Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

Size: px
Start display at page:

Download "Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers"

Transcription

1 Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers Thorsten Kranz, Gregor Leander, Friedrich Wiemer Horst Görtz Institute for IT Security, Ruhr University Bochum

2 Block Cipher Design k KS m E c

3 Block Cipher Design k Key Schedule KS m H 0... H r 1 c

4 Block Cipher Design k Key Schedule KS m H 0... H r 1 c How does the key schedule influence statistical attacks?

5 Linear Cryptanalysis For E k : F n 2 Fn 2 and α, γ Fn 2 Bias of a linear approximation Pr x [ γ, E k (x) = α, x ] = ɛ E k (α, γ) Goal: Find (α, γ) such that ɛ Ek (α, γ) is large.

6 Linear Cryptanalysis For E k : F n 2 Fn 2 and α, γ Fn 2 Bias of a linear approximation Pr x [ γ, E k (x) = α, x ] = ɛ E k (α, γ) Goal: Find (α, γ) such that ɛ Ek (α, γ) is large. Fourier Coefficient Ê k (α, γ) = 2 n+1 ɛ Ek (α, γ)

7 Linear Cryptanalysis For E k : F n 2 Fn 2 and α, γ Fn 2 Bias of a linear approximation Pr x [ γ, E k (x) = α, x ] = ɛ E k (α, γ) Goal: Find (α, γ) such that ɛ Ek (α, γ) is large. Fourier Coefficient Ê k (α, γ) = 2 n+1 ɛ Ek (α, γ) How does the key schedule influence the Fourier coefficient?

8 Outline 1 Strange Distribution 2 Linear Key Schedules and Round Constants 3 Linear Hulls and Tweakable Block Ciphers

9 Outline 1 Strange Distribution 2 Linear Key Schedules and Round Constants 3 Linear Hulls and Tweakable Block Ciphers

10 Experiments with one bit trails We cannot compute the exact Fourier coefficient [1] Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis, SAC 2008.

11 Experiments with one bit trails We cannot compute the exact Fourier coefficient For round-reduced PRESENT, it is enough to look at the one bit trails [1] [1] Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis, SAC 2008.

12 Round-reduced PRESENT: Identical round keys cause greater variance [2] #Keys ident indp N ident N indp Fourier coefficient [2] Abdelraheem et al. On the Distribution of Linear Biases: Three Instructive Examples, CRYPTO 2012.

13 Round-reduced PRESENT: Identical round keys cause greater variance [2] #Keys ident indp N ident N indp Fourier coefficient Greater variance, but still a normal distribution. [2] Abdelraheem et al. On the Distribution of Linear Biases: Three Instructive Examples, CRYPTO 2012.

14 Round-reduced PRESENT with Serpent-type S-box #Keys 8,000 6,000 4,000 ident indp N ident N indp 2, Fourier coefficient 10 14

15 Round-reduced PRESENT with Serpent-type S-box #Keys 8,000 6,000 4,000 ident indp N ident N indp 2, Fourier coefficient Not a normal distribution any more!

16 Number of weak keys is substantially increased 3% outliers with x µ > 3σ Factor of 10 higher than what we expect from normal distribution Factor of 2 20 higher than what we expect from independent round keys

17 Increasing the number of rounds Sbox R 1 and 7 Rounds Constant ND Independent ND Constant k σ 1

18 Increasing the number of rounds Sbox R 1 and 11 Rounds Constant ND Independent ND Constant k σ 1

19 Increasing the number of rounds Sbox R 1 and 19 Rounds Constant ND Independent ND Constant k σ 1

20 Increasing the number of rounds Sbox R 1 and 23 Rounds Constant ND Independent ND Constant k σ 1

21 Increasing the number of rounds Sbox R 1 and 31 Rounds Constant ND Independent ND Constant k σ 1

22 Increasing the number of rounds Sbox R 1 and 35 Rounds Constant ND Independent ND Constant k σ 1

23 Increasing the number of rounds Sbox R 1 and 43 Rounds Constant ND Independent ND Constant k σ 1

24 Increasing the number of rounds Sbox R 1 and 47 Rounds Constant ND Independent ND Constant k σ 1

25 Increasing the number of rounds Sbox R 1 and 55 Rounds Constant ND Independent ND Constant k σ 1

26 Increasing the number of rounds Sbox R 1 and 59 Rounds Constant ND Independent ND Constant k σ 1

27 Increasing the number of rounds Sbox R 1 and 67 Rounds Constant ND Independent ND Constant k σ 1

28 Increasing the number of rounds Sbox R 1 and 71 Rounds Constant ND Independent ND Constant k σ 1

29 Increasing the number of rounds Sbox R 1 and 79 Rounds Constant ND Independent ND Constant k σ 1

30 Increasing the number of rounds Sbox R 1 and 83 Rounds Constant ND Independent ND Constant k σ 1

31 Increasing the number of rounds Sbox R 1 and 91 Rounds Constant ND Independent ND Constant k σ 1

32 Increasing the number of rounds Sbox R 1 and 95 Rounds Constant ND Independent ND Constant k σ 1

33 Worst case for increasing number of rounds For increasing number of rounds, the distribution of 1 bit trails converges to 4σ with probability 1 32 Ê k (α, γ) 0 with probability σ with probability 1 32 This distribution fulfills Tchebysheff s bound with equality: [ ] ( 1 Pr Êk (α, γ) 4 σ = ) =

34 Outline 1 Strange Distribution 2 Linear Key Schedules and Round Constants 3 Linear Hulls and Tweakable Block Ciphers

35 Key Schedule Design Hypothesis of Independent Round Keys wrong. Instead: Key Schedule Often a linear function. Using round constants.

36 Sound Design: Linear Key Schedule with Random Constants Variance of Fourier Coefficients (over the keys) For a linear key schedule, the average variance over all constants is equal to the variance for independent round keys. Choosing Random Constants Choosing any linear key schedule and random round constants is on average as good as having independent round keys (in terms of the variance of the distribution).

37 Experiments: Linear Key Schedule with Random Constants

38 Outline 1 Strange Distribution 2 Linear Key Schedules and Round Constants 3 Linear Hulls and Tweakable Block Ciphers

39 Tweakable Block Ciphers t TS m E k c New attack vector: also consider tweak input for linear cryptanalysis. Input mask is (α, β) F n 2 Fm 2.

40 Tweaks do not introduce new linear trails Observation Tweaking a block cipher with a linear key schedule does not introduce any new linear trails. Design Consequences Protecting a tweakable block cipher against linear cryptanalysis can be done in the same way as in the non-tweakable case.

41 Application: Design of SKINNY Table: Lower bounds on the number of active Sboxes in SKINNY. Model SK (114) (116) (124) (132) (138) (136) (148) (158) TK (108) (112) (120) TK TK SK Lin (110) (118) (122) (128) (136) (141) (143)

42 Any Questions? Any Questions?

43 Round-reduced PRESENT with Serpent-type S-box 8,000 6,000 1 bit ident 1 bit indp 1 bit N ident 1 bit N indp 2 bit ident 1,500 1,000 #Keys 4,000 #Keys 2, Fourier coefficient 10 14

44 Fourier coefficient of E k (x) = F(x, k) k E k m F c 2 m Ê k (α, γ) = ( 1) β,k F((α, β), γ) β F m 2 F((α, β), γ) = ( 1) β,k Ê k (α, γ) k F m 2

45 Fourier coefficient of E k (x) = F(x, k) k E k m F c 2 m Ê k (α, γ) = ( 1) β,k F((α, β), γ) β F m 2 F((α, β), γ) = ( 1) β,k Ê k (α, γ) k F m 2

46 Fourier coefficient of E t (x) = F (x, t) t E t m F k c 2 m Ê t (α, γ) = ( 1) β,t Fk ((α, β), γ) β F m 2 F k ((α, β), γ) = ( 1) β,t Ê t (α, γ) t F m 2

47 Linear Hull for key-alternating cipher r-keyalt k k 0 k 1 k r 1 k r m H 0... H r 1 c Linear Hull Theorem r-keyalt k (α, γ) = 2 n θ θ 0 =α,θ r =γ ( 1) θ,k C θ where θ F (r+1)n 2 and C θ = 2 n r 1 i=0 Ĥi(θ i, θ i+1 )

48 Tweaks do not introduce new linear trails Let r-tweakalt L be a tweak-alternating and key-alternating block cipher with linear key-schedule L r-tweakalt L ((α, β), γ) = 2 (r+2)n ( 1) θ,k C θ Design Consequences θ L T (θ)=β θ 0 =α,θ r =γ Protecting a tweakable block cipher against linear cryptanalysis can be done in the same way as in the non-tweakable case.

49 Round-reduced PRESENT with S-box R 0 #Keys ident indp N ident N indp Fourier coefficient 10 15

50 Round-reduced PRESENT with S-box R 2 #Keys 1, ident indp N ident N indp Fourier coefficient 10 15

51 Round-reduced PRESENT with S-box R 3 #Keys 2,000 1,000 ident indp N ident N indp Fourier coefficient 10 14

52 Round-reduced PRESENT with S-box R 5 #Keys 4,000 2,000 ident indp N ident N indp Fourier coefficient 10 14

BISON Instantiating the Whitened Swap-Or-Not Construction November 14th, 2018

BISON Instantiating the Whitened Swap-Or-Not Construction November 14th, 2018 BION Instantiating the Whitened wap-or-not Construction November 14th, 2018 FluxFingers Workgroup ymmetric Cryptography, Ruhr University Bochum Virginie Lallemand, Gregor Leander, Patrick Neumann, and

More information

Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers

Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers Kaisa Nyberg Aalto University School of Science kaisa.nyberg@aalto.fi Luxemburg January 2017 Outline Introduction

More information

The Invariant Set Attack 26th January 2017

The Invariant Set Attack 26th January 2017 The Invariant Set Attack 26th January 2017 Workgroup Symmetric Cryptography Ruhr University Bochum Friedrich Wiemer Friedrich Wiemer The Invariant Set Attack 26th January 2017 1 Nonlinear Invariant Attack

More information

Links Between Theoretical and Effective Differential Probabilities: Experiments on PRESENT

Links Between Theoretical and Effective Differential Probabilities: Experiments on PRESENT Links Between Theoretical and Effective Differential Probabilities: Experiments on PRESENT Céline Blondeau, Benoît Gérard SECRET-Project-Team, INRIA, France TOOLS for Cryptanalysis - 23th June 2010 C.Blondeau

More information

Cryptanalysis of PRESENT-like ciphers with secret S-boxes

Cryptanalysis of PRESENT-like ciphers with secret S-boxes Cryptanalysis of PRESENT-like ciphers with secret S-boxes Julia Borghoff Lars Knudsen Gregor Leander Søren S. Thomsen DTU, Denmark FSE 2011 Cryptanalysis of Maya Julia Borghoff Lars Knudsen Gregor Leander

More information

DD2448 Foundations of Cryptography Lecture 3

DD2448 Foundations of Cryptography Lecture 3 DD2448 Foundations of Cryptography Lecture 3 Douglas Wikström KTH Royal Institute of Technology dog@kth.se February 3, 2016 Linear Cryptanalysis of the SPN Basic Idea Linearize Find an expression of the

More information

MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics

MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics Ahmed Abdelkhalek, Yu Sasaki 2, Yosuke Todo 2, Mohamed Tolba, and Amr M. Youssef :Concordia University, 2: NTT

More information

ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls

ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls Ritam Bhaumik, Indian Statistical Institute, Kolkata Eik List, Bauhaus-Universität Weimar, Weimar Mridul Nandi,

More information

Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent

Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent B. Collard, F.-X. Standaert, J.-J. Quisquater UCL Crypto Group Microelectronics Laboratory Catholic University of Louvain - UCL

More information

Block Cipher Cryptanalysis: An Overview

Block Cipher Cryptanalysis: An Overview 0/52 Block Cipher Cryptanalysis: An Overview Subhabrata Samajder Indian Statistical Institute, Kolkata 17 th May, 2017 0/52 Outline Iterated Block Cipher 1 Iterated Block Cipher 2 S-Boxes 3 A Basic Substitution

More information

Key Difference Invariant Bias in Block Ciphers

Key Difference Invariant Bias in Block Ciphers Key Difference Invariant Bias in Block Ciphers Andrey Bogdanov, Christina Boura, Vincent Rijmen 2, Meiqin Wang 3, Long Wen 3, Jingyuan Zhao 3 Technical University of Denmark, Denmark 2 KU Leuven ESAT/SCD/COSIC

More information

Lecture 12: Block ciphers

Lecture 12: Block ciphers Lecture 12: Block ciphers Thomas Johansson T. Johansson (Lund University) 1 / 19 Block ciphers A block cipher encrypts a block of plaintext bits x to a block of ciphertext bits y. The transformation is

More information

Linear Hull Attack on Round-Reduced Simeck with Dynamic Key-guessing Techniques

Linear Hull Attack on Round-Reduced Simeck with Dynamic Key-guessing Techniques Linear Hull Attack on Round-Reduced Simeck with Dynamic Key-guessing Techniques Lingyue Qin 1, Huaifeng Chen 3, Xiaoyun Wang 2,3 1 Department of Computer Science and Technology, Tsinghua University, Beijing

More information

observations on the simon block cipher family

observations on the simon block cipher family observations on the simon block cipher family Stefan Kölbl 1 Gregor Leander 2 Tyge Tiessen 1 August 17, 2015 1 DTU Compute, Technical University of Denmark, Denmark 2 Horst Görtz Institute for IT Security,

More information

Algebraic Techniques in Differential Cryptanalysis

Algebraic Techniques in Differential Cryptanalysis Algebraic Techniques in Differential Cryptanalysis Martin Albrecht and Carlos Cid Information Security Group, Royal Holloway, University of London FSE 2009, Leuven, 24.02.2009 Martin Albrecht and Carlos

More information

Block Cipher Invariants as Eigenvectors of Correlation Matrices

Block Cipher Invariants as Eigenvectors of Correlation Matrices Block Cipher Invariants as Eigenvectors of Correlation Matrices Tim Beyne imec-cosic, KU Leuven name.lastname@esat.kuleuven.be Abstract. A new approach to invariant subspaces and nonlinear invariants is

More information

Block Ciphers and Side Channel Protection

Block Ciphers and Side Channel Protection Block Ciphers and Side Channel Protection Gregor Leander ECRYPT-CSA@CHANIA-2017 Main Idea Side-Channel Resistance Without protection having a strong cipher is useless Therefore: Masking necessary Usual

More information

Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network

Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network Ruilin Li, Bing Sun, and Chao Li Department of Mathematics and System Science, Science College, National University of Defense

More information

On Stream Ciphers with Small State

On Stream Ciphers with Small State ESC 2017, Canach, January 16. On Stream Ciphers with Small State Willi Meier joint work with Matthias Hamann, Matthias Krause (University of Mannheim) Bin Zhang (Chinese Academy of Sciences, Beijing) 1

More information

Cryptanalysis of SP Networks with Partial Non-Linear Layers

Cryptanalysis of SP Networks with Partial Non-Linear Layers Cryptanalysis of SP Networks with Partial Non-Linear Layers Achiya Bar-On 1, Itai Dinur 2, Orr Dunkelman 3, Nathan Keller 1, Virginie Lallemand 4, and Boaz Tsaban 1 1 Bar-Ilan University, Israel 2 École

More information

and Céline Blondeau October 8, 2012 joint work with Benoît Gérard and Kaisa Nyberg Multiple differential cryptanalysis using LLR and October, 8 1/27

and Céline Blondeau October 8, 2012 joint work with Benoît Gérard and Kaisa Nyberg Multiple differential cryptanalysis using LLR and October, 8 1/27 Multiple differential cryptanalysis using LLR and Céline Blondeau joint work with Benoît Gérard and Kaisa Nyberg October 8, 2012 1/27 Outline Introduction Block Ciphers Differential Cryptanalysis Last

More information

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway Symmetric Cryptanalytic Techniques Sean Murphy ショーン マーフィー Royal Holloway Block Ciphers Encrypt blocks of data using a key Iterative process ( rounds ) Modified by Modes of Operation Data Encryption Standard

More information

Division Property: a New Attack Against Block Ciphers

Division Property: a New Attack Against Block Ciphers Division Property: a New Attack Against Block Ciphers Christina Boura (joint on-going work with Anne Canteaut) Séminaire du groupe Algèbre et Géometrie, LMV November 24, 2015 1 / 50 Symmetric-key encryption

More information

Wieringa, Celine; Nyberg, Kaisa Improved Parameter Estimates for Correlation and Capacity Deviates in Linear Cryptanalysis

Wieringa, Celine; Nyberg, Kaisa Improved Parameter Estimates for Correlation and Capacity Deviates in Linear Cryptanalysis Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Wieringa, Celine; Nyberg, Kaisa Improved

More information

LS-Designs. Bitslice Encryption for Efficient Masked Software Implementations

LS-Designs. Bitslice Encryption for Efficient Masked Software Implementations Bitslice Encryption for Efficient Masked Software Implementations Vincent Grosso 1 Gaëtan Leurent 1,2 François Xavier Standert 1 Kerem Varici 1 1 UCL, Belgium 2 Inria, France FSE 2014 G Leurent (UCL,Inria)

More information

Cryptanalysis of a Generalized Unbalanced Feistel Network Structure

Cryptanalysis of a Generalized Unbalanced Feistel Network Structure Cryptanalysis of a Generalized Unbalanced Feistel Network Structure Ruilin Li, Bing Sun, Chao Li, Longjiang Qu National University of Defense Technology, Changsha, China ACISP 2010, Sydney, Australia 5

More information

Nonlinear Invariant Attack

Nonlinear Invariant Attack Nonlinear Invariant Attack Practical Attack on Full SCREAM, iscream, and Midori64 Yosuke Todo 13, Gregor Leander 2, and Yu Sasaki 1 1 NTT Secure Platform Laboratories, Tokyo, Japan todo.yosuke@lab.ntt.co.jp,

More information

Improved Differential-Linear Cryptanalysis of 7-round Chaskey with Partitioning

Improved Differential-Linear Cryptanalysis of 7-round Chaskey with Partitioning Improved Differential-Linear Cryptanalysis of 7-round Chaskey with Partitioning Gaëtan Leurent Inria, France Abstract. In this work we study the security of Chaskey, a recent lightweight MAC designed by

More information

bison Instantiating the Whitened Swap-Or-Not Construction

bison Instantiating the Whitened Swap-Or-Not Construction bison Instantiating the Whitened Swap-Or-Not Construction Anne Canteaut 1, Virginie Lallemand 2, Gregor Leander 2, Patrick Neumann 2 and Friedrich Wiemer 2 1 Inria, Paris, France anne.canteaut@inria.fr

More information

Differential Fault Analysis on DES Middle Rounds

Differential Fault Analysis on DES Middle Rounds Differential Fault Analysis on DES Middle Rounds Matthieu Rivain Speaker: Christophe Giraud Oberthur Technologies Agenda 1 Introduction Data Encryption Standard DFA on DES Last & Middle Rounds 2 Our Attack

More information

Provable Security Against Differential and Linear Cryptanalysis

Provable Security Against Differential and Linear Cryptanalysis Provable Security Against Differential and Linear Cryptanalysis Kaisa Nyberg Department of Information and Computer Science Aalto University Introduction CRADIC Linear Hull SPN and Two Strategies Highly

More information

How Biased Are Linear Biases

How Biased Are Linear Biases How Biased Are Linear Biases Adnan Baysal and Orhun Kara TÜBİTAK BİLGEM UEKAE Gebze, 41470 Kocaeli Turkey. E-mails: {abaysal,orhun}@uekae.tubitak.gov.tr Abstract In this paper we re-visit the Matsui s

More information

On Distinct Known Plaintext Attacks

On Distinct Known Plaintext Attacks Céline Blondeau and Kaisa Nyberg Aalto University Wednesday 15th of April WCC 2015, Paris Outline Linear Attacks Data Complexity of Zero-Correlation Attacks Theory Experiments Improvement of Attacks Multidimensional

More information

Count November 21st, 2017

Count November 21st, 2017 RUHR-UNIVERSITÄT BOCHUM XOR Count November 21st, 2017 FluxFingers Workgroup Symmetric Cryptography Ruhr University Bochum Friedrich Wiemer Friedrich Wiemer XOR Count November 21st, 2017 1 Overview Joint

More information

Fast Evaluation of Polynomials over Binary Finite Fields. and Application to Side-channel Countermeasures

Fast Evaluation of Polynomials over Binary Finite Fields. and Application to Side-channel Countermeasures Fast Evaluation of Polynomials over Binary Finite Fields and Application to Side-channel Countermeasures Jean-Sébastien Coron 1, Arnab Roy 1,2, Srinivas Vivek 1 1 University of Luxembourg 2 DTU, Denmark

More information

Similarities between encryption and decryption: how far can we go?

Similarities between encryption and decryption: how far can we go? Similarities between encryption and decryption: how far can we go? Anne Canteaut Inria, France and DTU, Denmark Anne.Canteaut@inria.fr http://www-rocq.inria.fr/secret/anne.canteaut/ SAC 2013 based on a

More information

Better proofs for rekeying

Better proofs for rekeying Better proofs for rekeying 1 D. J. Bernstein Security of AES-256 key k is far below 2 256 in most protocols: (AES k (0); : : : ; AES k (n 1)) is distinguishable from uniform with probability n(n 1)=2 129,

More information

Linear Cryptanalysis of Reduced-Round PRESENT

Linear Cryptanalysis of Reduced-Round PRESENT Linear Cryptanalysis of Reduced-Round PRESENT Joo Yeon Cho 1 Helsinki University of Technology, Finland 2 Nokia A/S, Denmark joo.cho@tkk.fi Abstract. PRESENT is a hardware-oriented block cipher suitable

More information

Another view of the division property

Another view of the division property Another view of the division property Christina Boura and Anne Canteaut Université de Versailles-St Quentin, France Inria Paris, France Dagstuhl seminar, January 2016 Motivation E K : block cipher with

More information

Linear Cryptanalysis Using Low-bias Linear Approximations

Linear Cryptanalysis Using Low-bias Linear Approximations Linear Cryptanalysis Using Low-bias Linear Approximations Tomer Ashur 1, Daniël Bodden 1, and Orr Dunkelman 2 1 Dept. Electrical Engineering, COSIC-imec, KU Leuven, Belgium [tashur,dbodden]@esat.kuleuven.be

More information

Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-128

Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-128 Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-8 Zheng Yuan,,, ian Li, Beijing Electronic Science & Technology Institute, Beijing 7, P.R. China zyuan@tsinghua.edu.cn, sharonlee95@6.com

More information

On related-key attacks and KASUMI: the case of A5/3

On related-key attacks and KASUMI: the case of A5/3 On related-key attacks and KASUMI: the case of A5/3 Phuong Ha Nguyen 1, M.J.B. Robshaw 2, Huaxiong Wang 1 1 Nanyang Technological University, Singapore 2 Applied Cryptography Group, Orange Labs, France

More information

Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock

Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock Hadi Soleimany and Kaisa Nyberg Department of Information and Computer Science, Aalto University School of Science, Finland WCC 2013 1/53 Outline

More information

Experimenting Linear Cryptanalysis

Experimenting Linear Cryptanalysis Experimenting Linear Cryptanalysis Baudoin Collard, François-Xavier Standaert UCL Crypto Group, Microelectronics Laboratory, Université catholique de Louvain. Place du Levant 3, B-1348, Louvain-la-Neuve,

More information

How to Evaluate Side-Channel Leakages

How to Evaluate Side-Channel Leakages How to Evaluate Side-Channel Leakages 7. June 2017 Ruhr-Universität Bochum Acknowledgment Tobias Schneider 2 Motivation Security Evaluation Attack based Testing Information theoretic Testing Testing based

More information

Subspace Trail Cryptanalysis and its Applications to AES

Subspace Trail Cryptanalysis and its Applications to AES Subspace Trail Cryptanalysis and its Applications to AES Lorenzo Grassi, Christian Rechberger and Sondre Rønjom March, 2017 1 / 28 Introduction In the case of AES, several alternative representations (algebraic

More information

Multivariate Linear Cryptanalysis: The Past and Future of PRESENT

Multivariate Linear Cryptanalysis: The Past and Future of PRESENT Multivariate Linear Cryptanalysis: The Past and Future of PRESENT Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre Technical University of Denmark, Denmark {anbog,ewti,psve}@dtu.dk June 29, 2016

More information

Differential-Linear Cryptanalysis of Serpent

Differential-Linear Cryptanalysis of Serpent Differential-Linear Cryptanalysis of Serpent Eli Biham, 1 Orr Dunkelman, 1 Nathan Keller 2 1 Computer Science Department, Technion. Haifa 32000, Israel {biham,orrd}@cs.technion.ac.il 2 Mathematics Department,

More information

A Stochastic Model for Differential Side Channel Cryptanalysis

A Stochastic Model for Differential Side Channel Cryptanalysis A Stochastic Model for Differential Side Channel Cryptanalysis Werner Schindler 1, Kerstin Lemke 2, Christof Paar 2 1 Bundesamt für Sicherheit in der Informationstechnik (BSI) 53175 Bonn, Germany 2 Horst

More information

Zero-Correlation Linear Cryptanalysis with Fast Fourier Transform and Applications to Camellia and CLEFIA

Zero-Correlation Linear Cryptanalysis with Fast Fourier Transform and Applications to Camellia and CLEFIA Zero-Correlation Linear Cryptanalysis with Fast Fourier Transform and Applications to Camellia and CLEFIA Andrey Bogdanov, Meiqin Wang Technical University of Denmark, Shandong University, China ESC 2013,

More information

Linear Cryptanalysis. Kaisa Nyberg. Department of Computer Science Aalto University School of Science. S3, Sackville, August 11, 2015

Linear Cryptanalysis. Kaisa Nyberg. Department of Computer Science Aalto University School of Science. S3, Sackville, August 11, 2015 Kaisa Nyberg Department of Computer Science Aalto University School of Science s 2 r t S3, Sackville, August 11, 2015 Outline Linear characteristics and correlations Matsui s algorithms Traditional statistical

More information

Improved Linear Cryptanalysis of reduced-round SIMON-32 and SIMON-48

Improved Linear Cryptanalysis of reduced-round SIMON-32 and SIMON-48 Improved inear Cryptanalysis of reduced-round SIMON-32 and SIMON-48 Mohamed Ahmed Abdelraheem, Javad Alizadeh 2, Hoda A. Alkhzaimi 3, Mohammad eza Aref 2, Nasour Bagheri 4, and Praveen Gauravaram 5 SICS

More information

MILP-based Cube Attack on the Reduced-Round WG-5 Lightweight Stream Cipher

MILP-based Cube Attack on the Reduced-Round WG-5 Lightweight Stream Cipher MILP-based Cube Attack on the Reduced-Round WG-5 Lightweight Stream Cipher Raghvendra Rohit, Riham AlTawy, & Guang Gong Department of Electrical and Computer Engineering, University of Waterloo Waterloo,

More information

Improving the Time Complexity of Matsui s Linear Cryptanalysis

Improving the Time Complexity of Matsui s Linear Cryptanalysis Improving the Time Complexity of Matsui s Linear Cryptanalysis B. Collard, F.-X. Standaert, J.-J. Quisquater UCL Crypto Group, Université Catholique de Louvain Abstract. This paper reports on an improvement

More information

Analysis of cryptographic hash functions

Analysis of cryptographic hash functions Analysis of cryptographic hash functions Christina Boura SECRET Project-Team, INRIA Paris-Rocquencourt Gemalto, France Ph.D. Defense December 7, 2012 1 / 43 Symmetric key cryptography Alice and Bob share

More information

Improved Slender-set Linear Cryptanalysis

Improved Slender-set Linear Cryptanalysis 1 / 37 Improved Slender-set Linear Cryptanalysis Guo-Qiang Liu 1 Chen-Hui Jin 1 Chuan-Da Qi 2 1 Information Science Technology Institute Zhengzhou, Henan, China 2 Xinyang Normal University Xinyang, Henan,

More information

Linear Cryptanalysis Using Multiple Linear Approximations

Linear Cryptanalysis Using Multiple Linear Approximations Linear Cryptanalysis Using Multiple Linear Approximations Miia HERMELIN a, Kaisa NYBERG b a Finnish Defence Forces b Aalto University School of Science and Nokia Abstract. In this article, the theory of

More information

A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent

A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg Helsinki University of Technology, Department of Information

More information

Bernoulli variables. Let X be a random variable such that. 1 with probability p X = 0 with probability q = 1 p

Bernoulli variables. Let X be a random variable such that. 1 with probability p X = 0 with probability q = 1 p Unit 20 February 25, 2011 1 Bernoulli variables Let X be a random variable such that { 1 with probability p X = 0 with probability q = 1 p Such an X is called a Bernoulli random variable Unit 20 February

More information

Recent Cryptanalysis of RC4 Stream Cipher

Recent Cryptanalysis of RC4 Stream Cipher 28 August, 2013 ASK 2013 @ Weihai, China Recent Cryptanalysis of RC4 Stream Cipher Takanori Isobe Kobe University Joint work with Toshihiro Ohigashi, Yuhei Watanabe, and Maskatu Morii Agenda This talk

More information

Improved Linear (hull) Cryptanalysis of Round-reduced Versions of SIMON

Improved Linear (hull) Cryptanalysis of Round-reduced Versions of SIMON Improved Linear (hull) Cryptanalysis of Round-reduced Versions of SIMON Danping Shi 1,2, Lei Hu 1,2, Siwei Sun 1,2, Ling Song 1,2, Kexin Qiao 1,2, Xiaoshuang Ma 1,2 1 State Key Laboratory of Information

More information

MasterMath Cryptology /2 - Cryptanalysis

MasterMath Cryptology /2 - Cryptanalysis MasterMath Cryptology 2015 2/2 Cryptanalysis Wednesday, 8 April, 2015 10:38 9. Differential cryptanalysis (v2) 9.1. Differential cryptanalysis In differential analysis we simultaneously consider two encryptions

More information

Stream ciphers. Pawel Wocjan. Department of Electrical Engineering & Computer Science University of Central Florida

Stream ciphers. Pawel Wocjan. Department of Electrical Engineering & Computer Science University of Central Florida Stream ciphers Pawel Wocjan Department of Electrical Engineering & Computer Science University of Central Florida wocjan@eecs.ucf.edu Definition of block ciphers Block ciphers: crypto work horse n bits

More information

Building Secure Block Ciphers on Generic Attacks Assumptions

Building Secure Block Ciphers on Generic Attacks Assumptions Building Secure Block Ciphers on Generic Attacks Assumptions Jacques Patarin and Yannick Seurin University of Versailles and Orange Labs SAC 2008 August 14-15, 2008 the context security of symmetric primitives

More information

Some attacks against block ciphers

Some attacks against block ciphers Some attacks against block ciphers hristina Boura École de printemps en codage et cryptographie May 19, 2016 1 / 59 Last-round attacks Outline 1 Last-round attacks 2 Higher-order differential attacks 3

More information

Multiplicative complexity in block cipher design and analysis

Multiplicative complexity in block cipher design and analysis Multiplicative complexity in block cipher design and analysis Pavol Zajac Institute of Computer Science and Mathematics Slovak University of Technology pavol.zajac@stuba.sk Fewer Multiplications in Cryptography

More information

Algebraic Side-Channel Collision Attacks on AES

Algebraic Side-Channel Collision Attacks on AES Algebraic Side-Channel Collision Attacks on AES Andrey Bogdanov 1 and Andrey Pyshkin 2 1 Chair for Communication Security Ruhr University Bochum, Germany abogdanov@crypto.rub.de 2 Department of Computer

More information

Polynomial Selection Using Lattices

Polynomial Selection Using Lattices Polynomial Selection Using Lattices Mathias Herrmann Alexander May Maike Ritzenhofen Horst Görtz Institute for IT-Security Faculty of Mathematics Ruhr-University Bochum Factoring 2009 September 12 th Intro

More information

A Collision-Attack on AES Combining Side Channel- and Differential-Attack

A Collision-Attack on AES Combining Side Channel- and Differential-Attack A Collision-Attack on AES Combining Side Channel- and Differential-Attack Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar Horst Görtz Institute for IT Security Ruhr-Universität Bochum, Germany

More information

Impossible Differential Cryptanalysis of Reduced-Round SKINNY

Impossible Differential Cryptanalysis of Reduced-Round SKINNY Impossible Differential Cryptanalysis of Reduced-Round SKINNY Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef Concordia Institute for Information Systems Engineering, Concordia University, Montréal,

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

The Hash Function JH 1

The Hash Function JH 1 The Hash Function JH 1 16 January, 2011 Hongjun Wu 2,3 wuhongjun@gmail.com 1 The design of JH is tweaked in this report. The round number of JH is changed from 35.5 to 42. This new version may be referred

More information

ON DISTINGUISHING ATTACK AGAINST THE REDUCED VERSION OF THE CIPHER NLSV2

ON DISTINGUISHING ATTACK AGAINST THE REDUCED VERSION OF THE CIPHER NLSV2 t m Mathematical Publications DOI: 10.2478/v10127-012-0037-5 Tatra Mt. Math. Publ. 53 (2012), 21 32 ON DISTINGUISHING ATTACK AGAINST THE REDUCED VERSION OF THE CIPHER NLSV2 Michal Braško Jaroslav Boor

More information

Revisiting the Wrong-Key-Randomization Hypothesis

Revisiting the Wrong-Key-Randomization Hypothesis Revisiting the Wrong-Key-Randomization Hypothesis Tomer Ashur, Tim Beyne, and Vincent Rijmen ESAT/COSIC, KU Leuven and iminds, Leuven, Belgium [tomer.ashur,vincent.rijmen] @ esat.kuleuven.be [tim.beyne]

More information

Yet another side-channel attack: Multi-linear Power Analysis attack (MLPA)

Yet another side-channel attack: Multi-linear Power Analysis attack (MLPA) Yet another side-channel attack: Multi-linear Power Analysis attack (MLPA) Thomas Roche, Cédric Tavernier Laboratoire LIG, Grenoble, France. Communications and Systems, Le Plessis Robinson, France. Cryptopuces

More information

Quantum Chosen-Ciphertext Attacks against Feistel Ciphers

Quantum Chosen-Ciphertext Attacks against Feistel Ciphers SESSION ID: CRYP-R09 Quantum Chosen-Ciphertext Attacks against Feistel Ciphers Gembu Ito Nagoya University Joint work with Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki and Tetsu Iwata Overview 3-round

More information

Proving Resistance against Invariant Attacks: How to Choose the Round Constants

Proving Resistance against Invariant Attacks: How to Choose the Round Constants Proving Resistance against Invariant Attacks: How to Choose the Round Constants Christof Beierle 1, Anne Canteaut 2, Gregor Leander 1, and Yann Rotella 2 1 Horst Görtz Institute for IT Security, Ruhr-Universität

More information

Bitslice Ciphers and Power Analysis Attacks

Bitslice Ciphers and Power Analysis Attacks Bitslice Ciphers and Power Analysis Attacks Joan Daemen, Michael Peeters and Gilles Van Assche Proton World Intl. Rue Du Planeur 10, B-1130 Brussel, Belgium Email: {daemen.j, peeters.m, vanassche.g}@protonworld.com

More information

Inside Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1. Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013

Inside Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1. Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013 Inside Keccak Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1 1 STMicroelectronics 2 NXP Semiconductors Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013 1 / 49 Outline

More information

Product Systems, Substitution-Permutation Networks, and Linear and Differential Analysis

Product Systems, Substitution-Permutation Networks, and Linear and Differential Analysis Product Systems, Substitution-Permutation Networks, and Linear and Differential Analysis Cryptology, lecture 3 Stinson, Section 2.7 3.4 Tuesday, February 12th, 2008 1 Composition Product 2 Substitution-Permutation

More information

Multiple-Differential Side-Channel Collision Attacks on AES

Multiple-Differential Side-Channel Collision Attacks on AES Multiple-Differential Side-Channel Collision Attacks on AES Andrey Bogdanov Horst Görtz Institute for IT Security Ruhr University Bochum, Germany abogdanov@crypto.rub.de www.crypto.rub.de Abstract. In

More information

Linear Cryptanalysis

Linear Cryptanalysis Linear Cryptanalysis Linear cryptanalysis is a powerful method of cryptanalysis introduced by Matsui in 1993 [11]. It is a known plaintext attack in which the attacker studies the linear approximations

More information

On the Wrong Key Randomisation and Key Equivalence Hypotheses in Matsui s Algorithm 2

On the Wrong Key Randomisation and Key Equivalence Hypotheses in Matsui s Algorithm 2 On the Wrong Key Randomisation and Key Equivalence Hypotheses in Matsui s Algorithm 2 Andrey Bogdanov 1 and Elmar Tischhauser 2 1 Technical University of Denmark anbog@dtu.dk 2 KU Leuven and iminds, Belgium

More information

Investigations of Power Analysis Attacks on Smartcards *

Investigations of Power Analysis Attacks on Smartcards * Investigations of Power Analysis Attacks on Smartcards * Thomas S. Messerges Ezzy A. Dabbish Robert H. Sloan 1 Dept. of EE and Computer Science Motorola Motorola University of Illinois at Chicago tomas@ccrl.mot.com

More information

New Results in the Linear Cryptanalysis of DES

New Results in the Linear Cryptanalysis of DES New Results in the Linear Cryptanalysis of DES Igor Semaev Department of Informatics University of Bergen, Norway e-mail: igor@ii.uib.no phone: (+47)55584279 fax: (+47)55584199 May 23, 2014 Abstract Two

More information

Attack on Broadcast RC4

Attack on Broadcast RC4 Attack on Broadcast RC4 Revisited S. Maitra 1 G. Paul 2 S. Sen Gupta 1 1 Indian Statistical Institute, Kolkata 2 Jadavpur University, Kolkata FSE 2011, Lyngby, Denmark 15 February 2011 Outline of the Talk

More information

Higher-order differential properties of Keccak and Luffa

Higher-order differential properties of Keccak and Luffa Higher-order differential properties of Keccak and Luffa Christina Boura 1,2, Anne Canteaut 1 and Christophe De Cannière 3 1 SECRET Project-Team - INRIA Paris-Rocquencourt - B.P. 105-78153 Le Chesnay Cedex

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

GENERALIZED NONLINEARITY OF S-BOXES. Sugata Gangopadhyay

GENERALIZED NONLINEARITY OF S-BOXES. Sugata Gangopadhyay Volume X, No. 0X, 0xx, X XX doi:0.3934/amc.xx.xx.xx GENERALIZED NONLINEARITY OF -BOXE ugata Gangopadhyay Department of Computer cience and Engineering, Indian Institute of Technology Roorkee, Roorkee 47667,

More information

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 7 Cryptanalysis Cryptanalysis Attacks such as exhaustive key-search do not exploit any properties of the encryption algorithm or implementation. Structural attacks

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously on COS 433 Takeaway: Crypto is Hard Designing crypto is hard, even experts get it wrong Just because I don t know

More information

Cold Boot Key Recovery by Solving Polynomial Systems with Noise

Cold Boot Key Recovery by Solving Polynomial Systems with Noise Cold Boot Key Recovery by Solving Polynomial Systems with Noise Martin R. Albrecht 1 & Carlos Cid 2 Team Salsa, LIP6, UPMC Information Security Group, Royal Holloway, University of London DTU, 04. April

More information

Block Ciphers. Chester Rebeiro IIT Madras. STINSON : chapters 3

Block Ciphers. Chester Rebeiro IIT Madras. STINSON : chapters 3 Block Ciphers Chester Rebeiro IIT Madras STINSON : chapters 3 Block Cipher K E K D Alice untrusted communication link E #%AR3Xf34^$ message encryption (ciphertext) Attack at Dawn!! D decryption Bob Attack

More information

Data complexity and success probability of statisticals cryptanalysis

Data complexity and success probability of statisticals cryptanalysis Data complexity and success probability of statisticals cryptanalysis Céline Blondeau SECRET-Project-Team, INRIA, France Joint work with Benoît Gérard and Jean-Pierre Tillich aaa C.Blondeau Data complexity

More information

S-box (Substitution box) is a basic component of symmetric

S-box (Substitution box) is a basic component of symmetric JOURNAL OF L A TEX CLASS FILES, VOL., NO., AUGUST 1 Characterizations of the Degraded Boolean Function and Cryptanalysis of the SAFER Family Wentan Yi and Shaozhen Chen Abstract This paper investigates

More information

Lightweight Multiplication in GF (2 n ) with Applications to MDS Matrices

Lightweight Multiplication in GF (2 n ) with Applications to MDS Matrices Lightweight Multiplication in GF (2 n ) with Applications to MDS Matrices Christof Beierle, Thorsten Kranz, and Gregor Leander Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany {christof.beierle,

More information

Start Simple and then Refine: Bias-Variance Decomposition as a Diagnosis Tool for Leakage Profiling

Start Simple and then Refine: Bias-Variance Decomposition as a Diagnosis Tool for Leakage Profiling IEEE TRANSACTIONS ON COMPUTERS, VOL.?, NO.?,?? 1 Start Simple and then Refine: Bias-Variance Decomposition as a Diagnosis Tool for Leakage Profiling Liran Lerman, Nikita Veshchikov, Olivier Markowitch,

More information

Cryptanalysis of the Stream Cipher ABC v2

Cryptanalysis of the Stream Cipher ABC v2 Cryptanalysis of the Stream Cipher ABC v2 Hongjun Wu and Bart Preneel Katholieke Universiteit Leuven, ESAT/SCD-COSIC Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium {wu.hongjun,bart.preneel}@esat.kuleuven.be

More information

Effect of the Dependent Paths in Linear Hull

Effect of the Dependent Paths in Linear Hull 1 Effect of te Dependent Pats in Linear Hull Zenli Dai, Meiqin Wang, Yue Sun Scool of Matematics, Sandong University, Jinan, 250100, Cina Key Laboratory of Cryptologic Tecnology and Information Security,

More information