AFFINE AND DEGENERATE AFFINE BMW ALGEBRAS: THE CENTER

Size: px
Start display at page:

Download "AFFINE AND DEGENERATE AFFINE BMW ALGEBRAS: THE CENTER"

Transcription

1 Daugherty, Z., Ram, A. Vrk, R. Osaka J. Math. 5 (204), AFFINE AND DEGENERATE AFFINE BMW ALGEBRAS: THE CENTER ZAJJ DAUGHERTY, ARUN RAM RAHBAR VIRK (Receved October 2, 20, revsed August 7, 202) Abstract The degenerate affne affne BMW algebras arse naturally n the context of Schur Weyl dualty for orthogonal symplectc Le algebras quantum groups, respectvely. Cyclotomc BMW algebras, affne Hecke algebras, cyclotomc Hecke algebras, ther degenerate versons are quotents. In ths paper the theory s unfed by treatng the orthogonal symplectc cases smultaneously; we make an exact parallel between the degenerate affne affne cases va a new algebra whch takes the role of the affne brad group for the degenerate settng. A man result of ths paper s an dentfcaton of the centers of the affne degenerate affne BMW algebras n terms of rngs of symmetrc functons whch satsfy a cancellaton property or wheel condton (n the degenerate case, a reformulaton of a result of Nazarov). Mraculously, these same rngs also arse n Schubert calculus, as the cohomology K-theory of sotropc Grassmannans symplectc loop Grassmannans. We also establsh new ntertwner-lke denttes whch, when projected to the center, produce the recursons for central elements gven prevously by Nazarov for degenerate affne BMW algebras, by Belakova Blanchet for affne BMW algebras.. Introducton The degenerate affne BMW algebras W k the affne BMW algebras W k arse naturally n the context of Schur Weyl dualty the applcaton of Schur functors to modules n category O for orthogonal symplectc Le algebras quantum groups (usng the Schur functors of [4], [], [28]). The degenerate algebras W k were ntroduced n [27] the affne versons W k appeared n [28], followng foundatonal work of [7] [9]. The representaton theory of W k W k contans the representaton theory of any quotent: n partcular, the degenerate cyclotomc BMW algebras W r,k, the cyclotomc BMW algebras W r,k, the degenerate affne Hecke algebras H k, the affne Hecke algebras H k, the degenerate cyclotomc Hecke algebras H r,k, the cyclotomc Hecke algebras H r,k as quotents. In [3, 34, 35, 2, 8] other works, the representaton theory of the affne BMW algebra s derved by cellular algebra technques. As ndcated n [28], the Schur Weyl dualty also provdes a path to the representaton theory of the affne BMW algebras as an mage of the representaton theory of category O for orthogonal symplectc Le algebras ther quantum groups 200 Mathematcs Subject Classfcaton. 7B37.

2 258 Z. DAUGHERTY, A. RAM AND R. VIRK n the same way that the affne Hecke algebras arse n Schur Weyl dualty wth the envelopng algebra of gl n ts Drnfeld Jmbo quantum group. In the lterature, the algebras W k W k have often been treated separately. One of the goals of ths paper s to unfy the theory. To do ths we have begun by adjustng the defntons of the algebras carefully to make the presentatons match, relaton by relaton. In the same way that the affne BMW algebra s a quotent of the group algebra of the affne brad group, we have defned a new algebra, the degenerate affne brad algebra whch has the degenerate affne BMW algebra the degenerate affne Hecke algebras as quotents. We have done ths carefully, to ensure that the Schur Weyl dualty framework s completely analogous for both the degenerate affne the affne cases. We have also added a parameter (whch takes values ) so that both the orthogonal symplectc cases can be treated smultaneously. Our new presentatons of the algebras W k W k are gven n Secton 2. In Secton 3 we consder some remarkable recursons for generatng central elements n the algebras W k W k. These recursons were gven by Nazarov [27] n the degenerate case, then extended to the affne BMW algebra by Belakova Blanchet [4]. Another proof n the affne cyclotomc case appears n [35, Lemma 4.2], n the degenerate case, n [2, Lemma 4.5]. In all of these proofs, the recurson s obtaned by a rather mysterous tedous computaton. We show that there s an ntertwner lke dentty n the full algebra whch, when projected to the center produces the Nazarov recursons. Our approach provdes new nsght nto where these recursons are comng from. Moreover, the proof s exactly analogous n both the degenerate the affne cases, ncludes the parameter, so that both the orthogonal symplectc cases are treated smultaneously. In Secton 4 we dentfy the center of the degenerate affne BMW algebras. In the degenerate case ths has been done n [27]. Nazarov stated that the center of the degenerate affne BMW algebra s the subrng of the rng of symmetrc functons generated by the odd power sums. We dentfy the rng n a dfferent way, as the subrng of symmetrc functons wth the -cancellaton property, n the language of Pragacz [29]. Ths s a fascnatng rng. Pragacz dentfes t as the cohomology rng of orthogonal symplectc Grassmannans; the same rng appears agan as the cohomology of the loop Grassmannan for the symplectc group n [24, 22]; references for the relatonshp of ths rng to the projectve representaton theory of the symmetrc group, the BKP herarchy of dfferental equatons, representatons of Le superalgebras, twsted Gelf pars are found n [25, Chapter II 8]. For the affne BMW algebra, the -cancellaton property can be generalzed well to provde a sutable descrpton of the center. From our perspectve, one would expect that the rng whch appears as the center of the affne BMW algebra should also appear as the K-theory of the orthogonal symplectc Grassmannans as the K-theory of the loop Grassmannan for the symplectc group, but we are not aware that these dentfcatons have yet been made n the lterature.

3 AFFINE BMW ALGEBRAS: THE CENTER 259 The recent paper [3] classfes the rreducble representatons of W k by multsegments, the recent paper [6] adds to ths program of study by settng up commutng actons between the algebras W k W k the envelopng algebras of orthogonal symplectc Le algebras ther quantum groups, showng how the central elements whch arse n the Nazarov recursons concde wth central elements studed n Baumann [3], provdng an approach to admssblty condtons by provdng unversal admssble parameters n an approprate ground rng (arsng naturally, from Schur Weyl dualty, as the center of the envelopng algebra, or quantum group). We would also lke to menton the recent paper of A. Sartor [36] whch establshes smlar results n the case of the degenerate affne walled Brauer algebra the recent work of M. Ehrg C. Stroppel [7] whch studes these algebras n the context of categorfcaton. 2. Affne degenerate affne BMW algebras In ths secton, we defne the affne Brman Murakam Wenzl (BMW) algebra W k ts degenerate verson W k. We have adjusted the defntons to unfy the theory. In partcular, n Secton 2.2, we defne a new algebra, the degenerate affne brad algebra B k, whch has the degenerate affne BMW algebras W k the degenerate affne Hecke algebras H k as quotents. The motvaton for the defnton of B k s that the affne BMW algebras W k the affne Hecke algebras H k are quotents of the group algebra of affne brad group C B k. The defnton of the degenerate affne brad algebra B k also makes the Schur Weyl dualty framework completely analogous n both the affne degenerate affne cases. Both B k C B k are desgned to act on tensor space of the form M Å V Åk. In the degenerate affne case ths s an acton commutng wth a complex semsmple Le algebra g, n the affne case ths s an acton commutng wth the Drnfeld Jmbo quantum group U q g. The degenerate affne affne BMW algebras arse when g s so n or sp n V s the frst fundamental representaton the degenerate affne affne Hecke algebras arse when g s gl n or sl n V s the frst fundamental representaton. In the case when M s the trval representaton g s so n, the Jucys Murphy elements y,, y k n B k become the Jucys Murphy elements for the Brauer algebras used n [27], n the case that g gl n, these become the classcal Jucys Murphy elements n the group algebra of the symmetrc group. The Schur Weyl dualty actons are explaned n [6]. 2.. The affne BMW algebra W k. The affne brad group B k s the group gven by generators T, T 2,, T k X, wth relatons (2.) (2.2) (2.3) (2.4) T T j T j T, f j, T T T T T T, for, 2,, k 2, X T X T T X T X, X T T X, for 2, 3,, k.

4 260 Z. DAUGHERTY, A. RAM AND R. VIRK Let C be a commutatve rng let C B k be the group algebra of the affne brad group. Fx constants q, z ¾ C Z (l) 0 ¾ C, for l ¾, wth q z nvertble. Let Y z X so that (2.5) Y z X, Y T Y T, Y Y j Y j Y, for, j k. In the affne brad group (2.6) T Y Y Y Y T. Assume that q q s nvertble n C defne E n the group algebra of the affne brad group by (2.7) T Y Y T (q q )Y ( E ). The affne BMW algebra W k s the quotent of the group algebra C B k of the affne brad group B k by the relatons (2.8) (2.9) E T T E z E, E T E E T E z E, E Y l E Z (l) 0 E, E Y Y E Y Y E. The affne Hecke algebra H k s the affne BMW algebra W k wth the addtonal relatons (2.0) E 0, for,, k. Fx b,, b r ¾ C. The cyclotomc BMW algebra W r,k (b,, b r ) s the affne BMW algebra W k wth the addtonal relaton (2.) (Y b ) (Y b r ) 0. The cyclotomc Hecke algebra H r,k (b,, b r ) s the affne Hecke algebra H k wth the addtonal relaton (2.). Snce the composte map C[Y,, Y k ] C B k W k H k s njectve the last two maps are surjectons, t follows that the Laurent polynomal rng C[Y,, Y k ] s a subalgebra of C B k W k. Proposton 2.. The affne BMW algebra W k concdes wth the one defned n [28]. Proof. In [28] the affne BMW algebra s defned as the quotent of the group algebra of the affne brad group by the relatons n (2.8) whch are [28, (6.3b)

5 AFFINE BMW ALGEBRAS: THE CENTER 26 (6.3c)], the frst relaton n (2.9) whch s [28, (6.3d)], the second relaton n (2.9) for whch s [28, (6.3e)], the second relaton n (2.5) below where, n [28], the element E s defned by the frst equaton n (2.3) below. Workng n W k, snce Y (T Y )Y Y Y Y T Y T, conjugatng (2.7) by Y gves (2.2) Y T T Y (q q )( E )Y. Left multplyng (2.7) by Y usng the second dentty n (2.5) shows that (2.7) s equvalent to T T (q q )( E ), so that (2.3) E T T T q q T E T T E. Thus the E n W k concdes wth the E used n [28]. Multply the second relaton n (2.3) on the left the rght by E, then use the relatons n (2.8) to get E E E E T T E T T E E T E T E ze T E E, so that (2.4) E E E E, E 2 z z E q q s obtaned by multplyng the frst equaton n (2.3) by E usng (2.8). As one can construct representatons on whch E acts non-trvally, the frst relaton n (2.9) mples (2.5) Z (0) 0 z z q q (T z )(T q )(T q) 0, snce (T z )(T q )(T q)t (T z )(T 2 (q q )T )T (T z )(T T (q q )) (T z )(q q )( E ) (z z )(q q )E 0. Ths shows that the relaton [28, (6.3a)] follows from the relatons n W k. To complete the proof let us show that the relatons n W k follow from [28, (6.3a-e)]. Gven the equvalence of the defntons of E as establshed n (2.3), the concdences of the relatons [28, (6.3b-e)] wth the relatons n (2.8) (2.9) t only remans to show that the second set of relatons n (2.9), for follow from [28, (6.3a-e)]. But ths s establshed by [28, (6.2)] the dentty E Y Y T T Y q q Y Y Y T T Y q q Y E, whch follows from (2.6).

6 262 Z. DAUGHERTY, A. RAM AND R. VIRK The relatons (2.6) (2.7) E E E T T, E E T T E, T E E T E, E E T E T, are consequences of (2.8), the second relaton n (2.3) The degenerate affne brad algebra B k. Let C be a commutatve rng, let S k denote the symmetrc group on {,, k}. For ¾ {,, k}, wrte s for the transposton n S k that swtches. The degenerate affne brad algebra s the algebra B k over C generated by (2.8) t u (u ¾ S k ), 0,, y,, y k, wth relatons (2.9) (2.20) (2.2) (2.22) t u t Ú t uú, y y j y j y, 0 0, 0 y y 0, y y, 0 t s t s 0, t s t s t s t s, t s j t s j, for j, t s (y y ) (y y )t s, y j t s t s y j, for j,, t s y t s t s y t s, (2.23) t s t s, t s t s,2, where, y t s y t s for,, k 2. In the degenerate affne brad algebra B k let c 0 0 (2.24) c j 0 2(y y j ), so that y j 2 (c j c j ), for j,, k. Then c 0,, c k commute wth each other, commute wth, the relatons (2.2) are equvalent to (2.25) t s c j c j t s, for j. Theorem 2.2. The degenerate affne brad algebra B k has another presentaton by generators (2.26) t u, for u ¾ S k, 0,, k, j, for 0, j k wth j,

7 AFFINE BMW ALGEBRAS: THE CENTER 263 relatons (2.27) (2.28) (2.29) t u t Ú t uú, t Û t Û Û(), t Û, j t Û Û(),Û( j), j j, l,m l,m,, j j,, p,r l,m l,m p,r,, j (,r j,r ) (,r j,r ), j, for p l p m r l r m j, r j r. The commutaton relatons between the the, j can be rewrtten n the form (2.30) [ r, l,m ] 0, [, j, l,m ] 0, [, j,,m ] [,m, j,m ], for all r all l m j l j m. Proof of Theorem 2.2. The generators n (2.26) are wrtten n terms of the generators n (2.8) by the formulas (2.3) (2.32) 0 0,, t Û t Û, 0, y 2, j, j y j t s j y j t s j, for j,, k, (2.33) m t u t u, 0,m t u 0, t u, j t Ú,2 t Ú, for u, Ú ¾ S k such that u() m, Ú() Ú(2) j. The generators n (2.8) are wrtten n terms of the generators n (2.26) by the formulas (2.34) 0 0,, t Û t Û, y j 2 j l, j. 0l j Let us show that relatons n (2.9) (2.22) follow from the relatons n (2.27) (2.29). (a) The relaton t u t Ú t uú n (2.9) s the frst relaton n (2.27). (b) The relaton y y j y j y n (2.9): Assume that j. Usng the relatons n (2.28) (2.29), [y, y j ] m, j m, j 2 l l l,, 2 j m j ¾ l,, m, j m j l l l,, m j l,, ( l, j, j ) m j ml, m m, j 0.

8 264 Z. DAUGHERTY, A. RAM AND R. VIRK (c) The relaton 0 0 n (2.9) s part of the frst relaton n (2.28), the relatons 0 y y 0 y y n (2.9) follow from the relatons j j l,m l,m n (2.28). (d) The relatons 0 t s t s 0 t s j t s j for j from (2.20) follow from the relaton t Û t Û Û() n (2.27), the relaton t s t s t s t s from (2.20) follows from 2 2, whch s part of the frst relaton n (2.28). (e) The relatons n (2.2) (2.23) all follow from the relatons t Û t Û Û() t Û, j t Û Û(),Û( j) n (2.27). (f) By second relaton n (2.28) the (already establshed) second relaton n (2.20), t s y 2 t s 2 t s t s [, t s y t s ], 02 2 t s t s 0, whch establshes (2.22). To complete the proof let us show that the relatons of (2.27) (2.29) follow from the relatons n (2.9) (2.22). (a) The relaton t u t Ú t uú n (2.27) s the frst relaton n (2.9). (b) The relatons t Û t Û Û() n (2.27) follow from the frst last relatons n (2.20) ( force the defnton of m n (2.33)). (c) Snce 0, y (2), the relatons t Û 0, j t Û 0,Û( j) n (2.28) follow from the last relaton n each of (2.20) (2.2) ( force the defnton of 0,m n (2.33)). (d) Snce,2 y 2 t s y t s, the frst relaton n (2.2) gves that 2,,2 snce (2.35) t s,2 t s,2 (t s y 2 t s y ) y 2 t s y t s t s (y y 2 )t s (y y 2 ) 0. The relatons t Û,2 t Û Û(),Û(2) n (2.27) then follow from (2.35) the last relaton n (2.2) ( force the defntons, j t Ú,2 t Ú n (2.33)). (e) The thrd relaton n (2.9) s 0 0 the second relaton n (2.20) gves 2 2. The relatons j j n (2.28) then follow from the second set of relatons n (2.27). (f) The second relaton n (2.20) gves [, 2 ] 0. Multplyng (2.22) on the left rght by t s gves [y, 2 ] [y, t s t s ] 0. Usng these the relatons n (2.9), (2.36) [, 0,2,2 ], (2.37) [ 0,, 0,2,2 ] y 2 2 2,2,2, 2 2 y 2, y [, 2 ] 0, 0,

9 AFFINE BMW ALGEBRAS: THE CENTER 265 so that [ 0,, 2 ] [ 0,, 2y 2 2( 0,2,2 )] [ 0,, 2y 2 ] y 2, 2y 2 [, y 2 ] 0. Conjugatng the last relaton by t s gves [, 0,2 ] 0, thus [,,2 ] 0, by (2.36). By the thrd fourth relatons n (2.9), [ 0, 0, ] 0, y 2 0, [, 0, ] By the relatons n (2.20) (2.9),, y 2 0. [ 0,,2 ] [ 0, y 2 t s y t s ] 0 [, 2,3 ] [, y 3 t s2 y 2 t s2 ] 0. Puttng these together wth the (already establshed) relatons n (2.27) provdes the second set of relatons n (2.28). (g) From the commutatvty of the y the second relaton n (2.2),2 3,4 (y 2 t s y t s )(y 4 t s3 y 3 t s3 ) (y 4 t s3 y 3 t s3 )(y 2 t s y t s ) 3,4,2. By the last relaton n (2.9) the last relaton n (2.20), [ 0,, 2,3 ] y 2, y 3 t s2 y 2 t s2 0. Together wth the (already establshed) relatons n (2.27), we obtan the frst set of relatons n (2.29). (h) Conjugatng (2.37) by t s2 t s t s2 gves [ 0,2, 0,3 2,3 ] 0, ths the (already establshed) relatons n (2.28) the frst set of relatons n (2.29) provde 0 [y 2, y 3 ] 2 2 0,2,2, 2 3 0,3,3 2,3 [ 0,2,2, 0,3,3 2,3 ] [,2, 0,3,3 2,3 ] [,2,,3 2,3 ]. Note also that [,2,,0 2,0 ] [,2, 0, 0,2 ] [ 0,,,2 ] [,2, 0,2 ] [ 0,, 0,2 ] [,2, 0,2 ] t s [ 0,2,2, 0, ]t s 0, by (two applcatons of) (2.37). The last set of relatons n (2.29) now follow from the last set of relatons n (2.27).

10 266 Z. DAUGHERTY, A. RAM AND R. VIRK By the frst formula n (2.24) the last formula n (2.34), (2.38) c j j 0 2 0lm j 2.3. The degenerate affne BMW algebra W k. Let C be a commutatve rng let B k be the degenerate affne brad algebra over C as defned n Secton 2.2. Defne e n the degenerate affne brad algebra by l,m. (2.39) t s y y t s ( e ), for, 2,, k, so that, wth, as n (2.23), (2.40), t s e. Fx constants z (l) 0 ¾ C, for l ¾ 0. The degenerate affne Brman Wenzl Murakam (BMW) algebra W k (wth parameters z (l) 0 ) s the quotent of the degenerate affne brad algebra B k by the relatons (2.4) (2.42) e t s t s e e, e t s e e t s e e, e y l e z (l) 0 e, e (y y ) 0 (y y )e. The degenerate affne Hecke algebra H k s the quotent of W k by the relatons (2.43) e 0, for,, k. Fx b,, b r ¾ C. The degenerate cyclotomc BMW algebra W r,k (b,, b r ) s the degenerate affne BMW algebra wth the addtonal relaton (2.44) (y b ) (y b r ) 0. The degenerate cyclotomc Hecke algebra H r,k (b,,b r ) s the degenerate affne Hecke algebra H k wth the addtonal relaton (2.44). Snce the composte map C[y,, y k ] B k W k H k s njectve (see [20, Theorem 3.2.2]) the last two maps are surjectons, t follows that the polynomal rng C[y,, y k ] s a subalgebra of B k W k. Proposton 2.3. Let C, 0, ¾. Then the degenerate affne BMW algebra W k concdes wth the one defned n [27].

11 AFFINE BMW ALGEBRAS: THE CENTER 267 Proof. In [27], the degenerate affne BMW algebra s defned wth the frst two relatons n (2.9) the second set of relatons n (2.2), whch are [27, (4.)] the frst relatons n [27, (.2) (.3)], the relatons n (2.39) whch are [27, (4.2)], the relatons n (2.42) whch are [27, (4.3) (4.4)], the frst relatons n (2.4) whch s the thrd set of relatons n [27, (.2)], the relatons n (2.48) below whch are the last two relatons n [27, (.3)] the second relaton n [27, (.2)], the relatons n (2.50) below whch are [27, (.4)], the relatons (2.45) e t s j t s j e e e j e j e, for j, whch are the second thrd relatons n [27, (.5)]. Workng n W k conjugatng (2.39) by t s usng the frst relaton n (2.4) gves (2.46) y t s t s y ( e ). Then, by (2.40) (2.23), (2.47), t s e, e t s t s e t s t s. Multply the second relaton n (2.47) on the left the rght by e, then use the relatons n (2.4) to get so that e e e e t s t s e t s t s e e t s e t s e e t s e e, (2.48) e e e e. Note that e 2 z (0) 0 e s, for, a specal case of the frst dentty n (2.42) then, for general, follows from the second dentty n (2.47). The relatons (2.49) (2.50) e e e t s t s, e e t s t s e, t s e e t s e, e e t s e t s result from (2.4) the second relaton n (2.47). The relatons n (2.45) follow from (2.39) the frst two relatons n (2.9) the last relatons n (2.2). Thus the relatons n the defnton of the degenerate affne BMW algebra n [27] follow from the defnng relatons of W k. To complete the proof we must show that the frst relatons n (2.2), the relatons n (2.23), the second relatons n (2.4) follow from the defnng relatons used n [27]. Because of the assumpton that 0, ¾ the other relatons n (2.9) (2.23) are automatc.

12 268 Z. DAUGHERTY, A. RAM AND R. VIRK (a) Multplyng the frst relaton n (2.50) on the left by e usng the frst relatons n (2.4) the frst relatons n (2.48) provdes part of the second relatons n (2.4) the other part s obtaned smlarly by multplyng the second relatons n (2.50) on the rght by e. (b) Conjugatng (2.39) by t s produces (2.46) then addng (2.39) (2.46) produces the frst relatons n (2.2). (c) Usng (2.50), e t s t s (e t s )t s t s t s e e t s t s t s t s e t s t s whch, wth (2.39), gves the relatons n (2.23). 3. Identtes n affne degenerate affne BMW algebras In [27], Nazarov defned some naturally occurrng central elements n the degenerate affne BMW algebra W k proved a remarkable recurson for them. Ths recurson was generalzed to analogous central elements n the affne BMW algebra W k by Belakova Blanchet [4]. In both cases, the recurson was accomplshed wth an nvolved computaton. In ths secton, we provde a new proof of the Nazarov Belakova Blanchet recursons by lftng them out of the center, to ntertwner-lke denttes n W k W k (Propostons ). These ntertwner-lke denttes for the degenerate affne affne BMW algebras are remnscent of the ntertwner denttes for the degenerate affne affne Hecke algebras found, for example, n [2, Proposton 2.5 (c)] [30, Proposton 2.4 (c)], respectvely. The central element recursons of [27] [4] are then obtaned by multplyng the ntertwner-lke denttes by the projectors e k E k, respectvely. We shall not nclude our new proofs of Proposton 3. Theorem 3.2 here snce, gven our parallel setup of the degenerate affne the affne BMW algebras n Secton 2, the proof s exactly parallel to the proofs of Proposton 3.3 Theorem The degenerate affne case. Let W k be the degenerate affne BMW algebra as defned n (2.4) (2.42) let k. Let u be a varable let (3.) u u y u u y. Proposton 3.. In the degenerate affne BMW algebra W, e t s e t s y 2u (y y ) y 2u (y y ) (3.2) (2u (y y ) )(2u (y y ) ), (2u (y y )) 2

13 AFFINE BMW ALGEBRAS: THE CENTER 269 (3.3) u t s e 2u (y y ) t s u t s t s e 2u (y y ) u u e u e e e 2u (y y ) u t s e u. 2u (y y ) u The denttes (3.4) (3.5) of the followng theorem are [27, Lemma 2.5], [27, Lemma 3.8], respectvely. Theorem 3.2 ([27]). (2.4) (2.42) let k. Let z 0 (u) È l¾ 0 z (l) 0 u l. Then (3.4) Let W k be the degenerate affne BMW algebra as defned n e u e u e 2u 2u 2u 2u e, (3.5) e u 2u z0 (u) u 2u e j (u y j )(u y j )(u y j ) 2 (u y j ) 2 (u y j )(u y j ) e The affne case. Let W k be the affne BMW algebra as defned n (2.8) (2.9) let k. Let u be a varable, (3.6) U Y, note that U u Y By the defnton of E n (2.7),, by (2.2), U Y Y (U u 2 U Y Y ). (u Y )T T (u Y ) (q q )Y ( E ), so that (u Y )T T (u Y ) (q q )( E )Y, (3.7) T u Y T (q q Y ) ( E ), u Y u Y u Y

14 270 Z. DAUGHERTY, A. RAM AND R. VIRK Y (3.8) T T (q q ) ( E ). u Y u Y u Y u Y The relatons (3.9) (3.0) T U T U U U U T (q q )U ( E )U U (T (q q )( E )U ), T (q q )U E U (q q )U U (T (q q )( E )U ) are obtaned by multplyng (3.7) (3.8) on the rght (resp. left) by Y usng the relaton T Y Y T. Takng the coeffcent of u (l) on each sde of (3.7) (3.8) gves (3.) (3.2) T Y l Y l T (q q )(Y l ( E ) Y l ( E )Y Y ( E )Y l ), T Y l Y l T (q q )(Y l ( E )Y Y l 2 ( E )Y 2 ( E )Y l ), respectvely, for l ¾ 0. Therefore, (3.3) (3.4) T Y l T Y l (l ) Y l T (q q )(Y ( E )Y Y l T (q q )(Y l ( E ) Y ( E )Y ( E )Y l ), (l ) ). Proposton 3.3. Let q q. Then, n the affne BMW algebra W, Y T Y Y Y E E u Y (3.5) u 2 T Y Y Y Y u Y u 2 Y Y (u2 q 2 Y Y )(u 2 q 2 Y Y ), 2 (u 2 Y Y ) 2 (3.6) U T E Y Y u 2 Y Y 2 (U ) U T E Y Y U u 2 Y Y T U T T E Y Y u 2 Y Y 2 U E U E z E Y Y E (U u 2 Y Y ).

15 AFFINE BMW ALGEBRAS: THE CENTER 27 Proof. Puttng (3.6) nto (3.9) says that f A T Y Y u 2 Y Y then B E U T AU U B Y Y u 2 Y Y Y Y u 2 Y Y. Next, AE E A follows from (2.8) (2.9). So E Y u Y T E (U B) AB E Y Y u 2 Y Y A(E U B) E Y Y u 2 Y Y T Y Y T u 2 Y Y Y E T u Y AU Y Y u 2 Y Y Y Y u 2 Y Y, by (2.3), multplyng out the rght h sde gves (3.5). Rewrte T U U T U ( E )(U ) as T U (U )U U T multply on the left by T to get (3.7) U T (U )U T U T Then, snce T T U T U AB Y Y u 2 Y Y Y Y E, u 2 Y Y E (U ), E (U ). ( E ), equatons (3.0) (3.9) mply T (U ) (U ) T ( E )U T U T U ( E )U,

16 272 Z. DAUGHERTY, A. RAM AND R. VIRK so (3.7) s (3.8) Usng (3.6) addng U 2 (U ) T T U T 2 U ( E )U T U ( E )U E (U ). T E Y Y 2 Y Y (U u 2 Y Y u 2 )E (U Y Y ) to each sde of (3.8) gves U T E T U T T 2 U T U T 2 U Y Y u 2 Y Y E Y Y u 2 Y Y E U T T E Y Y u 2 Y Y E U E z E completng the proof of (3.6). 2 (U ) U T Y Y E u 2 (U Y Y ) E E Y Y (U u 2 Y Y ), Y Y u 2 Y Y U If Let Z 0 Z 0 be the generatng functons 0 u l Z 0 Z 0 l¾ 0 Z (l) l¾ 0 Z (l) 0 u l. (3.9) U Y u Y then E U E U U E U E, by the second dentty n (2.9). The frst dentty n (2.9) s equvalent to E U E (Z 0 Z (0) 0 )E. In the followng theorem, the dentty (3.20) s equvalent to [3, Lemma 2.8, parts (2) (3)] or [4, Lemma 2.6(4)] the dentty (3.2) s equvalent to the dentty found n [4, Lemma 7.4].

17 AFFINE BMW ALGEBRAS: THE CENTER 273 Theorem 3.4 ([4, 3, 4]). Let W k be the affne BMW algebra as defned n (2.8) (2.9) let k. Then (3.20) E U z q q u 2 (u2 q 2 )(u 2 q 2 ) (u 2 ) 2 (q q ) 2 E, E U z E q q u 2 (3.2) E U z q q Z 0 z u2 q q u 2 u 2 E j (u Y j ) 2 (u q 2 Y j )(u q 2 Y j ) (u Y j ) 2 (u q 2 Y j )(u q 2 Y j ) E. Proof. Multply (3.5) on the rght by E use Z (0) (z z )(q q ) to ge (3.20). Multplyng (3.6) on the left rght by E usng the relatons n (2.8), (2.9), (2.4), E T U T E E T T U T T E E E U E E, gves E U z E E U z E u 2 ( 2 (U )U ) u 2 2 U E E U z E ( 2 L U R U ) E E u 2 E U z E E (U ) E E u 2 where L U s the operator of left multplcaton by U. Then, by nducton, rght multplcaton by U E U z j E u 2 ( 2 U j (U j )) ( 2 L U j R U j ) j E E E 2 E U z R U s the operator of E u 2 E 2 E E

18 274 Z. DAUGHERTY, A. RAM AND R. VIRK j ( 2 L U j R U j ) E E E 2 Z 0 Z (0) 0 z Z 0 Z (0) 0 z Z 0 Z (0) 0 z So (3.2) follows from u 2 u 2 j j ( 2 L U j R U j ) (q q ) 2 U j (U j ) (q q ) 2 U j (U j ) ( 2 U j (U j ))E. (q q ) 2 Y j (u Y j )(Y j (u Y j ) ) (q q ) 2 Y j (u Y j )(Y j (u Y j ) ) ((u Y j ) 2 (q q ) 2 Y j u)((u Y j ) 2 ) ((u Y j ) 2 (q q ) 2 Y j u)((u Y j ) 2 ) (u q 2 Y j )(u q 2 Y j )(u Y j ) 2 (u q 2 Y j )(u q 2 Y j )(u Y j ) 2 Z (0) 0 (z z )(q q ). E u 2 E 2 E E (E E E 2 E E 2 E E ) 4. The center of the affne degenerate affne BMW algebras In ths secton, we dentfy the center of W k W k. Both centers arse as algebras of symmetrc functons wth a cancellaton property (n the language of [29]) or wheel condton (n the language of [9]). In the degenerate case, Z(W k ) s the rng of symmetrc functons n y,, y k wth the -cancellaton property of Pragacz. By [29, Theorem 2. ()], ths s the same rng as the rng generated by the odd power sums, whch s the way that Nazarov [27] dentfed Z(W k ). The cancellaton property n the case of W k s analogous, exhbtng the center of the affne BMW algebra Z(W k ) as a subalgebra of the rng of symmetrc Laurent polynomals. At the end of ths secton, n an attempt to make the theory for the affne BMW algebra completely analogous to that for the degenerate affne BMW algebra, we have formulated an alternate descrpton of Z(W k ) as a rng generated by negatve power sums. 4.. Bases of W k W k. The Brauer algebra, dependng on a parameter x, s gven by generators e,, e k s,, s k relatons as gven n [27, (.2) (.5)] (where our e s denoted Æs our x s denoted N). The Brauer algebra

19 AFFINE BMW ALGEBRAS: THE CENTER 275 also has a dagrammatc presentaton (see [5]) wth bass (4.) D k {dagrams on k dots}, where a (Brauer) dagram on k dots s a graph wth k dots n the top row, k dots n the bottom row k edges parng the dots. We label the vertces of the top row, left to rght, wth, 2,, k the vertces n the bottom row, left to rght, wth ¼, 2 ¼,, k ¼ so that, for example, (4.2) d (3)(2 ¼ )(45)(66 ¼ )(74 ¼ )(2 ¼ 7 ¼ )(3 ¼ 5 ¼ ) s a Brauer dagram on 7 dots. Settng x z (0) 0 s t s realzes the Brauer algebra as a subalgebra of the degenerate affne BMW algebra W k. The Brauer algebra s also the quotent of W k by y 0, hence, can be vewed as the degenerate cyclotomc BMW algebra W,k (0). Theorem 4. ([27, 2]). Let W k be the degenerate affne BMW algebra let W r,k (b,, b r ) be the degenerate cyclotomc BMW algebra as defned n (2.4) (2.42) (2.43), respectvely. For n,, n k ¾ 0 a dagram d on k dots let d n,,n k y n y n l l dy n l l y n k k, where, n the lexcographc orderng of the edges (, j ),, ( k, j k ) of d,,, l are n the top row of d l,, k are n the bottom row of d. Let D k be the set of dagrams on k dots, as n (4.). (a) If 0, ¾ C (4.3) z 0 ( u) 2 u z 0 (u) u u u then {d n,,n k d ¾ Dk, n,, n k ¾ 0 } s a C-bass of W k. (b) If 0, ¾ C, (4.3) holds, (4.4) z 0 (u) u 2 u 2 ( )r r u b u b then {d n,,n k d ¾ Dk, 0 n,, n k r } s a C-bass of W r,k (b,, b r ). Part (a) of Theorem 4. s [27, Theorem 4.6] (see also [2, Theorem 2.2]) part (b) s [2, Proposton 2.5 Theorem 5.5].

20 276 Z. DAUGHERTY, A. RAM AND R. VIRK Theorem 4.2 ([4, 39]). Let W k be the affne BMW algebra let W r,k (b,, b r ) be the cyclotomc BMW algebra as defned n Secton 2.. Let d ¾ D k be a Brauer dagram, where D k s as n (4.). Choose a mnmal length expresson of d as a product of e,, e k, s,, s k, d a a l, a ¾ {e,, e k, s,, s k }, such that the number of s n ths product s the number of crossngs n d. For each a whch s n {s,, s k } fx a choce of sgn j set E, f a T d A A l, where A j j e, T j, f a j s. For n,, n k ¾ let T n,,n k d Y n Y n l l T d Y n l l Y n k k, where, n the lexcographc orderng of the edges (, j ),, ( k, j k ) of d,,, l are n the top row of d l,, k are n the bottom row of d. (a) If (4.5) Z 0 z q q u2 u 2 (u2 q 2 )(u 2 q 2 ) (u 2 ) 2 (q q ) 2 Z 0 z q q then {T n,,n k d d ¾ D k, n,, n k ¾ } s a C-bass of W k. (b) If (4.5) holds (4.6) Z 0 z u2 q q u 2 z q q u2 u 2 uz r u 2 j u b j u b j then {T n,,n k d d ¾ D k, 0 n,, n k r } s a C-bass of W r,k (b,, b r ). Part (a) of Theorem 4.2 s [4, Theorem 2.25] part (b) s [4, Theorem 5.5] [39, Theorem 8.]. We refer to these references for proof, remarkng only that one key pont n showng that {T n,,n k d d ¾ D k, n,, n k ¾ } spans W k s that f (, j) s a top-to-bottom edge n d then (4.7) Y T d T d Y j (terms wth fewer crossngs),, f (, j) s a top-to-top edge n d then (4.8) Y T d Y j T d (terms wth fewer crossngs).

21 AFFINE BMW ALGEBRAS: THE CENTER The center of W k. The degenerate affne BMW algebra s the algebra W k over C defned n Secton 2.3 the polynomal rng C[y,, y k ] s a subalgebra of W k. The symmetrc group S k acts on C[y,, y k ] by permutng the varables. A classcal fact (see, for example, [20, Theorem 3.3.]) s that the center of the degenerate affne Hecke algebra H k s the rng of symmetrc functons Z(H k ) C[y,, y k ] S k { f ¾ C[y,, y k ] Û f f, for Û ¾ S k }. Theorem 4.3 gves an analogous characterzaton of the center of the degenerate affne BMW algebra. We shall not nclude the proof here snce, gven our parallel setup of the degenerate affne BMW algebras the affne BMW algebras n Secton 2, the proof s exactly parallel to the proof of Theorem 4.4. Theorem 4.3. The center of the degenerate affne BMW algebra W k s R k { f ¾ C[y,, y k ] S k f (y, y, y 3,, y k ) f (0, 0, y 3,, y k )}. The power sum symmetrc functons p are gven by p y y 2 y k, for ¾ 0. The Hall Lttlewood polynomals (see [25, Chapter III (2.)]) are gven by P (yá t) P (y,, y k Á t) Ú (t) Û¾S k Û y y k k jk x tx j, x x j where Ú (t) s a normalzng constant (a polynomal n t) so that the coeffcent of y y k k n P (yá t) s equal to. The Schur -functons (see [25, Chapter III (8.7)]) are 0, f s not strct, 2 l() P (yá ), f s strct, where l() s the number of (nonzero) parts of the partton s strct f all ts (nonzero) parts are dstnct. Let R k be as n Theorem 4.3. Then (see [27, Corollary 4.0], [29, Theorem 2. ()] [25, Chapter III 8]) (4.9) R k C[p, p 3, p 5, ] Cspan-{ s strct}. More generally, let r ¾ 0 let be a prmtve rth root of unty. Defne R r,k { f ¾ [ ][y,, y k ] S k f (y, y,, r y, y r,, y k ) f (0, 0,, 0, y r,, y k )}.

22 278 Z. DAUGHERTY, A. RAM AND R. VIRK Then (4.0) R r,k Å [ ] É( ) É( )[p 0 mod r], (4.) R r,k has [ ]-bass {P (yá ) m () r k}, where m () s the number parts of sze n. The rng R r,k s studed n [26], [23], [25, Chapter III Example 5.7 Example 7.7], [37], [9], others. The proofs of (4.0) (4.) follow from [25, Chapter III Example 7.7], [37, Lemma 2.2 followng remarks] the arguments n the proofs of [9, Lemma 3.2 Proposton 3.5] The center of W k. The affne BMW algebra s the algebra W k over C defned n Secton 2. the rng of Laurent polynomals C[Y,, Y k ] s a subalgebra of W k. The symmetrc group S k acts on C[Y,, Y k ] by permutng the varables. A classcal fact (see, for example, [6, Proposton 2.]) s that the center of the affne Hecke algebra H k s the rng of symmetrc functons, Z(H k ) C[Y,, Y k ] S k { f ¾ C[Y,, Y k ] Û f f, for Û ¾ S k }. Theorem 4.4 s a characterzaton of the center of the affne BMW algebra. Theorem 4.4. The center of the affne BMW algebra W k s R k { f ¾ C[Y,, Y k ] S k f (Y, Y, Y 3,, Y k ) f (,, Y 3,, Y k )}. Proof. STEP : f ¾ W k commutes wth all Y f ¾ C[Y,, Y k ]: Assume f ¾ W k wrte f c n,,n k d T n,,n k d, n terms of the bass n Theorem 4.2. Let d ¾ D k wth the maxmal number of crossngs such that c n,,n k d 0, usng the notaton after (4.2), suppose there s an edge (, j) of d such that j ¼. Then, by (4.7) (4.8), the coeffcent of Y T n,,n k d n Y f s c n,,n k d the coeffcent of Y T n,,n k d n f Y s 0. If Y f f Y t follows that there s no such edge, so d ( therefore T d ). Thus f ¾ C[Y,, Y k ]. Conversely, f f ¾ C[Y,, Y k ], then Y f f Y.

23 AFFINE BMW ALGEBRAS: THE CENTER 279 STEP 2: f ¾ C[Y,, Y k ] commutes wth all T f ¾ R k : Assume f ¾ C[Y,, Y k ] wrte f a,b¾ Y a Y b 2 f a,b, where f a,b ¾ C[Y 3,, Y k ]. Then f (,, Y 3,, Y k ) È a,b¾ f a,b (4.2) f (Y, Y, Y 3,, Y k ) a,b¾ Y a b f a,b Y l l¾ b¾ f lb,b. By drect computaton usng (3.2) (3.4), T Y a Y 2 b Y a Y 2 a T Y2 b a s (Y a Y 2 b )T (q q ) Y ay 2 b s (Y ay 2 b) Y Y 2 E b a, where E l (q q ) (q q ) l r l r E Y r, f l 0, Y l r Y lr E Y r, f l 0, 0, f l 0. It follows that (4.3) T f (s f )T (q q f s f ) Y Y 2 l¾ 0 E l b¾ f lb,b. Thus, f f (Y, Y, Y 3,, Y k ) f (,, Y 3,, Y k ) then, by (4.2), (4.4) b¾ f lb,b 0, for l 0. Hence, f f ¾ C[Y,, Y k ] S k f (Y, Y, Y 3,, Y k ) f (,, Y 3,, Y k ) then s f f (4.4) holds so that, by (4.3), T f f T. Smlarly, f commutes wth all T. Conversely, f f ¾ C[Y,, Y k ] T f f T then s f f b¾ f lb,b 0, for l 0, so that f ¾ C[Y,, Y k ] S k f (Y, Y, Y 3,, Y k ) f (,, Y 3,, Y k ). It follows from (2.7) that R k Z(W k ).

24 280 Z. DAUGHERTY, A. RAM AND R. VIRK The symmetrc group S k acts on k by permutng the factors. The rng C[Y,, Y k ] S k has bass {m ¾ k wth 2 k }, where m ¾S k Y Y k k. The elementary symmetrc functons are e r m ( r,0 k r ) e r m (0 k r,( ) r ), for r 0,,, k, the power sum symmetrc functons are p r m (r,0 k ) p r m (0 k, r), for r ¾ 0. The Newton denttes (see [25, Chapter I (2. ¼ )]) say (4.5) le l l r ( ) r p r e l r le l l r ( ) r p re (l r), where the second equaton s obtaned from the frst by replacng Y wth Y. For l ¾ (,, k ) ¾ k, In partcular, e l k m m (l k ), where (l k ) ( l,, k l). (4.6) e r e k e k r, for r 0,, k. Defne (4.7) p p p p p p, for ¾ 0. The consequence of (4.6) (4.5) s that [Y,, Y k ] S k [e k, e,, e k ] [e k ][e, e 2,, e k2, e k e (k )2,, e k e 2, e k e ] [e k ][e, e 2,, e k2, e (k )2,, e 2, e ] [e k ][p, p 2,, p k2, p (k )2,, p 2, p ] [e k ][p, p 2,, p k2, p (k )2,, p 2, p ].

25 For ¾ k wth l 0 defne AFFINE BMW ALGEBRAS: THE CENTER 28 p p p l p p p l. Then [Y,, Y k ] S k has bass e l k p p l ¾, l() k, l() 2 k 2. In analogy wth (4.9) we expect that f R k s as n Theorem 4.4 then R k C[e k ][p, p 2, ]. ACKNOWLEDGEMENTS. Sgnfcant work on ths paper was done whle the authors were n resdence at the Mathematcal Scences Research Insttute (MSRI) n 2008, the wrtng was completed when A. Ram was n resdence at the Hausdorff Insttute for Mathematcs (HIM) n 20. We thank MSRI HIM for hosptalty, support, a wonderful workng envronment durng these stays. Ths research has been partally supported by the Natonal Scence Foundaton (DMS ) the Australan Research Councl (DP ). We thank S. Fomn for provdng the reference [29] Fred Goodman for provdng the reference [4], many nformatve dscussons, much help n processng the theory for correctng many of our errors. We thank J. Enyang for hs helpful comments on the manuscrpt. Fnally, many thanks to the referee for a crtcal readng the dscovery of an omsson n our orgnal defnton of the degenerate affne brad algebra. References [] T. Arakawa T. Suzuk: Dualty between sl n (C) the degenerate affne Hecke algebra, J. Algebra 209 (998), [2] S. Ark, A. Mathas H. Ru: Cyclotomc Nazarov Wenzl algebras, Nagoya Math. J. 82 (2006), [3] P. Baumann: On the center of quantzed envelopng algebras, J. Algebra 203 (998), [4] A. Belakova C. Blanchet: Sken constructon of dempotents n Brman Murakam Wenzl algebras, Math. Ann. 32 (200), [5] R. Brauer: On algebras whch are connected wth the semsmple contnuous groups, Ann. of Math. (2) 38 (937), [6] Z. Daugherty, A. Ram R. Vrk: Affne degenerate affne BMW algebras: actons on tensor space, Selecta Math. (N.S.) 9 (203), [7] M. Ehrg C. Stroppel: Nazarov-Wenzl algebras, codeal subalgebras categorfed skew Howe dualty, arxv: [8] J. Enyang: Specht modules semsmplcty crtera for Brauer Brman Murakam Wenzl algebras, J. Algebrac Combn. 26 (2007), [9] B. Fegn, M. Jmbo, T. Mwa, E. Mukhn Y. Takeyama: Symmetrc polynomals vanshng on the dagonals shfted by roots of unty, Int. Math. Res. Not. 2003,

26 282 Z. DAUGHERTY, A. RAM AND R. VIRK [0] F.M. Goodman: Cellularty of cyclotomc Brman Wenzl Murakam algebras, J. Algebra 32 (2009), [] F.M. Goodman: Comparson of admssblty condtons for cyclotomc Brman Wenzl Murakam algebras, J. Pure Appl. Algebra 24 (200), [2] F.M. Goodman: Admssblty condtons for degenerate cyclotomc BMW algebras, Comm. Algebra 39 (20), [3] F.M. Goodman H. Hauschld: Affne Brman Wenzl Murakam algebras tangles n the sold torus, Fund. Math. 90 (2006), [4] F.M. Goodman H.H. Mosley: Cyclotomc Brman Wenzl Murakam algebras, I, Freeness realzaton as tangle algebras, J. Knot Theory Ramfcatons 8 (2009), [5] F.M. Goodman H.H. Mosley: Cyclotomc Brman Wenzl Murakam algebras, II, admssblty relatons freeness, Algebr. Represent. Theory 4 (20), 39. [6] I. Grojnowsk M. Vazran: Strong multplcty one theorems for affne Hecke algebras of type A, Transform. Groups 6 (200), [7] R. Härng-Oldenburg: The reduced Brman Wenzl algebra of Coxeter type B, J. Algebra 23 (999), [8] R. Härng-Oldenburg: An Ark Koke lke extenson of the Brman Murakam Wenzl algebra, preprnt (998), arxv:q-alg/ [9] R. Härng-Oldenburg: Cyclotomc Brman Murakam Wenzl algebras, J. Pure Appl. Algebra 6 (200), [20] A. Kleshchev: Lnear Projectve Representatons of Symmetrc Groups, Cambrdge Tracts n Mathematcs 63, Cambrdge Unv. Press, Cambrdge, [2] C. Krloff A. Ram: Representatons of graded Hecke algebras, Represent. Theory 6 (2002), [22] T. Lam: Affne Schubert classes, Schur postvty, combnatoral Hopf algebras, Bull. Lond. Math. Soc. 43 (20), [23] A. Lascoux, B. Leclerc J.-Y. Thbon: Green polynomals Hall Lttlewood functons at roots of unty, European J. Combn. 5 (994), [24] T. Lam, A. Schllng M. Shmozono: Schubert polynomals for the affne Grassmannan of the symplectc group, Math. Z. 264 (200), [25] I.G. Macdonald: Symmetrc Functons Hall Polynomals, second edton, Oxford Unv. Press, New York, 995. [26] A.O. Morrs: On an algebra of symmetrc functons, uart. J. Math. Oxford Ser. (2) 6 (965), [27] M. Nazarov: Young s orthogonal form for Brauer s centralzer algebra, J. Algebra 82 (996), [28] R. Orellana A. Ram: Affne brads, Markov traces the category O; n Algebrac Groups Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math, Tata Inst. Fund. Res., Mumba, 2007, [29] P. Pragacz: Algebro-geometrc applcatons of Schur S- -polynomals; n Topcs n Invarant Theory (Pars, 989/990), Lecture Notes n Math. 478, Sprnger, Berln, 99, [30] A. Ram: Affne Hecke algebras generalzed stard Young tableaux, J. Algebra 260 (2003), [3] H. Ru: On the classfcaton of fnte dmensonal rreducble modules for affne BMW algebras, arxv: [32] H. Ru M. S: On the structure of cyclotomc Nazarov Wenzl algebras, J. Pure Appl. Algebra 22 (2008), [33] H. Ru M. S: Gram determnants semsmplcty crtera for Brman Wenzl algebras, J. Rene Angew. Math. 63 (2009), [34] H. Ru J. Xu: On the semsmplcty of the cyclotomc Brauer algebras, II, J. Algebra 32 (2007), [35] H. Ru J. Xu: The representatons of cyclotomc BMW algebras, J. Pure Appl. Algebra 23 (2009), [36] A. Sartor: The degenerate affne walled Brauer algebra, arxv:

27 AFFINE BMW ALGEBRAS: THE CENTER 283 [37] B. Totaro: Towards a Schubert calculus for complex reflecton groups, Math. Proc. Cambrdge Phlos. Soc. 34 (2003), [38] S. Wlcox S. Yu: The cyclotomc BMW algebra assocated wth the two strng type B brad group, Comm. Algebra 39 (20), [39] S. Wlcox S. Yu: On the freeness of the cyclotomc BMW algebras: admssblty an somorphsm wth the cyclotomc Kauffman tangle algebras. arxv: [40] S. Yu: The cyclotomc Brman Murakam Wenzl algebras, Ph.D. Thess, Unversty of Sydney (2007). arxv: [4] A.V. Zelevnskĭ: Resolutons, dual pars character formulas, Funktsonal. Anal. Prlozhen. 2 (987), Zajj Daugherty Department of Mathematcs Dartmouth College Hanover, NH U.S.A. e-mal: zajj.b.daugherty@dartmouth.edu Arun Ram Department of Mathematcs Statstcs Unversty of Melbourne Parkvlle VIC 300 Australa e-mal: aram@unmelb.edu.au Rahbar Vrk Department of Mathematcs Unversty of Colorado Campus Box 395 Boulder, Colorado U.S.A. e-mal: rahbar.vrk@colorado.edu

Affine and degenerate affine BMW algebras: The center

Affine and degenerate affine BMW algebras: The center Affne and degenerate affne BMW algebras: The center Zajj Daugherty, Arun Ram, Rahbar Vr Abstract The degenerate affne and affne BMW algebras arse naturally n the context of Schur- Weyl dualty for orthogonal

More information

The Pseudoblocks of Endomorphism Algebras

The Pseudoblocks of Endomorphism Algebras Internatonal Mathematcal Forum, 4, 009, no. 48, 363-368 The Pseudoblocks of Endomorphsm Algebras Ahmed A. Khammash Department of Mathematcal Scences, Umm Al-Qura Unversty P.O.Box 796, Makkah, Saud Araba

More information

Categorification of quantum groups

Categorification of quantum groups Categorfcaton of quantum groups Aaron Lauda Jont wth Mkhal Khovanov Columba Unversty June 29th, 2009 Avalable at http://www.math.columba.edu/ lauda/talks/ Aaron Lauda Jont wth Mkhal Khovanov (Columba Categorfcaton

More information

An Introduction to Morita Theory

An Introduction to Morita Theory An Introducton to Morta Theory Matt Booth October 2015 Nov. 2017: made a few revsons. Thanks to Nng Shan for catchng a typo. My man reference for these notes was Chapter II of Bass s book Algebrac K-Theory

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules EVAN WILSON Quantum groups Consder the Le algebra sl(n), whch s the Le algebra over C of n n trace matrces together wth the commutator

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Crystal monoids. Robert Gray (joint work with A. J. Cain and A. Malheiro) AAA90: 90th Workshop on General Algebra Novi Sad, 5th June 2015

Crystal monoids. Robert Gray (joint work with A. J. Cain and A. Malheiro) AAA90: 90th Workshop on General Algebra Novi Sad, 5th June 2015 Crystal monods Robert Gray (jont work wth A. J. Can and A. Malhero) AAA90: 90th Workshop on General Algebra Nov Sad, 5th June 05 Plactc monod va Knuth relatons Defnton Let A n be the fnte ordered alphabet

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI Short runnng ttle: A generatng functon approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI JASON FULMAN Abstract. A recent paper of Church, Ellenberg,

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras"

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras Chn. Ann. Math. 27B(4), 2006, 419{424 DOI: 10.1007/s11401-005-0025-z Chnese Annals of Mathematcs, Seres B c The Edtoral Oce of CAM and Sprnger-Verlag Berln Hedelberg 2006 A Note on \Modules, Comodules,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n KANG LU FINITE DIMENSIONAL REPRESENTATIONS OF gl n Let e j,, j =,, n denote the standard bass of the general lnear Le algebra gl n over the feld of

More information

An application of non-associative Composition-Diamond lemma

An application of non-associative Composition-Diamond lemma An applcaton of non-assocatve Composton-Damond lemma arxv:0804.0915v1 [math.ra] 6 Apr 2008 Yuqun Chen and Yu L School of Mathematcal Scences, South Chna Normal Unversty Guangzhou 510631, P. R. Chna Emal:

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Restricted Lie Algebras. Jared Warner

Restricted Lie Algebras. Jared Warner Restrcted Le Algebras Jared Warner 1. Defntons and Examples Defnton 1.1. Let k be a feld of characterstc p. A restrcted Le algebra (g, ( ) [p] ) s a Le algebra g over k and a map ( ) [p] : g g called

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets 11. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES TAKASHI ITOH AND MASARU NAGISA Abstract We descrbe the Haagerup tensor product l h l and the extended Haagerup tensor product l eh l n terms of

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Journal of Algebra 368 (2012) Contents lists available at SciVerse ScienceDirect. Journal of Algebra.

Journal of Algebra 368 (2012) Contents lists available at SciVerse ScienceDirect. Journal of Algebra. Journal of Algebra 368 (2012) 70 74 Contents lsts avalable at ScVerse ScenceDrect Journal of Algebra www.elsever.com/locate/jalgebra An algebro-geometrc realzaton of equvarant cohomology of some Sprnger

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Lnear Algebra and ts Applcatons 4 (00) 5 56 Contents lsts avalable at ScenceDrect Lnear Algebra and ts Applcatons journal homepage: wwwelsevercom/locate/laa Notes on Hlbert and Cauchy matrces Mroslav Fedler

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

Lecture 14 - Isomorphism Theorem of Harish-Chandra

Lecture 14 - Isomorphism Theorem of Harish-Chandra Lecture 14 - Isomorphsm Theorem of Harsh-Chandra March 11, 2013 Ths lectures shall be focused on central characters and what they can tell us about the unversal envelopng algebra of a semsmple Le algebra.

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

arxiv: v4 [math.ac] 20 Sep 2013

arxiv: v4 [math.ac] 20 Sep 2013 arxv:1207.2850v4 [math.ac] 20 Sep 2013 A SURVEY OF SOME RESULTS FOR MIXED MULTIPLICITIES Le Van Dnh and Nguyen Ten Manh Truong Th Hong Thanh Department of Mathematcs, Hano Natonal Unversty of Educaton

More information

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen Internatonal Electronc Journal of Algebra Volume 3 2008 7-24 P.P. PROPERTIES OF GROUP RINGS Lbo Zan and Janlong Chen Receved: May 2007; Revsed: 24 October 2007 Communcated by John Clark Abstract. A rng

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

On functors between module categories for associative algebras and for N-graded vertex algebras

On functors between module categories for associative algebras and for N-graded vertex algebras On functors between module categores for assocatve algebras and for N-graded vertex algebras Y-Zh Huang and Jnwe Yang Abstract We prove that the weak assocatvty for modules for vertex algebras are equvalent

More information

arxiv: v1 [math.rt] 27 Nov 2009

arxiv: v1 [math.rt] 27 Nov 2009 On the freeness of the cyclotomc BMW algebras: admssblty and an somorphsm wth the cyclotomc Kauffman tangle algebras Stewart Wlcox a, Shona Yu b, arxv:0911.5284v1 [math.rt] 27 Nov 2009 Abstract a Stewart

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

A property of the elementary symmetric functions

A property of the elementary symmetric functions Calcolo manuscrpt No. (wll be nserted by the edtor) A property of the elementary symmetrc functons A. Esnberg, G. Fedele Dp. Elettronca Informatca e Sstemstca, Unverstà degl Stud della Calabra, 87036,

More information

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen Journal of athematcs and Statstcs 7 (): 4448, 0 ISSN 5493644 00 Scence Publcatons odules n σ[] wth Chan Condtons on Small Submodules Al Omer Alattass Department of athematcs, Faculty of Scence, Hadramout

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

CALCULUS CLASSROOM CAPSULES

CALCULUS CLASSROOM CAPSULES CALCULUS CLASSROOM CAPSULES SESSION S86 Dr. Sham Alfred Rartan Valley Communty College salfred@rartanval.edu 38th AMATYC Annual Conference Jacksonvlle, Florda November 8-, 202 2 Calculus Classroom Capsules

More information

n-strongly Ding Projective, Injective and Flat Modules

n-strongly Ding Projective, Injective and Flat Modules Internatonal Mathematcal Forum, Vol. 7, 2012, no. 42, 2093-2098 n-strongly Dng Projectve, Injectve and Flat Modules Janmn Xng College o Mathematc and Physcs Qngdao Unversty o Scence and Technology Qngdao

More information

DOLD THEOREMS IN SHAPE THEORY

DOLD THEOREMS IN SHAPE THEORY Volume 9, 1984 Pages 359 365 http://topology.auburn.edu/tp/ DOLD THEOREMS IN SHAPE THEORY by Harold M. Hastngs and Mahendra Jan Topology Proceedngs Web: http://topology.auburn.edu/tp/ Mal: Topology Proceedngs

More information

On the freeness of the cyclotomic BMW algebras : admissibility and an isomorphism with the cyclotomic Kauffman tangle algebras

On the freeness of the cyclotomic BMW algebras : admissibility and an isomorphism with the cyclotomic Kauffman tangle algebras On the freeness of the cyclotomc BMW algebras : admssblty and an somorphsm wth the cyclotomc Kauffman tangle algebras Ctaton for publshed verson (APA): Wlcox, S., & Yu, S. H. (2009). On the freeness of

More information

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introducton to Cluster Algebra Ivan C.H. Ip Updated: Ma 7, 2017 3 Defnton and Examples of Cluster algebra 3.1 Quvers We frst revst the noton of a quver. Defnton 3.1. A quver s a fnte orented

More information

KLR algebras and knot homology II

KLR algebras and knot homology II KLR algebras and knot homology II Ben Webster Unversty of Vrgna June 6, 013 Ben Webster (UVA) KLR algebras and knot homology II June 6, 013 1 / 5 The case of sl So, remember, last tme I ntroduced an algebra

More information

Cohen-Lenstra heuristics and random matrix theory over finite fields

Cohen-Lenstra heuristics and random matrix theory over finite fields Cohen-Lenstra heurstcs and random matrx theory over fnte felds Jason Fulman Department of Mathematcs, Unversty of Southern Calforna, Los Angeles, CA, 90089 E-mal address: fulman@usc.edu Abstract. Let g

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-analogue of Fbonacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Benaoum Prnce Mohammad Unversty, Al-Khobar 395, Saud Araba Abstract In ths paper, we ntroduce the h-analogue of Fbonacc numbers for

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

FACTORIAL P- AND Q-SCHUR FUNCTIONS REPRESENT EQUIVARIANT QUANTUM SCHUBERT CLASSES

FACTORIAL P- AND Q-SCHUR FUNCTIONS REPRESENT EQUIVARIANT QUANTUM SCHUBERT CLASSES Ikeda, T., Mhalcea, L.C. and Naruse, H. Osaka J. Math. 53 (2016), 591 619 FACTORIAL P- AND Q-SCHUR FUNCTIONS REPRESENT EQUIVARIANT QUANTUM SCHUBERT CLASSES TAKESHI IKEDA, LEONARDO C. MIHALCEA and HIROSHI

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

On the smoothness and the totally strong properties for nearness frames

On the smoothness and the totally strong properties for nearness frames Int. Sc. Technol. J. Namba Vol 1, Issue 1, 2013 On the smoothness and the totally strong propertes for nearness frames Martn. M. Mugoch Department of Mathematcs, Unversty of Namba 340 Mandume Ndemufayo

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Ideal Amenability of Second Duals of Banach Algebras

Ideal Amenability of Second Duals of Banach Algebras Internatonal Mathematcal Forum, 2, 2007, no. 16, 765-770 Ideal Amenablty of Second Duals of Banach Algebras M. Eshagh Gord (1), F. Habban (2) and B. Hayat (3) (1) Department of Mathematcs, Faculty of Scences,

More information

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS ALGEBRA SCHEMES AND THEIR REPRESENTATIONS AMELIA ÁLVAREZ, CARLOS SANCHO, AND PEDRO SANCHO Introducton The equvalence (Carter dualty) between the category of topologcally flat formal k-groups and the category

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS ALGEBRA SCHEMES AND THEIR REPRESENTATIONS AMELIA ÁLVAREZ, CARLOS SANCHO, AND PEDRO SANCHO Introducton The equvalence (Carter dualty) between the category of topologcally flat formal k-groups and the category

More information

TANGENT DIRAC STRUCTURES OF HIGHER ORDER. P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga

TANGENT DIRAC STRUCTURES OF HIGHER ORDER. P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga ARCHIVUM MATHEMATICUM BRNO) Tomus 47 2011), 17 22 TANGENT DIRAC STRUCTURES OF HIGHER ORDER P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga Abstract. Let L be an almost Drac structure on a manfold

More information

INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS

INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS HIROAKI ISHIDA Abstract We show that any (C ) n -nvarant stably complex structure on a topologcal torc manfold of dmenson 2n s ntegrable

More information

A categorification of quantum sl n

A categorification of quantum sl n A categorfcaton of quantum sl n Aaron Lauda Jont wth Mkhal Khovanov Columba Unversty January 20th, 2009 Avalable at http://www.math.columba.edu/ lauda/talks/kyoto Aaron Lauda Jont wth Mkhal Khovanov (Columba

More information

PRIMES 2015 reading project: Problem set #3

PRIMES 2015 reading project: Problem set #3 PRIMES 2015 readng project: Problem set #3 page 1 PRIMES 2015 readng project: Problem set #3 posted 31 May 2015, to be submtted around 15 June 2015 Darj Grnberg The purpose of ths problem set s to replace

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

A Brown representability theorem via coherent functors

A Brown representability theorem via coherent functors Topology 41 (2002) 853 861 www.elsever.com/locate/top A Brown representablty theorem va coherent functors Hennng Krause Fakultat fur Mathematk, Unverstat Belefeld, Postfach 100131, 33501 Belefeld, Germany

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

arxiv: v1 [math.rt] 3 Jan 2019

arxiv: v1 [math.rt] 3 Jan 2019 A plactc algebra acton on bosonc partcle confguratons: The classcal case Joanna Menel arxv:1901.00847v1 [math.rt] 3 Jan 2019 Abstract We study the plactc algebra and ts acton on bosonc partcle confguratons

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

On the partial orthogonality of faithful characters. Gregory M. Constantine 1,2

On the partial orthogonality of faithful characters. Gregory M. Constantine 1,2 On the partal orthogonalty of fathful characters by Gregory M. Constantne 1,2 ABSTRACT For conjugacy classes C and D we obtan an expresson for χ(c) χ(d), where the sum extends only over the fathful rreducble

More information

GEOMETRIC DESCRIPTION OF C-VECTORS AND REAL LÖSUNGEN. 1. Introduction

GEOMETRIC DESCRIPTION OF C-VECTORS AND REAL LÖSUNGEN. 1. Introduction GEOMETRIC DESCRIPTION OF C-VECTORS AND REAL LÖSUNGEN KYU-HWAN LEE AND KYUNGYONG LEE Abstract. We propose a combnatoral/geometrc model and formulate several conectures to descrbe the c-matrces of an arbtrary

More information

The exponential map of GL(N)

The exponential map of GL(N) The exponental map of GLN arxv:hep-th/9604049v 9 Apr 996 Alexander Laufer Department of physcs Unversty of Konstanz P.O. 5560 M 678 78434 KONSTANZ Aprl 9, 996 Abstract A fnte expanson of the exponental

More information

Lecture 7: Gluing prevarieties; products

Lecture 7: Gluing prevarieties; products Lecture 7: Glung prevaretes; products 1 The category of algebrac prevaretes Proposton 1. Let (f,ϕ) : (X,O X ) (Y,O Y ) be a morphsm of algebrac prevaretes. If U X and V Y are affne open subvaretes wth

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

A Duality Theorem for L-R Crossed Product

A Duality Theorem for L-R Crossed Product Flomat 30:5 (2016), 1305 1313 DOI 10.2298/FIL1605305C Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://www.pmf.n.ac.rs/flomat A Dualty Theorem for L-R Crossed Product

More information