Volume 74A, number 1,2 PHYSICS LETTERS 29 October 1979

Size: px
Start display at page:

Download "Volume 74A, number 1,2 PHYSICS LETTERS 29 October 1979"

Transcription

1 PROPAGATOR WITH FRICTION IN QUANTUM MECHANICS A.D. JANNUSSIS, G.N. BRODIMAS and A. STRECLAS Department of Theoretical Physics, University of Patras, Greece Received 8 August 1979 In this paper we calculate the propagator for quantum-mechanical systems with friction. For the case the friction is a linear function of the velocity with a friction constant ~ we can calculate exact propagators of quadratic form. Recently, Moreira [1] and Khandekar and Lawande [2,3] calculated the exact propagator for a quadratic lagrangian with the help of the Van Vieck Pauli formula, which, in one dimension, reads 2exp[(j/h)S(q,t ;q,t )], K(q ~t ;q,t )=(~ ~q3~~sq,)li (1) S is the classical action, which corresponds to the given lagrangian with friction, from the space time point (q, t ) to (q, t ). Instead of eq. (1) the following definition of the propagator can be used [3] K(q, t ;q, t ) ~ I ~(q,t ) I ~(q,t ), (2) the wave function Tin (q, t) is defined in ref. [3]. For the above propagator the Hamilton operator depends on the time, and in addition it is assumed that there exists a hermitian invariant operator 1(t) which does not involve time differentiation. This is the case when the hamiltonian is of quadratic form with parameters which are a function of time and with friction terms. For the case I 0(q, t) = exp [_(i/fl)ent] U~(q), lj~(q) is the eigenfunction of the hamilton operator, eq. (2) yields the well-known definition of the propagator [4] (3) K(q,t,q,t ) ~U~(q )U~(q )exp[ (i/h)e0(t t )]. (4) In what follows the general eq. (2) will be used for the calculation of the propagator of all quadratic hamiltonians with friction and external fields. The case of the classical harmonic oscillator will be considered first. 1. Damped harmonic oscillator. H=(p 2I2m)e_7t+~mw2q2e7t. The solution of the SchrOdinger equation is given in refs. [5 7]: (5) 6

2 I ~(q,t) = (m~z/h)~ 4(2 ~n!)~2exp1[ ~y i~(n+ ~)]t (m/2h)(~+ ~i7)e~tq2}9(~[(m~2/1l)h/2e7t/2q], (6) f12 = ~,2 ~~2 >~,~ is the friction constant and ~1C~(x) are Hermite polynomials. With the aid of eq. (2) and after a certainamount of algebra the propagator of the damped harmonic oscillator can be expressed as +t )/4 e K(q,t ;q,t) [(2irifl/m~Z)sin ~2(t r )] 1/2 ~ [cot ~(t t ) (e7t q 2 + e7t q ~2) 2q~~qle t +t ~2 ] ~ (e7~ q 2 ei~t qp2)). (7) The above eq. (7) for y = 0 gives the propagator of the harmonic oscillator [4]. 2. Forced and damped oscillator. H= (p2/2m)e_7t + (~mw2q2 qf(t))e~t. (8) The corresponding solution of the Schrodinger equation is given by Kerner [1]: 1/4 I ~(q,t) = (-~~) (2 1n!)~ 2exp(_~_[fi~t~it +E~t+ ~mye7tq2 q(p 0(t) + ~m7qo(t)e7t)]} X exp{ (m~2/2h)[q~ /2 [q q0(t)] e Ytt2}, (9) ~(t) = L0 + ~ m740(t)q0(t)e~ t+ ~i y, E~= 1~2(n+ ~), p 0(t) = m~o(t)e7t, ~2 = ~ 72 >0, (10) and L0 represents the classical lagrangian for the damped but unforced motion as a function in time of the damped and forced position and velocity. The position coordinate q0(t) satisfies the classical equation: mq0+yq0+mw 2q 0F(t). With the aid of the generalized propagator, given by eq. (2), and after a certain amount of algebra we finally find,l/2,,,,,, r mcz I 1112~2 u i ~ 2 yt K(q, t,q, t ~= [2~hsin fl(t t )j exp 2flsin fl(t t ) [(q q0(t )) e (11) (q q0(t )) 2 e~t cos ~(t t ) 2(q q 0(t )) (q q0(t )) e7(t +t )/2]} X exp ( i--i[~(t )dt ~ (t ) dt ] ~ (q~l2e~yt q 2e7t) + ~m 7q0(t1 )e7t ) q ~0(t )+ ~m7qo(tl)e7t~)1}. (12) For the case there is no external force, that is,f(t)= 0, eq. (ll)gives q0 = 0 and formula (12) coincides with formula (7). 3. Applied electric field and friction. The case of electric field and friction is the most interesting. The solution of the Schrodinger equation for an electric field has been given by Buch and Denman [8]. Accordingto Husimi [9] the wave function I ~(q,t) with friction and for an applied electric field c~(t) has the following form: 7

3 Volume 74A, number 1, 2 PHYSICS LETTERS 29 October 1979 ~ t) = exp [ik[q ~f e_~tf~(v)e~1dv] +~ k 2 e~t + i ~[f~(r)e7t dr]q} Xexp[_~fe_~T[fr(V)e7I dv]dt}. (13) According to eq. (2) the propagator becomes: K(q, t ;q, t ) 2exp(~[f~(r)e~Tdrq _f~(r)e7t dtq ] _J~2J e77[j~(v)e~ dv] dl) x f expt~-(e_7t~ e_7t)k2 +ik[q q ~(J e_1tj~(v)e~1~ dv)]}dk; (14) the above integral is of Frensel type [10] and eq. (14) can finally be written as: K(q, t ;q, t )= [2~ih(e~ e_1t )] exp L 2h(e7t _ e_7~ )[q _q9_~(fe_ytf~(~e~vdv)]2) x exp{~[f ~(r)e7tdrqh1_f ~(r)e7~drq~] ~ fe~ [J~(V)e7 dv]dr). (15) The case the function d(t) is constant, d(t) = ~ has been studied by Moreira [11 4. The forced harmonic oscillator. H (h2/2m)a2/8q2 + ~m w(t)2q2 f(t)q. (16) According to Husimi [9] the Schrodinger equation with a hamiltonian given by eq. (16) has a solution of gaussian type, namely T k (q, t) = exp {(i/2h) [a(t)q2 + 2~(t)q + ~ (t)] (ik2/2mh)a(t) + (ik/l1) [qb(t) + [ (t)] }, (17) the function a (t) satisfies the following Ricatti equation: m~da/dt = a2/m2 w2(t), (18) ~(t) = exp [_~fa(r)dr]ff(r)exp[~-f a(r ) dr ]dr, (19) ~(t) = ~!~~~fa(r)dr _-Lfdr exp[ --~-f a(r )dr] {ff(r )exp [-~-f a(r )dr ] drt}~ (20) A(t)f exp [_±j t a(r )dr ]dr, B(t)= exp [_~f a(r)dr], (21,22) r(t)=~fdrexp[_~fa(r )dr]{ff(r )exp[~fa(r )dr ]dr }. (23) By means of eq. (2) the propagator can be expressed as: 8

4 2 + 2~(t )q +~(t )) K(q, t ;q, (a(t )q 2 + 2~(t )q +~(t ))]} t )= exp~(i/2h)[(a(t )q X ~ f exp{ (ik2/2mh)[a(t ) A(t )] + (ik/h) [q B(t ) q B(t ) + F(t ) F(t )] } dk. (24) If we set k -~ hk in the integral of the r.hs. of eq. (24), this is again of Frensel type and the propagator is now given by K(q, t, q, t )exp f(i/2h)[(a(t )q 2 2~(t )q+ ~(t )) (a(t )q 2 + 2~(t )q + ex im [q B(t ) q B(t )+1 (t ) r (t )]2 (25) {2irih[A(t ) A(t )]}1 2 ~ 2h~ A(t )A(t ) In the same way, we can study the case of the damped and forced harmonic oscillator. The hamiltonian has now the form: H_(h2/2m)e_7ta2/aq2 +e7t [~mw2(t)q2 f(t)q]. (26) With the help of the following contact transformation [7] q _~e_7ti 2Q, ~Il(q,t)exp[~7t+(im7/4fl)e7tq2] Wk(Qt) (27,28) the wave function satisfies the Schrodinger equation = (fl2/2m) a2 4 /aq 2 + [~m cl(t)2q 2 F(t)Q ] XI, (29) = w(t)2 _~72, F(t)= e7t/2f(t). (30) So we can easily find the propagator: ~(q, t, q, t ) = exp [h(t + t ) (im7/4h) (e7t q 2 e7t q ~2)jK(Q, t ; Q, t ), (31) K(Q, t ; Q, t ) = K(elt 2q, t, e7t t2qt, t ) is the propagator (25). The evaluation of the propagator for the hamiltonian (26) has been carried out by Khandekar and Lawande [2, 3] by means of the known method of path integrals [11], which has been used for the same purpose by other authors [12,13]. 5. Damped harmonic oscillator in a uniform magnetic field. Another interesting case is that of the damped harmonic oscillator in a uniform magnetic field, which we will study now. Accoding to Jannussis et al. [14], the Hamilton operator is given by the relation H(t) = (l/2m) [p + (e/c)h(t)x q] 2 e_7t + ~e7tmw2(q~ + q~+ q~), (32) H(t) = He7t and His the constant intensity of the magnetic field. Using the contact transformation q = elti 2Q, the solution of the time-dependent SchrOdinger equation has the following form: P(Q, t) exp[~ yt (im y/411)q2] F 1(Q1, Q2, t)f3(q3, t), 2 exp ~ [(mfz/h)r2]e~e~t~ n1, (33) F1(Q1, Q2, t) = (m~l)~~ 9

5 1/2 m~2 3 F3(Q3, t) = (~~) (2 mm!)_~2 exp(_~-~_q~)~m[(m~l 3/1 1)Q3]e_(1~tEm and L~(x)are the generalized Laguerre polynomials. The above solutions have been expressed in polar coordinates, that is Q1 = rcos ~, Q2 = rsin s~,q3 = Q3. The energy eigenvalues are as follows: En =h~l(2n+l+l)±flwll, ~2 ~ _~72, WL eh/2mc, (34) Em=h~l3(m+~), ~2~=w 2 ~y2. The calculation of the propagator proceeds now easily through relation (2). After a certain amount of algebra we obtain m~.2 3 1/2 3~y(t +t )/4 K(q, r ;q, t ) [2i~hsin ~3(t i )] 2i~hsin~(t t ) exp (_~7(e7t~12 e7t q?p2) 2+ e7t q~2) 2et+t)I2q~~~2q2] + ~ ~3(t t ) [cos ~3(t 1) (e7t q~ + 2n~t t ) {cos &~(t t ) [e~t (qj 2 + q~2)+ e7t (q~2+ q~)] (35) 2cos WL(t _tp)e7(t +t~2(qjiqj + q~q~) 2sin WL(t t ) e7(t ft )/2 (qjq~ q~qj )}~ It is clear from the result of the present work that the generalized propagator defined by eq. (2) considerably simplifies the evaluation of the propagator for quadratic forms with friction; moreover, it can be used for time-dependent hamiltonians of a more general form. References [1] IC. Moreira, Lett. Nuovo Cimento 23 (1978) 294. [2] D.C. Khandekar and S.V. Lawande, Phys. Lett. 67A (1975) 175. [3] D.C. Khandekar and S.V. Lawande, J. Math. Phys. 16 (1975) 384. [4] B. Kursunoglou, Modern quantum theory (Freedman, London, 1962). [5] V.V. Dodonov and VI. Man co, Nuovo Cimento 44B (1978) 265. [6] F. Bopp, Z. Angew. Phys. 14 (1962) 699. [7] E.H. Kerner, Can. J. Phys. 36 (1958) 371. [8] L.H. Buch and H.H. Denman, Am. J. Phys. 42 (1974) 304. [9] K. Husimi, Prog. Theor. Phys. 9 (1953) 381. [10] W. Magnus, F. Oberbettinger and R. Soni, Formulae and theorems for the special functions of Mathematical Physics (Springer, 1966) 9.2. [11] R.P. Feynman and A. Hibbs, Quantum mechanics and path integrals (New York, 1965). [12] G.J. Papadopoulos, J. Phys. A7 (1974) 209; Al (1968) 593. [13] A.V. Jones and G. Papadopoulos, J. Phys. A4 (1971) 86. [14] A. Jannussis, G. Brodimas and A. Streclas, Lett. Nuovo Cimento 25 (1979) no

Heisenberg-picture approach to the exact quantum motion of a. time-dependent forced harmonic oscillator. Abstract

Heisenberg-picture approach to the exact quantum motion of a. time-dependent forced harmonic oscillator. Abstract KAIST-CHEP-96/01 Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator Hyeong-Chan Kim,Min-HoLee, Jeong-Young Ji,andJaeKwanKim Department of Physics, Korea

More information

Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency. Abstract

Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency. Abstract Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency Eun Ji Jang, Jihun Cha, Young Kyu Lee, and Won Sang Chung Department of Physics and Research Institute

More information

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 43, Part, 645 65 A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space S. NASIRI and H. SAFARI Institute for Advanced

More information

Math 333 Qualitative Results: Forced Harmonic Oscillators

Math 333 Qualitative Results: Forced Harmonic Oscillators Math 333 Qualitative Results: Forced Harmonic Oscillators Forced Harmonic Oscillators. Recall our derivation of the second-order linear homogeneous differential equation with constant coefficients: my

More information

arxiv: v1 [quant-ph] 15 Dec 2011

arxiv: v1 [quant-ph] 15 Dec 2011 Sharp and Infinite Boundaries in the Path Integral Formalism Phillip Dluhy and Asim Gangopadhyaya Loyola University Chicago, Department of Physics, Chicago, IL 666 Abstract arxiv:.3674v [quant-ph 5 Dec

More information

Exact propagator for generalized Ornstein-Uhlenbeck processes

Exact propagator for generalized Ornstein-Uhlenbeck processes Exact propagator for generalized Ornstein-Uhlenbeck processes F. Mota-Furtado* and P. F. O Mahony Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

More information

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency Advanced Studies in Theoretical Physics Vol. 11, 017, no. 6, 63-73 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/astp.017.676 Several Solutions of the Damped Harmonic Oscillator with Time-Dependent

More information

Quantum algebraic structures compatible with the harmonic oscillator Newton equation

Quantum algebraic structures compatible with the harmonic oscillator Newton equation J. Phys. A: Math. Gen. 32 (1999) L371 L376. Printed in the UK PII: S0305-4470(99)04123-2 LETTER TO THE EDITOR Quantum algebraic structures compatible with the harmonic oscillator Newton equation Metin

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5 QUANTUM MECHANICS I PHYS 56 Solutions to Problem Set # 5. Crossed E and B fields: A hydrogen atom in the N 2 level is subject to crossed electric and magnetic fields. Choose your coordinate axes to make

More information

density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania

density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania IFA-FT-396-994 Damped quantum harmonic oscillator: density operator and related quantities A. Isar Department of Theoretical Physics, Institute of Atomic Physics POB MG-6, Bucharest-Magurele, Romania Internet:

More information

p-adic Feynman s path integrals

p-adic Feynman s path integrals p-adic Feynman s path integrals G.S. Djordjević, B. Dragovich and Lj. Nešić Abstract The Feynman path integral method plays even more important role in p-adic and adelic quantum mechanics than in ordinary

More information

1. INTRODUCTION EQUATION

1. INTRODUCTION EQUATION International Journal of Theoretical and Applied Science (): -5() ISSN No. (Print) : 975-78 ISSN No. (Online) : 49-47 Quaternionic Formulation of Dirac Equation A.S. Rawat*, Seema Rawat** and O.P.S. Negi

More information

Canonical transformations (Lecture 4)

Canonical transformations (Lecture 4) Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson

More information

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians Ali Mostafazadeh Department of Mathematics, Koç University, Istinye 886, Istanbul, TURKEY Abstract For a T -periodic

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Symmetry, Integrability and Geometry: Methods and Applications Vol. (5), Paper 3, 9 pages Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Marcos MOSHINSKY and Emerson SADURNÍ

More information

Two-Photon Transitions Between Discrete States

Two-Photon Transitions Between Discrete States Two-Photon Transitions Between Discrete States A. Quattropani 1 andn. Binggeli 2 l Institut de Physique Theorique, EPFL, Ecublens, CH-1050 Lausanne, Switzerland 2lnstitut de Physique Appliquee, EPFL, Ecublens,

More information

Simple Harmonic Oscillator

Simple Harmonic Oscillator Classical harmonic oscillator Linear force acting on a particle (Hooke s law): F =!kx From Newton s law: F = ma = m d x dt =!kx " d x dt + # x = 0, # = k / m Position and momentum solutions oscillate in

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) p j . (5.1) !q j. " d dt = 0 (5.2) !p j . (5.

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) p j . (5.1) !q j.  d dt = 0 (5.2) !p j . (5. Chapter 5. Hamiltonian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 5.1 The Canonical Equations of Motion As we saw in section 4.7.4, the generalized

More information

~~ -1jcfh = q (x, t) 2, (la)

~~ -1jcfh = q (x, t) 2, (la) 1652 Progress of Theoretical Physics, Vol. 53, No. 6, June 1975 Simple Derivion of Backlund Transformion from Ricci Form of Inverse Methodt> Kimiaki KONNO and Miki W ADA TI* Department of Physics and Atomic

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 9

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 9 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid October 29, 2002 Chater 9 Problem 9. One of the attemts at combining the two sets of Hamilton s equations into one tries

More information

Second Quantization Method for Bosons

Second Quantization Method for Bosons Second Quantization Method for Bosons Hartree-Fock-based methods cannot describe the effects of the classical image potential (cf. fig. 1) because HF is a mean-field theory. DFF-LDA is not able either

More information

Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere

Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere Willard Miller, [Joint with E.G. Kalnins (Waikato) and Sarah Post (CRM)] University of Minnesota Special Functions

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS Stochastics and Dynamics, Vol. 2, No. 3 (22 395 42 c World Scientific Publishing Company OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS Stoch. Dyn. 22.2:395-42. Downloaded from www.worldscientific.com by HARVARD

More information

Lecture 3 Dynamics 29

Lecture 3 Dynamics 29 Lecture 3 Dynamics 29 30 LECTURE 3. DYNAMICS 3.1 Introduction Having described the states and the observables of a quantum system, we shall now introduce the rules that determine their time evolution.

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

Solutions for homework 5

Solutions for homework 5 1 Section 4.3 Solutions for homework 5 17. The following equation has repeated, real, characteristic roots. Find the general solution. y 4y + 4y = 0. The characteristic equation is λ 4λ + 4 = 0 which has

More information

Madelung Representation and Exactly Solvable Schrödinger-Burgers Equations with Variable Parameters

Madelung Representation and Exactly Solvable Schrödinger-Burgers Equations with Variable Parameters arxiv:005.5059v [nlin.si] 7 May 00 Madelung Representation and Exactly Solvable Schrödinger-Burgers Equations with Variable Parameters May 30, 08 Şirin A. Büyükaşık, Oktay K. Pashaev Dept. of Mathematics,

More information

Time fractional Schrödinger equation

Time fractional Schrödinger equation Time fractional Schrödinger equation Mark Naber a) Department of Mathematics Monroe County Community College Monroe, Michigan, 48161-9746 The Schrödinger equation is considered with the first order time

More information

Two and Three-Dimensional Systems

Two and Three-Dimensional Systems 0 Two and Three-Dimensional Systems Separation of variables; degeneracy theorem; group of invariance of the two-dimensional isotropic oscillator. 0. Consider the Hamiltonian of a two-dimensional anisotropic

More information

Integral-free Wigner functions

Integral-free Wigner functions Integral-free Wigner functions A. Teğmen Physics Department, Ankara University, 0600 Ankara, TURKEY tegmen@science.ankara.edu.tr Abstract arxiv:math-ph/070208v 6 Feb 2007 Wigner phase space quasi-probability

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

Feynman's propagator for an oscillator in a changing magnetic field

Feynman's propagator for an oscillator in a changing magnetic field Revista Brasileira de Física, yol. 19, no 4, 1989 Feynman's propagator for an oscillator in a changing magnetic field J.M.F. Bassalo, L.C.L. Botelho, H.S. Antunes Neto and P.T.S. Alencar Departamento de

More information

Semi-Classical Dynamics Using Hagedorn Wavepackets

Semi-Classical Dynamics Using Hagedorn Wavepackets Semi-Classical Dynamics Using Hagedorn Wavepackets Leila Taghizadeh June 6, 2013 Leila Taghizadeh () Semi-Classical Dynamics Using Hagedorn Wavepackets June 6, 2013 1 / 56 Outline 1 The Schrödinger Equation

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

Computational Spectroscopy III. Spectroscopic Hamiltonians

Computational Spectroscopy III. Spectroscopic Hamiltonians Computational Spectroscopy III. Spectroscopic Hamiltonians (e) Elementary operators for the harmonic oscillator (f) Elementary operators for the asymmetric rotor (g) Implementation of complex Hamiltonians

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

arxiv:hep-th/ v3 16 May 1996

arxiv:hep-th/ v3 16 May 1996 BNL-63106 An Exact Solution for Quantum Tunneling in a Dissipative System arxiv:hep-th/9605081v3 16 May 1996 Li Hua Yu National Synchrotron Light Source, Brookhaven National Laboratory, N.Y.11973 Abstract

More information

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida J. Korean Math. Soc. 38 (21), No. 2, pp. 275 281 WHITE NOISE APPROACH TO FEYNMAN INTEGRALS Takeyuki Hida Abstract. The trajectory of a classical dynamics is detrmined by the least action principle. As

More information

Momentum relation and classical limit in the future-not-included complex action theory

Momentum relation and classical limit in the future-not-included complex action theory Momentum relation and classical limit in the future-not-included complex action theory Keiichi Nagao Ibaraki Univ. Aug. 7, 2013 @ YITP Based on the work with H.B.Nielsen PTEP(2013) 073A03 (+PTP126 (2011)102,

More information

A variational formulation for dissipative systems

A variational formulation for dissipative systems International/Interdisciplinary Seminar on Nonlinear Science The University of Tokyo, komaba Campus March 22, 2017 ------------------------------------------------------------------------------- A variational

More information

Solutions of the Schrödinger equation for the time-dependent linear potential

Solutions of the Schrödinger equation for the time-dependent linear potential Solutions of the Schrödinger equation for the time-dependent linear potential Jian-Qi Shen 1,2 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation,

More information

Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding

Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding Quasiclassical analysis of Bloch oscillations in non-hermitian tightbinding lattices Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Hans Jürgen Korsch, and Alexander

More information

Comparison of Various HFB Overlap Formulae

Comparison of Various HFB Overlap Formulae Bulg. J. Phys. 42 (2015) 404 409 Comparison of Various HFB Overlap Formulae M. Oi Institute of Natural Sciences, Senshu University, 3-8-1 Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-0051, Japan Received 31 October

More information

PHYS 705: Classical Mechanics. Hamiltonian Formulation & Canonical Transformation

PHYS 705: Classical Mechanics. Hamiltonian Formulation & Canonical Transformation 1 PHYS 705: Classical Mechanics Hamiltonian Formulation & Canonical Transformation Legendre Transform Let consider the simple case with ust a real value function: F x F x expresses a relationship between

More information

Quantum Physics 2: Homework #6

Quantum Physics 2: Homework #6 Quantum Physics : Homework #6 [Total 10 points] Due: 014.1.1(Mon) 1:30pm Exercises: 014.11.5(Tue)/11.6(Wed) 6:30 pm; 56-105 Questions for problems: 민홍기 hmin@snu.ac.kr Questions for grading: 모도영 modori518@snu.ac.kr

More information

arxiv: v1 [quant-ph] 31 Aug 2014

arxiv: v1 [quant-ph] 31 Aug 2014 Unitary approach to the quantum forced harmonic oscillator D. Velasco-Martínez 1, V. G. Ibarra-Sierra 2, J. C. Sandoval-Santana 3, J.L. Cardoso 1 and A. Kunold 1 1 Área de Física Teórica y Materia Condensada,

More information

Control Systems. Dynamic response in the time domain. L. Lanari

Control Systems. Dynamic response in the time domain. L. Lanari Control Systems Dynamic response in the time domain L. Lanari outline A diagonalizable - real eigenvalues (aperiodic natural modes) - complex conjugate eigenvalues (pseudoperiodic natural modes) - phase

More information

Assignment 8. [η j, η k ] = J jk

Assignment 8. [η j, η k ] = J jk Assignment 8 Goldstein 9.8 Prove directly that the transformation is canonical and find a generating function. Q 1 = q 1, P 1 = p 1 p Q = p, P = q 1 q We can establish that the transformation is canonical

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics

Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics Jung-Hoon Kim and Hai-Woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Taejon, 305-70,

More information

Seminar 8. HAMILTON S EQUATIONS. p = L q = m q q = p m, (2) The Hamiltonian (3) creates Hamilton s equations as follows: = p ṗ = H = kq (5)

Seminar 8. HAMILTON S EQUATIONS. p = L q = m q q = p m, (2) The Hamiltonian (3) creates Hamilton s equations as follows: = p ṗ = H = kq (5) Problem 31. Derive Hamilton s equations for a one-dimensional harmonic oscillator. Seminar 8. HAMILTON S EQUATIONS Solution: The Lagrangian L = T V = 1 m q 1 kq (1) yields and hence the Hamiltonian is

More information

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k 2007 10 (545) 517.929..,.. 1. g t M, d dt g t = ;2 Ric(g t ) (1) Ric(g) g.,, -, - (., [1], [2]).,,.,, f t - (M G), g t = ft G,, (1)., -, -, (, ), - (,, [3]). t - E 3, g t, t E 3, (1). t -., -. (M g) Ric

More information

Partial factorization of wave functions for a quantum dissipative system

Partial factorization of wave functions for a quantum dissipative system PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998 Partial factorization of wave functions for a quantum dissipative system C. P. Sun Institute of Theoretical Physics, Academia Sinica, Beiing 100080, China

More information

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011 TWISTORS AND THE OCTONIONS Penrose 80 Nigel Hitchin Oxford July 21st 2011 8th August 1931 8th August 1931 1851... an oblong arrangement of terms consisting, suppose, of lines and columns. This will not

More information

One-dimensional harmonic oscillator. -motivation. -equation, energy levels. -eigenfunctions, Hermite polynomials. -classical analogy

One-dimensional harmonic oscillator. -motivation. -equation, energy levels. -eigenfunctions, Hermite polynomials. -classical analogy One-dimensional harmonic oscillator -motivation -equation, energy levels -eigenfunctions, Hermite polynomials -classical analogy One-dimensional harmonic oscillator 05/0 Harmonic oscillator = potential

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

arxiv: v1 [quant-ph] 29 May 2007

arxiv: v1 [quant-ph] 29 May 2007 arxiv:0705.4184v1 [quant-ph] 9 May 007 Fresnel-transform s quantum correspondence and quantum optical ABCD Law Fan Hong-Yi and Hu Li-Yun Department of Physics, Shanghai Jiao Tong University, Shanghai,

More information

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems)

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems) Algebras, Representations and Quant Title Approaches from mathematical scienc information, Chaos and Nonlinear Dy Mechanical and Macroscopic Systems) Author(s) Tanimura, Shogo Citation 物性研究 (2005), 84(3):

More information

Harmonic Oscillator Eigenvalues and Eigenfunctions

Harmonic Oscillator Eigenvalues and Eigenfunctions Chemistry 46 Fall 217 Dr. Jean M. Standard October 4, 217 Harmonic Oscillator Eigenvalues and Eigenfunctions The Quantum Mechanical Harmonic Oscillator The quantum mechanical harmonic oscillator in one

More information

Semiclassical spin coherent state method in the weak spin-orbit coupling limit

Semiclassical spin coherent state method in the weak spin-orbit coupling limit arxiv:nlin/847v1 [nlin.cd] 9 Aug Semiclassical spin coherent state method in the weak spin-orbit coupling limit Oleg Zaitsev Institut für Theoretische Physik, Universität Regensburg, D-934 Regensburg,

More information

Chapter 5.3: Series solution near an ordinary point

Chapter 5.3: Series solution near an ordinary point Chapter 5.3: Series solution near an ordinary point We continue to study ODE s with polynomial coefficients of the form: P (x)y + Q(x)y + R(x)y = 0. Recall that x 0 is an ordinary point if P (x 0 ) 0.

More information

On the N-tuple Wave Solutions of the Korteweg-de Vnes Equation

On the N-tuple Wave Solutions of the Korteweg-de Vnes Equation Publ. RIMS, Kyoto Univ. 8 (1972/73), 419-427 On the N-tuple Wave Solutions of the Korteweg-de Vnes Equation By Shunichi TANAKA* 1. Introduction In this paper, we discuss properties of the N-tuple wave

More information

On model theory, non-commutative geometry and physics. B. Zilber. University of Oxford. zilber/

On model theory, non-commutative geometry and physics. B. Zilber. University of Oxford.   zilber/ On model theory, non-commutative geometry and physics B. Zilber University of Oxford http://www.maths.ox.ac.uk/ zilber/ 1 Plan I. Generalities on physics, logical hierarchy of structures and Zariski geometries.

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

Classical and Quantum Conjugate Dynamics The Interplay Between Conjugate Variables

Classical and Quantum Conjugate Dynamics The Interplay Between Conjugate Variables Chapter 1 Classical and Quantum Conjugate Dynamics The Interplay Between Conjugate Variables Gabino Torres-Vega Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53598

More information

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1 PHY 546: Theoretical Dynaics, Fall 05 Noveber 3 rd, 05 Assignent #, Solutions Graded probles Proble.a) Given the -diensional syste we want to show that is a constant of the otion. Indeed,.b) dd dt Now

More information

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations Chapter 1 and Beam Accelerator Physics Group, Journal Club November 9, 2010 and Beam NSLS-II Brookhaven National Laboratory 1.1 (70) Big Picture for Numerical Accelerator Physics and Beam For single particle

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

Validity of Born Approximation for Nuclear Scattering arxiv: v1 [nucl-th] 1 Jul in Path Integral Representation

Validity of Born Approximation for Nuclear Scattering arxiv: v1 [nucl-th] 1 Jul in Path Integral Representation Validity of Born Approximation for Nuclear Scattering arxiv:0907.0115v1 [nucl-th] 1 Jul 2009 in Path Integral Representation M. R. Pahlavani 1,, R. Morad 1, 1 Department of Physics, Faculty of science,

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 15 15 OCTOBER 1998 A comparison of exact quantum mechanical and various semiclassical treatments for the vibronic absorption spectrum: The case of fast vibrational

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

On the Torus Quantization of Two Anyons with Coulomb Interaction in a Magnetic Field

On the Torus Quantization of Two Anyons with Coulomb Interaction in a Magnetic Field Preprint DFPD/97/TH/15 On the Torus Quantization of Two Anyons with Coulomb Interaction in a Magnetic Field Luca Salasnich 1 Dipartimento di Matematica Pura ed Applicata Università di Padova, Via Belzoni

More information

Path integrals in quantum mechanics

Path integrals in quantum mechanics Path integrals in quantum mechanics Phys V3500/G8099 handout #1 References: there s a nice discussion of this material in the first chapter of L.S. Schulman, Techniques and applications of path integration.

More information

HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

More information

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky Equilibrium points and linearization Eigenvalue decomposition and modal form State transition matrix and matrix exponential Stability ELEC 3035 (Part

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

arxiv: v2 [quant-ph] 31 Jan 2018

arxiv: v2 [quant-ph] 31 Jan 2018 U-TH-15 Complex action suggests future-included theory Keiichi Nagao ) and Holger Bech Nielsen ) ) Faculty of Education, baraki University, Bunkyo 2-1-1, Mito 310-8512 arxiv:1709.10179v2 [quant-ph] 31

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Helium fine structure Ingvar Lindgren (mod )

Helium fine structure Ingvar Lindgren (mod ) Helium fine structure Ingvar Lindgren 2004.09.20 (mod. 2005.01.23) The leading contributions to the helium fine structure beyond the first-order relativistic contribution were first derived by Araki [1]

More information

Feynman s path integral approach to quantum physics and its relativistic generalization

Feynman s path integral approach to quantum physics and its relativistic generalization Feynman s path integral approach to quantum physics and its relativistic generalization Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme

More information

On the Quantum Langevin Equation

On the Quantum Langevin Equation ournal of Statistical Physics, Vol. 46, Nos. 5/6, 1987 On the Quantum Langevin Equation G. W. Ford 1'3 and M. Kac 2'4 Received April 23, 1986 The quantum Langevin equation is the Heisenberg equation of

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions NIU PHYS 500, Fall 006 Classical Mechanics Solutions for HW6 Assignment: HW6 [40 points] Assigned: 006/11/10 Due: 006/11/17 Solutions P6.1 [4 + 3 + 3 = 10 points] Consider a particle of mass m moving in

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Modified Equations for Variational Integrators

Modified Equations for Variational Integrators Modified Equations for Variational Integrators Mats Vermeeren Technische Universität Berlin Groningen December 18, 2018 Mats Vermeeren (TU Berlin) Modified equations for variational integrators December

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

Band Structure and matrix Methods

Band Structure and matrix Methods Quantum Mechanics Physics 34 -Winter 0-University of Chicago Outline Band Structure and matrix Methods Jing Zhou ID:4473 jessiezj@uchicago.edu March 0, 0 Introduction Supersymmetric Quantum Mechanics and

More information