10.1 COMPOSITION OF FUNCTIONS

Size: px
Start display at page:

Download "10.1 COMPOSITION OF FUNCTIONS"

Transcription

1 0. COMPOSITION OF FUNCTIONS

2 Composition of Functions The function f(g(t)) is said to be a composition of f with g. The function f(g(t)) is defined by using the output of the function g as the input to f. The function f(g(t)) is only defined for values in the domain of g whose g(t) values are in the domain of f.

3 Eample Formulas for Composite Functions Let p() = sin + and q() = 3. Find a formula in terms of for w() = p(p(q())). We work from inside the parentheses outward. First we find p(q()), and then input the result to p. w() = p(p(q())) = p(p( 3)) = p(sin( 3)) + = sin(sin( 3) + ) +.

4 Composition of Functions Defined by Tables Eample Complete the table. Assume that f() is invertible. f() g() g(f()) We will first look at g(f()). From the table we see that f() =. Therefore, we have g(f()) = g(). Since g() =, we can fill in the entry for g(f()) the following way: g(f()) = g() =. To find g(), we have to use information about g(f()). We first need to find a value of such that f() =. That means that we are looking for f (). From the table we see that f () = 0, or equivalently, f(0) =. Therefore, g() = g(f(0)). From the table we see that g(f(0) =. Thus, g() =.

5 Composition of Functions Defined by Graphs Functions Modeling Change: Eample 3 Let u and v be two functions defined by the graphs. Evaluate: (a) v(u( )) (-3,6) (-,) 3 6 u() (a) To evaluate v(u( )), start with u( ). From the figure, we see that u( ) =. Thus, v(u( )) = v(). From the graph we see that v() =, so v(u( )) =. 3 v()

6 Composition of Functions Defined by Graphs Functions Modeling Change: Eample 3 Let u and v be two functions defined by the graphs. Evaluate: (b) u(v(5)) (-3,6) (-,) 3 6 u() v() (b) Since v(5) =, we have u(v(5)) = u( ) = 0.

7 Composition of Functions Defined by Graphs Functions Modeling Change: Eample 3 Let u and v be two functions defined by the graphs. Evaluate: (c) v(u(0)) + u(v(4)) (-3,6) (-,) 3 6 u() v() (c) Since u(0) = 0, we have v(u(0)) = v(0) = 3. Since v(4) =, we have u(v(4)) = u( ) =. Thus v(u(0)) + u(v(4)) = 3 + = 4.

8 Decomposition of Functions Eample 4 Let h() = f(g()) = e. Find possible formulas for f() and g(). In the formula h() = e, the epression + is in the eponent. We can take the inside function to be g() = +. This means that we can write h( ) f ( g( )) e f ( e ) g ( ) Then the outside function is f() = e. We check that composing f and g gives h: e h( ) There are many possible solutions to Eample 4. For eample, we might choose f() = e + and g() =. Then f ( g( )) e g ( ) e h( )

9 0. INVERTIBILITY AND PROPERTIES OF INVERSE FUNCTIONS

10 Definition of Inverse Function Suppose Q = f(t) is a function with the property that each value of Q determines eactly one value of t. Then f has an inverse function, f, and f (Q) = t if and only if Q = f(t). If a function has an inverse, it is said to be invertible.

11 Finding a Formula for an Inverse Function Eample 3 Find the inverse of the function f() = 3/( + ). First, we solve the equation y = f() for : y = 3/( + ) y + y = 3 y 3 = y (y 3) = y = y/(y 3) = y/(3 y) As before, we write = f - (y) = y/(3 y).

12 Noninvertible Functions: The Horizontal Line Test Horizontal Line Test If there is a horizontal line which intersects a function s graph in more than one point, then the function does not have an inverse. If every horizontal line intersects a function s graph at most once, then the function has an inverse. y The graph of q() = fails the horizontal line test, so q() = has no inverse q() =

13 Graphing A Function And Its Inverse Eample 5 (a) Let P() =. (a) Show that P is invertible. (a) Since P is an eponential function with base, it is always increasing, and therefore passes the horizontal line test. 8 y y = P() = 4 P - () = (log )/(log )

14 Graphing A Function And Its Inverse Eample 5 (b) Let P() =. (b) Find a formula for P (). (b) To find a formula for P (), we solve for in the equation = y. We take the log of both sides and simplify to get = (log y)/(log ) or switching variables: y = P - () = (log )/(log )

15 Eample 5 (c) Let P() =. Graphing A Function And Its Inverse (c) Sketch the graphs of P and P on the same aes. (c) From the tables of values for P() and P - (), we have the graphs on the right. Notice how they are mirror images of each other through the line y = P() P - () y y = 4 P() = P - () = (log )/(log )

16 Graphing A Function And Its Inverse Eample 5 (d) Let P() =. (d) What are the domain and range of P and P? 8 y y = (d) The domain of P, an Eponential function, is all real numbers, and its range is all positive numbers. 4 P() = P - () = (log )/(log ) The domain of P, a logarithmic function, is all positive numbers and its range is all real numbers. 3

17 Graphing A Function And Its Inverse Eample 5 Let P() =. (a) Show that P is invertible. (b) Find a formula for P (). (c) Sketch the graphs of P and P on the same aes. (d) What are the domain and range of P and P? (a) Since P is an eponential function with base, it is always increasing, and therefore passes the horizontal line test. (b) To find a formula for P (), we solve for in the equation = y. We take the log of both sides and simplify to get = (log y)/(log ) or switching variables: y = P - () = (log )/(log ) (c) Tables of values for P() and P - (). Interchanging the rows of P() gives P - () P() P - ()

18 Graphing A Function And Its Inverse Eample 5 continued Let P() =. (c) Sketch the graphs of P and P on the same aes. (d) What are the domain and range of P and P? (c) From the tables of values for P() and P - (), we have the graphs on the right. 4 Notice how they are mirror images of each other through the line y = (d) The domain of P, an eponential function, is all real numbers, and its range is all positive numbers. The domain of P, a logarithmic function, is all positive numbers and its range is all real numbers. 8 y y = P() = P - () = (log )/(log )

19 The Graph, Domain, and Range of an Inverse Function Graph of f is reflection of graph of f across the line y =. Domain of f = Range of f Range of f = Domain of f Eample: y y = f f

20 A Property of Inverse Functions If y = f() is an invertible function and y = f () is its inverse, then f ( f()) = for all values of for which f() is defined, f( f ()) = for all values of for which f () is defined.

21 Eample 6(a) (a) Check that f() = /( + ) and f () = /( ) are inverse functions of each other. f f f f ) ( ) ( )) ( ( A Property of Inverse Functions Functions Modeling Change: Similarly, you can check that f ( f ()) =. (a)

22 Eample 6(b) Properties of Inverse Functions f() = /( + ) and f () = /( ) (b) Graph f and f on aes with the same scale. What are the domains and ranges of f and f? (b) y f() = /( + ) with asymptotes y = ½ and = -½ y = f () = /( ) with asymptotes y = -½ and = ½ The domain of f() is all real numbers ecept ½ and the range is all real numbers ecept - ½ The domain for f () is all real numbers ecept -½ and the range is all real numbers ecept ½

23 Restricting the Domain A function that fails the horizontal line test is not invertible. For this reason, the function f() = does not have an inverse function. However, by considering only part of the graph of f, we can eliminate the duplication of y-values. Suppose we consider the half of the parabola with 0. This part of the graph does pass the horizontal line test because there is only one (positive) -value for each y-value in the range of f. y f() = f ( ) The graphs of f and f are shown in the figure. Note that the domain of f is the range of f, and the domain of f ( 0) is the range of f. Functions Modeling Change:

24 Inverse Trigonometric Functions In Section 8.4 we restricted the domains of the sine, cosine, and tangent functions in order to define their inverse functions: y = sin if and only if = sin y and π/ y π/ y = cos if and only if = cos y and 0 y π y = tan if and only if = tan y and π/ < y < π/.

25 0.3 COMBINATIONS OF FUNCTIONS

26 The Difference of Two Functions Defined by Formulas: A Measure of Prosperity Consider the population function P(t) = (.04) t and the number of people that a country can feed N(t) = t where t is measured in years and both P and N represent millions of people. We eplore this situation by plotting these two functions on the same graph and see when the population eceeds the number who can be fed. millions of people Shortages occur (78.3,43.6) t years We could also graph the difference N(t) P(t) and observe when the maimum surplus occurs. millions of people Point of maimum surplus t years Functions Modeling Change:

27 The Sum and Difference of Two Functions Defined by Graphs Eample Let f() = and g() = /. By adding vertical distances on the graphs of f and g, sketch h() = f() + g() for > 0. The graphs of f and g are shown in the figure. For each value of, we add the vertical distances that represent f() and g() to get a point on the graph of h(). Compare the graph of h() to y the values shown in the table. 6 ¼ ½ 4 f() = ¼ ½ 4 g() = / 4 ½ ¼ h() = f() + g() 4 ¼ ½ ½ 4 ¼ Note that as increases, g() decreases toward zero, so the values of h() get closer to the values of f(). On the other hand, as approaches zero, h() gets closer to g() y = h() y = g() y = f() Functions Modeling Change:

28 Factoring a Function s Formula into a Product Eample 6 Find eactly all the zeros of the function p() = 6 +. We rewrite the formula for p as p() = 6 + = (6 ) factoring out = ( + )(3 ) factoring quadratic Since p is a product, it equals zero if one or more of its factors equals zero. But is never equal to 0, so p() equals zero if and only if one of the linear factors is zero: ( + ) = 0 or (3 ) = 0 So = / or = /3

29 The Quotient of Functions Defined by Tables: Per Capita Crime Rate Tables for Eample 3 Year Years since Crimes in City A = N A (t) Crimes in City B = N B (t) Population of City A = P A (t) 6,000 6,00 63,0 64,350 65,50 66,690 Population of City B = P B (t) 8,000 8,588 9,88 9,80 30,47 3,066 r A (t) = N A (t) / P A (t) r B (t) = N B (t) / P B (t) We see that between 005 and 00, City A has a lower per capita crime rate than City B. Furthermore, the crime rate of City A is decreasing, whereas the crime rate of City B is increasing. Thus, even though the table indicates that there are more crimes committed in City A, it appears that City B is, in some sense, more dangerous. The table also tells us that, even though the number of crimes is rising in both cities, City A is getting safer, while City B is getting more dangerous. Functions Modeling Change:

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

Name Please print your name as it appears on the class roster.

Name Please print your name as it appears on the class roster. Berkele Cit College Practice Problems Math 1 Precalculus - Final Eam Preparation Name Please print our name as it appears on the class roster. SHORT ANSWER. Write the word or phrase that best completes

More information

Calculus Summer TUTORIAL

Calculus Summer TUTORIAL Calculus Summer TUTORIAL The purpose of this tutorial is to have you practice the mathematical skills necessary to be successful in Calculus. All of the skills covered in this tutorial are from Pre-Calculus,

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment Name: AP Calculus AB Summer Assignment Due Date: The beginning of class on the last class day of the first week of school. The purpose of this assignment is to have you practice the mathematical skills

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

Solve Quadratics Using the Formula

Solve Quadratics Using the Formula Clip 6 Solve Quadratics Using the Formula a + b + c = 0, = b± b 4 ac a ) Solve the equation + 4 + = 0 Give our answers correct to decimal places. ) Solve the equation + 8 + 6 = 0 ) Solve the equation =

More information

Honors Calculus Summer Preparation 2018

Honors Calculus Summer Preparation 2018 Honors Calculus Summer Preparation 08 Name: ARCHBISHOP CURLEY HIGH SCHOOL Honors Calculus Summer Preparation 08 Honors Calculus Summer Work and List of Topical Understandings In order to be a successful

More information

Exponential, Logarithmic and Inverse Functions

Exponential, Logarithmic and Inverse Functions Chapter Review Sec.1 and. Eponential, Logarithmic and Inverse Functions I. Review o Inverrse I Functti ions A. Identiying One-to-One Functions is one-to-one i every element in the range corresponds to

More information

A.P. Calculus Summer Assignment

A.P. Calculus Summer Assignment A.P. Calculus Summer Assignment This assignment is due the first day of class at the beginning of the class. It will be graded and counts as your first test grade. This packet contains eight sections and

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Sample Final Exam Problems Solutions Math 107

Sample Final Exam Problems Solutions Math 107 Sample Final Eam Problems Solutions Math 107 1 (a) We first factor the numerator and the denominator of the function to obtain f() = (3 + 1)( 4) 4( 1) i To locate vertical asymptotes, we eamine all locations

More information

MATH 175: Final Exam Review for Pre-calculus

MATH 175: Final Exam Review for Pre-calculus MATH 75: Final Eam Review for Pre-calculus In order to prepare for the final eam, you need too be able to work problems involving the following topics:. Can you graph rational functions by hand after algebraically

More information

MATH 175: Final Exam Review for Pre-calculus

MATH 175: Final Exam Review for Pre-calculus MATH 75: Final Eam Review for Pre-calculus In order to prepare for the final eam, you need to be able to work problems involving the following topics:. Can you find and simplify the composition of two

More information

Summer Mathematics Prep

Summer Mathematics Prep Summer Mathematics Prep Entering Calculus Chesterfield County Public Schools Department of Mathematics SOLUTIONS Domain and Range Domain: All Real Numbers Range: {y: y } Domain: { : } Range:{ y : y 0}

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Maths A Level Summer Assignment & Transition Work

Maths A Level Summer Assignment & Transition Work Maths A Level Summer Assignment & Transition Work The summer assignment element should take no longer than hours to complete. Your summer assignment for each course must be submitted in the relevant first

More information

( ) ( ) x. The exponential function f(x) with base b is denoted by x

( ) ( ) x. The exponential function f(x) with base b is denoted by x Page of 7 Eponential and Logarithmic Functions Eponential Functions and Their Graphs: Section Objectives: Students will know how to recognize, graph, and evaluate eponential functions. The eponential function

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Composition of and the Transformation of Functions

Composition of and the Transformation of Functions 1 3 Specific Outcome Demonstrate an understanding of operations on, and compositions of, functions. Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of

More information

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2 1. (a) attempt to form composite e.g. ( ) 3 g 7 x, 7 x + (g f)(x) = 10 x N (b) g 1 (x) = x 3 N1 1 (c) METHOD 1 valid approach e.g. g 1 (5),, f (5) f () = 3 N METHOD attempt to form composite of f and g

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks).

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks). Graphs of Polynomials: Polynomial functions of degree or higher are smooth and continuous. (No sharp corners or breaks). These are graphs of polynomials. These are NOT graphs of polynomials There is a

More information

Precalculus Notes: Functions. Skill: Solve problems using the algebra of functions.

Precalculus Notes: Functions. Skill: Solve problems using the algebra of functions. Skill: Solve problems using the algebra of functions. Modeling a Function: Numerical (data table) Algebraic (equation) Graphical Using Numerical Values: Look for a common difference. If the first difference

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

Brief Revision Notes and Strategies

Brief Revision Notes and Strategies Brief Revision Notes and Strategies Straight Line Distance Formula d = ( ) + ( y y ) d is distance between A(, y ) and B(, y ) Mid-point formula +, y + M y M is midpoint of A(, y ) and B(, y ) y y Equation

More information

2. Determine the domain of the function. Verify your result with a graph. f(x) = 25 x 2

2. Determine the domain of the function. Verify your result with a graph. f(x) = 25 x 2 29 April PreCalculus Final Review 1. Find the slope and y-intercept (if possible) of the equation of the line. Sketch the line: y = 3x + 13 2. Determine the domain of the function. Verify your result with

More information

Summer Packet Honors PreCalculus

Summer Packet Honors PreCalculus Summer Packet Honors PreCalculus Honors Pre-Calculus is a demanding course that relies heavily upon a student s algebra, geometry, and trigonometry skills. You are epected to know these topics before entering

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

STUDY GUIDE ANSWER KEY

STUDY GUIDE ANSWER KEY STUDY GUIDE ANSWER KEY 1) (LT 4A) Graph and indicate the Vertical Asymptote, Horizontal Asymptote, Domain, -intercepts, and y- intercepts of this rational function. 3 2 + 4 Vertical Asymptote: Set the

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

PREPARATION FOR CALCULUS

PREPARATION FOR CALCULUS PREPARATION FOR CALCULUS WORKSHEETS Second Edition DIVISION OF MATHEMATICS ALFRED UNIVERSITY Contents Real Numbers Worksheet Functions and Graphs Worksheet 5 Polynomials Worksheet. Trigonometry Worksheet

More information

3x 2. x ))))) and sketch the graph, labelling everything.

3x 2. x ))))) and sketch the graph, labelling everything. Fall 2006 Practice Math 102 Final Eam 1 1. Sketch the graph of f() =. What is the domain of f? [0, ) Use transformations to sketch the graph of g() = 2. What is the domain of g? 1 1 2. a. Given f() = )))))

More information

STANDARD FORM is a QUADRATIC FUNCTION and its graph is a PARABOLA. The domain of a quadratic function is the set of all real numbers.

STANDARD FORM is a QUADRATIC FUNCTION and its graph is a PARABOLA. The domain of a quadratic function is the set of all real numbers. EXERCISE 2-3 Things to remember: 1. QUADRATIC FUNCTION If a, b, and c are real numbers with a 0, then the function f() = a 2 + b + c STANDARD FORM is a QUADRATIC FUNCTION and its graph is a PARABOLA. The

More information

Functions and Logarithms

Functions and Logarithms 36 Chapter Prerequisites for Calculus.5 Inverse You will be able to find inverses of one-to-one functions and will be able to analyze logarithmic functions algebraically, graphically, and numerically as

More information

Math 1160 Final Review (Sponsored by The Learning Center) cos xcsc tan. 2 x. . Make the trigonometric substitution into

Math 1160 Final Review (Sponsored by The Learning Center) cos xcsc tan. 2 x. . Make the trigonometric substitution into Math 60 Final Review (Sponsored by The Learning Center). Simplify cot csc csc. Prove the following identities: cos csc csc sin. Let 7sin simplify.. Prove: tan y csc y cos y sec y cos y cos sin y cos csc

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Algebra y funciones [219 marks]

Algebra y funciones [219 marks] Algebra y funciones [9 marks] Let f() = 3 ln and g() = ln5 3. a. Epress g() in the form f() + lna, where a Z +. attempt to apply rules of logarithms e.g. ln a b = b lna, lnab = lna + lnb correct application

More information

Chapter 3: Exponentials and Logarithms

Chapter 3: Exponentials and Logarithms Chapter 3: Eponentials and Logarithms Lesson 3.. 3-. See graph at right. kf () is a vertical stretch to the graph of f () with factor k. y 5 5 f () = 3! 4 + f () = 3( 3! 4 + ) f () = 3 (3! 4 + ) f () =!(

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

1 Chapter 1: Graphs, Functions, and Models

1 Chapter 1: Graphs, Functions, and Models 1 Chapter 1: Graphs, Functions, and Models 1.1 Introduction to Graphing 1.1.1 Know how to graph an equation Eample 1. Create a table of values and graph the equation y = 1. f() 6 1 0 1 f() 3 0 1 0 3 4

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below.

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below. Name 1) Constant: choose a value or the constant that can be graphed on the coordinate grid below a y Toolkit Functions Lab Worksheet thru inverse trig ) Identity: y ) Reciprocal: 1 ( ) y / 1/ 1/1 1/ 1

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A set containing ordered pairs (x, y) defines y as a function of x if and only if no two ordered pairs in the set have the same x-coordinate. In other words, every input maps to exactly one output. We

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

every hour 8760 A every minute 525,000 A continuously n A

every hour 8760 A every minute 525,000 A continuously n A In the previous lesson we introduced Eponential Functions and their graphs, and covered an application of Eponential Functions (Compound Interest). We saw that when interest is compounded n times per year

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Section -1 Functions Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Definition: A rule that produces eactly one output for one input is

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

AP CALCULUS AB - Name: Summer Work requirement due on the first day of class

AP CALCULUS AB - Name: Summer Work requirement due on the first day of class AP CALCULUS AB - Name: Summer Work For students to successfully complete the objectives of the AP Calculus curriculum, the student must demonstrate a high level of independence, capability, dedication,

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Topic 6: Calculus Integration Markscheme 6.10 Area Under Curve Paper 2

Topic 6: Calculus Integration Markscheme 6.10 Area Under Curve Paper 2 Topic 6: Calculus Integration Markscheme 6. Area Under Curve Paper. (a). N Standard Level (b) (i). N (ii).59 N (c) q p f ( ) = 9.96 N split into two regions, make the area below the -ais positive RR N

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Information Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving

More information

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac Basic Math Formulas Arithmetic operations (ab means ab) Powers and roots a(b + c)= ab + ac a+b c = a b c + c a b + c d = ad+bc bd a b = a c d b d c a c = ac b d bd a b = a+b ( a ) b = ab (y) a = a y a

More information

Radical and Rational Functions

Radical and Rational Functions Radical and Rational Functions 5 015 College Board. All rights reserved. Unit Overview In this unit, you will etend your study of functions to radical, rational, and inverse functions. You will graph radical

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

Math 120. x x 4 x. . In this problem, we are combining fractions. To do this, we must have

Math 120. x x 4 x. . In this problem, we are combining fractions. To do this, we must have Math 10 Final Eam Review 1. 4 5 6 5 4 4 4 7 5 Worked out solutions. In this problem, we are subtracting one polynomial from another. When adding or subtracting polynomials, we combine like terms. Remember

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra COUNCIL ROCK HIGH SCHOOL MATHEMATICS A Note Guideline of Algebraic Concepts Designed to assist students in A Summer Review of Algebra [A teacher prepared compilation of the 7 Algebraic concepts deemed

More information

Welcome to AP Calculus!

Welcome to AP Calculus! Welcome to AP Calculus! This packet is meant to help you review some of the mathematics that lead up to calculus. Of course, all mathematics up until this point has simply been a build-up to calculus,

More information

MATH 2 - PROBLEM SETS

MATH 2 - PROBLEM SETS MATH - PROBLEM SETS Problem Set 1: 1. Simplify and write without negative eponents or radicals: a. c d p 5 y cd b. 5p 1 y. Joe is standing at the top of a 100-foot tall building. Mike eits the building

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Pure Core 2. Revision Notes

Pure Core 2. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebra... Polynomials... Factorising... Standard results... Long division... Remainder theorem... 4 Factor theorem... 5 Choosing a suitable factor... 6 Cubic

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

MATH SKILL HANDBOOK. a (b ) II. Measurements and Significant Figures. 0 mm

MATH SKILL HANDBOOK. a (b ) II. Measurements and Significant Figures. 0 mm I. Symbols Δ change in quantity is defined as ± plus or minus a quantity a b ab is proportional to a (b ) = is equal to a b is approimately equal to a/b a_ b is less than or equal to a multiplied by b

More information

3.1 Power Functions & Polynomial Functions

3.1 Power Functions & Polynomial Functions 3.1 Power Functions & Polynomial Functions A power function is a function that can be represented in the form f() = p, where the base is a variable and the eponent, p, is a number. The Effect of the Power

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Objectives List. Important Students should expect test questions that require a synthesis of these objectives. MATH 1040 - of One Variable, Part I Textbook 1: : Algebra and Trigonometry for ET. 4 th edition by Brent, Muller Textbook 2:. Early Transcendentals, 3 rd edition by Briggs, Cochran, Gillett, Schulz s List

More information

Math 120 Handouts. Functions Worksheet I (will be provided in class) Point Slope Equation of the Line 5. Functions Worksheet III 17

Math 120 Handouts. Functions Worksheet I (will be provided in class) Point Slope Equation of the Line 5. Functions Worksheet III 17 Math 0 Handouts HW # (will be provided to class) Lines: Concepts from Previous Classes (emailed to the class) Parabola Plots # (will be provided in class) Functions Worksheet I (will be provided in class)

More information