M-209) Cryptanalysis from Ciphertext Alone James Reeds University of California Berkeley, California 94720 Dennis Ritchie Robert Morris Bell Laboratories Murray Hill, ew

More information

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3 Attacks on DES 1 Attacks on DES Differential cryptanalysis is an attack on DES that compares the differences (that is, XOR values between ciphertexts of certain chosen plaintexts to discover information

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky. Lecture 4

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky. Lecture 4 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrosky Lecture 4 Lecture date: January 26, 2005 Scribe: Paul Ray, Mike Welch, Fernando Pereira 1 Private Key Encryption Consider a game between

More information