Rank, Homogenous Systems, Linear Independence

Size: px
Start display at page:

Download "Rank, Homogenous Systems, Linear Independence"

Transcription

1 Sept 11,1 Rank, Homogenous Systems, Linear Independence If (A B) is a linear system represented as an augmented matrix then A is called the COEFFICIENT MATRIX and B is (usually) called the RIGHT HAND SIDE (rhs) Definition: A linear system (A B), represented as an augmented matrix, is HOMOGENOUS if B = O, the zero vector. Definition: If is (A O) (A B) is a linear system then the ASSOCIATED HOMOGENOUS SYSTEM VECTOR REPRESENTATION OF A LINEAR SYSTEM If S is a linear system and (A B) an augmented matrix representation which C[1], C[],... C[n] the columns of A, then the associated VECTOR REPRESENTATION of S is the vector equation x 1 C x n = B That is S is represented by B written as a linear combination of the columns of A with variable coefficients. A solution to S is then a choice of values for the variables for which the expression is an equalty of vectors. EXAMPLE; (A B) = B := -1-1 x y RHS Here the coefficient matrix A = A := 1 4 and the RHS is The associated homogenous system is x y RHS When we determine the parametric solution to (A B) by calculating the REF x y RHS 1-1 x = 1 y, x = -1 y + y

2 We have written the general solution as a linear combination of the vectors 1 (*) With X = x y We write this as X = + X p X h, X p = 1 0 and X h = y 1 The "p" is for "particular" and the "h" for "homogenous". The interpretation is that any solution X and be written as this one specific solution, Xp, plus some solution to the 1 0 and associated homogenous system X h Indeed is we solve the associated homogenous system x y RHS x y RHS we get the REF for whiich we get x = y x, = y y y the X h = y 1 in line (*), x y = y 1 which is exactly Thus solving a linear system can be interpreted as a -part process (a) Find a particular solution X p (We will see that any particular solution will work) (b) Solve the homogenous system Then the solutions all have the form X = X p + X h where X h is some solution to the homogenous system. These can be done in either order. Our parametric process does them simultaneously. NOTE: HOMOGENOUS SYSTEMS ARE ALWAYS CONSISTENT because the verctor O 0 = 0 is always a solution. THIS IS CALLED THE TRIVIAL SOLUTION. So even if a... 0 system is inconsistent, its associated homogenous system will always be consistent. The system (A B) has infinitely many solutions if and only if (a) it is consistent (b) the associated homogenous system (A O) has infinitely many solutions.

3 The homogenous system (A O) has infinitely many solutions if and only if there is a free variable. Recall that if A is a matrix then the RANK of A is the number of pivots in any REF of A Equivalently, the rank of A is the number of non-zero rows in any REF of A. This is is not by any means "obvious". We will take it as a fact for now and prove it when we have more tools. If A is an m by n matrix ( m rows and n-columns) then of course the rank of A is the number of pivot variables. Since there is a variable for each column of A the rank is at most the number of columns. Since there is a pivot in each non-zero row of the REF and the REF an A have the same number of rows we see that the rank of A is at most the number of rows of A. So of A is an m by n matrix then 0 RANK( A ) min ( m, n ) Since there is a free variable exactly when there is a variable that is not a pivot variable we see THE HOMOGENOUS SYSTEM (A O) HAS ONLY THE TRIVIAL SOUTION IF AND ONLY IF THE RANK OF A IS EQUAL TO THE NUMBER OF COLUMNS OF A SAID ANOTHER WAY THE HOMOGENOUS SYSTEM (A O) HAS ONLY THE TRIVIAL SOLUTION MEANS THAT IF C 1, C are the columns of A then the only way to write x 1 C 1 + x C x n = O (the zero vector) is with x 1 = x =... = x n = 0 DEFINITION: The set of vectors { C 1, C } is LINEARLY INDEPENDENT if the only way to write O as a linear combination of C 1, C is with all coefficients equal to 0. Thus: THE COLUMNS OF THE MATRIX A ARE LNIEARLY INDEPENDENT IF AND ONLY IF THE RANK OF A IS EQUAL TO THE NUMBER OF COLUMNS OF A. Given any set of n vectors { C 1, C } in R m, we can always make them the columns of a matrix and calculate its rank. Thus we have a simple way to determine if a set of vectors is linearly independent: (a) assemble the vectors into a matrix A (b) calculate a REF of A Then: The vectors are linearly indpendent if and only if the rank A is n.

4 If the rank is less than n then there are non-trivial ways to write O as a linear combination of the {,,, C 1 C... }. These are just the non-trivial solutions to the homogenous system (A O) Example: The two vectors C 1 = 1 and C = 4 are linearly dependent since (**) C 1 + ( 1 ) C = O What are all of the was to write O as a linear combination of C 1 and C? Solution: The pairs (x,y) such that x C 1 + y C = O are the solutions to the homogenous system (A O) where A := 1 4. We found above that the parametric solution to this system is 1 So every way to write x C 1 + y C = O has the form y C 1 + y C where y is a real number. Note that y=0 provides the trivial solution and y= -1 gives the solution (**) x y = y Example: Consider the matrix A := with REF M = QUESTIONS: 1. What is the rank of A? Are the columns of A an independent set? Why or why not. Answer:, No, The condition for independence is that the rank(a) = number of columns of A.. What is the largest number of columns of A that could be independent? Why?, Given ay subset of the columns of A, if they form the columns of a matrix then the row operations that produced M would reduce that matrix to the one consisting of the corresponding columns of M. That matrix would have at most three non-zero rows so it would hav eat most rank.

5 . If C i is the i { th } column of A, which of the following are linearly independent? (a) {{ C 1, C }}, (b) { C, C 4, C 6 }, (c) { C, C 4 }, (d) { C, C }, (e) { C 1 }, (f) { C } ANS: (a), (b), (c),(e) In each case the rank of the matrix whose columns are the given vectors has rank equal to the number of columns. 4. The matrix M was produced from A by the sequence R->R -*R1, R->R-*R1, R4->R4+R1,R->R-R, R4->R4+*R, R4<->R The sequence converting M back into A is the sequence of inverses of these operations in the reverse order. That is R4<->R, R4->R4-*R, R-.R+R, R4->R4 -R1, R->R+R1, R->R+*R1 Use these to modify B is the linear system (A B) = x y z w t rhs to a vector C such that (A C) is inconsistent. Solution: This is just the previous matrix which has REF = If the REF had become, say, inconsistent. Thus we want replace the vector B = 1 then the system would have been

6 with a vector C which the given sequence of elementary steps would take to D = - To do this we apply the reserse sequence to D - R4<->R - R4->R4-*R - 5 R->R+R -7 5 R4->R4 -R1-7 R->R+R1 R->R+*R1 1 >

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept Sections 1.5, 1.7 Ma 322 Fall 213 Ma 322 Sept. 9-13 Summary ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric solution of AX = B. ˆ Linear dependence and independence of vectors

More information

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28 Sections 1.5, 1.7 Ma 322 Spring 217 Ma 322 Jan 24-28 Summary ˆ Text: Solution Sets of Linear Systems (1.5),Linear Independence (1.7) ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Problem Sheet 1 with Solutions GRA 6035 Mathematics

Problem Sheet 1 with Solutions GRA 6035 Mathematics Problem Sheet 1 with Solutions GRA 6035 Mathematics BI Norwegian Business School 2 Problems 1. From linear system to augmented matrix Write down the coefficient matrix and the augmented matrix of the following

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS. Points: 4+7+4 Ma 322 Solved First Exam February 7, 207 With supplements You are given an augmented matrix of a linear system of equations. Here t is a parameter: 0 4 4 t 0 3

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

Linear Algebra I Lecture 10

Linear Algebra I Lecture 10 Linear Algebra I Lecture 10 Xi Chen 1 1 University of Alberta January 30, 2019 Outline 1 Gauss-Jordan Algorithm ] Let A = [a ij m n be an m n matrix. To reduce A to a reduced row echelon form using elementary

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

DM559 Linear and Integer Programming. Lecture 6 Rank and Range. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 6 Rank and Range. Marco Chiarandini DM559 Linear and Integer Programming Lecture 6 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 2 Outline 1. 2. 3. 3 Exercise Solve the

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp MTHSC 3 Section 4.3 Linear Independence in Vector Spaces; Bases Definition Let V be a vector space and let { v. v 2,..., v p } V. If the only solution to the equation x v + x 2 v 2 + + x p v p = is the

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence Summer 2017 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Math 3A Winter 2016 Midterm

Math 3A Winter 2016 Midterm Math 3A Winter 016 Midterm Name Signature UCI ID # E-mail address There are 7 problems for a total of 115 points. Present your work as clearly as possible. Partial credit will be awarded, and you must

More information

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1 Linear Independence Linear Algebra MATH 76 Linear Algebra LI or LD Chapter, Section 7 / Linear Combinations and Span Suppose s, s,..., s p are scalars and v, v,..., v p are vectors (all in the same space

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math 221 Open Book Exam 1 Open Notes 3 Sept, 24 Calculators Permitted Show all work (except #4) 1 2 3 4 2 1. (25 pts) Given A 1 2 1, b 2 and c 4. 1 a) (7 pts) Bring matrix A to echelon form.

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

System of Linear Equations

System of Linear Equations Chapter 7 - S&B Gaussian and Gauss-Jordan Elimination We will study systems of linear equations by describing techniques for solving such systems. The preferred solution technique- Gaussian elimination-

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm APPM 2360 Exam 2 Solutions Wednesday, March 9, 206, 7:00pm 8:30pm ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5)

More information

Week 3 September 5-7.

Week 3 September 5-7. MA322 Weekl topics and quiz preparations Week 3 September 5-7. Topics These are alread partl covered in lectures. We collect the details for convenience.. Solutions of homogeneous equations AX =. 2. Using

More information

Systems of Equations Homework Solutions

Systems of Equations Homework Solutions Systems of Equations Homework Solutions Olena Bormashenko October 5, 2011 Find all solutions to the following systems of equations by writing the system as an augmented matrix and row-reducing it until

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Math 102, Winter 2009, Homework 7

Math 102, Winter 2009, Homework 7 Math 2, Winter 29, Homework 7 () Find the standard matrix of the linear transformation T : R 3 R 3 obtained by reflection through the plane x + z = followed by a rotation about the positive x-axes by 6

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros.

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row

More information

Ma 322 Spring Ma 322. Jan 18, 20

Ma 322 Spring Ma 322. Jan 18, 20 Ma 322 Spring 2017 Ma 322 Jan 18, 20 Summary ˆ Review of the Standard Gauss Elimination Algorithm: REF+ Backsub ˆ The rank of a matrix. ˆ Vectors and Linear combinations. ˆ Span of a set of vectors. ˆ

More information

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued Definition The process of solving a system of linear equations by converting the system to an augmented matrix is called Gaussian Elimination. The general strategy is as follows: Convert the system of

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

Chapter 6. Linear Independence. Chapter 6

Chapter 6. Linear Independence. Chapter 6 Linear Independence Linear Dependence/Independence A set of vectors {v, v 2,..., v p } is linearly dependent if we can express the zero vector, 0, as a non-trivial linear combination of the vectors. α

More information

4.9 The Rank-Nullity Theorem

4.9 The Rank-Nullity Theorem For Problems 7 10, use the ideas in this section to determine a basis for the subspace of R n spanned by the given set of vectors. 7. {(1, 1, 2), (5, 4, 1), (7, 5, 4)}. 8. {(1, 3, 3), (1, 5, 1), (2, 7,

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini DM559 Linear and Integer Programming Lecture Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Outline 1. 3 A Motivating Example You are organizing

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Lecture 21: 5.6 Rank and Nullity

Lecture 21: 5.6 Rank and Nullity Lecture 21: 5.6 Rank and Nullity Wei-Ta Chu 2008/12/5 Rank and Nullity Definition The common dimension of the row and column space of a matrix A is called the rank ( 秩 ) of A and is denoted by rank(a);

More information

M 340L CS Homework Set 1

M 340L CS Homework Set 1 M 340L CS Homework Set 1 Solve each system in Problems 1 6 by using elementary row operations on the equations or on the augmented matri. Follow the systematic elimination procedure described in Lay, Section

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed!

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed! Math 415 Exam I Calculators, books and notes are not allowed! Name: Student ID: Score: Math 415 Exam I (20pts) 1. Let A be a square matrix satisfying A 2 = 2A. Find the determinant of A. Sol. From A 2

More information

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. AMS 10: Review for the Midterm Exam The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. Complex numbers

More information

CONSISTENCY OF EQUATIONS

CONSISTENCY OF EQUATIONS CONSISTENCY OF EQUATIONS Question 1 (***) The system of simultaneous equations x + 2y + z = 1 2x + 3y + z = 3 3x + 4y + z = k where k is a scalar constant does not have a unique solution but is consistent.

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

1 Linear systems, existence, uniqueness

1 Linear systems, existence, uniqueness Jor-el Briones / Math 2F, 25 Summer Session, Practice Midterm Page of 9 Linear systems, existence, uniqueness For each part, construct an augmented matrix for a linear system with the given properties,

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

The Four Fundamental Subspaces

The Four Fundamental Subspaces The Four Fundamental Subspaces Introduction Each m n matrix has, associated with it, four subspaces, two in R m and two in R n To understand their relationships is one of the most basic questions in linear

More information

Vector Spaces and Subspaces

Vector Spaces and Subspaces Vector Spaces and Subspaces Vector Space V Subspaces S of Vector Space V The Subspace Criterion Subspaces are Working Sets The Kernel Theorem Not a Subspace Theorem Independence and Dependence in Abstract

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra Linear Equations in Linear Algebra.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v,, v p } in n is said to be linearly independent if the vector equation x x x 2 2 p

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

Final Examination 201-NYC-05 December and b =

Final Examination 201-NYC-05 December and b = . (5 points) Given A [ 6 5 8 [ and b (a) Express the general solution of Ax b in parametric vector form. (b) Given that is a particular solution to Ax d, express the general solution to Ax d in parametric

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 1 Version 1 February 21, 2006 60 points possible 1. (a) (3pts) Define what it means for a linear system to be inconsistent. Solution: A linear system is inconsistent

More information

Dimension and Structure

Dimension and Structure 96 Chapter 7 Dimension and Structure 7.1 Basis and Dimensions Bases for Subspaces Definition 7.1.1. A set of vectors in a subspace V of R n is said to be a basis for V if it is linearly independent and

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Math 220: Summer Midterm 1 Questions

Math 220: Summer Midterm 1 Questions Math 220: Summer 2015 Midterm 1 Questions MOST questions will either look a lot like a Homework questions This lists draws your attention to some important types of HW questions. SOME questions will have

More information

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0.

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0. Solutions Review # Math 7 Instructions: Use the following problems to study for Exam # which will be held Wednesday Sept For a set of nonzero vectors u v w} in R n use words and/or math expressions to

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1 . Let U = { A M (R) A = and b 6 }. CHAPTER 3 REVIEW QUESTIONS MATH 334 Spring 7 a b a and b are integers and a 6 (a) Let S = { A U det A = }. List the elements of S; that is S = {... }. (b) Let T = { A

More information

Week #4: Midterm 1 Review

Week #4: Midterm 1 Review Week #4: Midterm Review April 5, NAMES: TARDIS : http://math.ucsb.edu/ kgracekennedy/spring 4A.html Week : Introduction to Systems of Linear Equations Problem.. What row operations are allowed and why?...

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.2 Echelon Forms Math 2331 Linear Algebra 1.2 Row Reduction and Echelon Forms Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ January 22, 2018 Shang-Huan

More information

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x Vector Spaces and Dimension Subspaces of Definition: A non-empty subset V is a subspace of if V is closed under addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) V and

More information