Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 9

Size: px
Start display at page:

Download "Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 9"

Transcription

1 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid October 29, 2002 Chater 9 Problem 9. One of the attemts at combining the two sets of Hamilton s equations into one tries to take q and as forming a comlex quantity. Show directly from Hamilton s equations of motion that for a system of one degree of freedom the transformation Q q + i, P Q is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordinates Q, P that are related to Q, P by a change of scale only, and that are canonical? Generalizing a little, we ut Q µq + i, P νq i. The reverse transformation is q 2 µ Q + ν P, 2i µ Q ν P. The direct conditions for canonicality, valid in cases like this one in which the

2 Homer Reid s Solutions to Goldstein Problems: Chater 9 2 transformation equations do not deend on the time exlicitly, are. 2 When alied to the case at hand, all four of these yield the same condition, namely µ 2iν. For µ ν, which is the case Goldstein gives, these conditions are clearly not satisfied, so is not canonical. But utting µ, ν 2i we see that equations are canonical.

3 Homer Reid s Solutions to Goldstein Problems: Chater 9 3 Problem 9.2 a For a one-dimensional system with the Hamiltonian H 2 2 2q 2, show that there is a constant of the motion D q 2 Ht. b As a generalization of art a, for motion in a lane with the Hamiltonian H n ar n, where is the vector of the momenta conjugate to the Cartesian coordinates, show that there is a constant of the motion D r n Ht. c The transformation Q λq, λp is obviously canonical. However, the same transformation with t time dilatation, Q λq, λp, t λ 2 t, is not. Show that, however, the equations of motion for q and for the Hamiltonian in art a are invariant under the transformation. The constant of the motion D is said to be associated with this invariance. a The equation of motion for the quantity D is dd dt {D, H} + D t The Poisson bracket of the second term in D clearly vanishes, so we have The first Poisson bracket is {q, H} H 2 4 { q, 2 } 4 { q, 2 } q {q, q 2 } H. 3 q

4 i Homer Reid s Solutions to Goldstein Problems: Chater 9 4 Next, {q, q } 2 q 0 q 2 2q 3 q q q 2 Plugging 4 and 5 into 3, we obtain b We have 2 q 2 5 dd dt 2 2 2q 2 H 0. H n/2 ax 2 + x2 2 + x2 3 n/2 so Then { r, H} i H x i anx i x 2 + x2 2 + x2 3 n/2 H i 2n i n/2. { x + 2 x x 3 H } x + 2 x x 3 H x i i i x i {n 2 i n/2 anx 2 i x2 + x2 2 + x2 3 n/2 } n n/2 anx 2 + x x 2 3 n/2 6 so if we define D r/n Ht, then dd dt D {D, H} t D { r, H} n t Substituting in from 6, n ar n H 0.

5 Homer Reid s Solutions to Goldstein Problems: Chater 9 5 c We ut t Qt λq λ 2, P t t λ λ 2. 7 Since q and are the original canonical coordinates, they satisfy q H On the other hand, differentiating 7, we have dq dt t λ q λ 2 t λ ṗ H q 3. 8 λ 2 P t dp dt t λ 3 ṗ λ 2 λ 3 q t λ 2 Q 3 t which are the same equations of motion as 8. Problem 9.4 Show directly that the transformation Q log sin, P q cot is canonical. The Jacobian of the transformation is M q cot cot q csc 2.

6 Homer Reid s Solutions to Goldstein Problems: Chater 9 6 Hence MJM J q cot q cot cot 0 q csc 2 q cot 0 cot q csc 2 cot cot q csc 2 q csc 2 q cot 0 csc 2 cot 2 cot 2 csc so the symlectic condition is satisfied. Problem 9.5 Show directly for a system of one degree of freedom that the transformation Q arctan q, P q q 2 is canonical, where is an arbitrary constant of suitable dimensions. so The Jacobian of the transformation is MJM J M + q 2 q 2 + q q 2 q q q 2 + q 2 q. + q 2 + q 2 + q 2 so the symlectic condition is satisfied.

7 Homer Reid s Solutions to Goldstein Problems: Chater 9 7 Problem 9.6 The transformation equations between two sets of coordinates are Q log + q /2 cos P 2 + q /2 cos q /2 sin a Show directly from these transformation equations that Q, P are canonical variables if q and are. b Show that the function that generates this transformation is F 3 e Q 2 tan. a The Jacobian of the transformation is M 2 q /2 cos +q /2 cos q/2 sin +q /2 cos q /2 sin + 2 cos sin 2 q /2 cos +q /2 cos q/2 sin +q /2 cos q /2 sin + sin 2 2q /2 cos + 2q cos 2 2q sin 2 2q /2 cos + 2q cos 2. Hence we have q MJM 2 /2 cos q /2 sin + sin 2 +q /2 cos q/2 sin 2q /2 cos + 2q cos 2 +q /2 cos q /2 sin + sin 2 2q /2 cos + 2q cos 2 2 J q /2 cos +q /2 cos q /2 sin +q /2 cos cos 0 2 +sin 2 +q /2 cos cos 2+q /2 sin sin 2 +q /2 cos cos2 +sin 2 +q /2 cos cos 2+q /2 sin sin 2 0 +q /2 cos 0 0 so the symlectic condition is satisfied.

8 Homer Reid s Solutions to Goldstein Problems: Chater 9 8 b For an F 3 function the relevant relations are q F/, P F/. We have F 3, Q e Q 2 tan so P F 3 2eQ e Q tan q F 3 eq 2 sec 2. The second of these may be solved to yield Q in terms of q and : Q log + q /2 cos and then we may lug this back into the equation for P to obtain as advertised. P 2q /2 sin + q sin 2 Problem 9.7 a If each of the four tyes of generating functions exist for a given canonical transformation, use the Legendre transformation to derive relations between them. b Find a generating function of the F 4 tye for the identity transformation and of the F 3 tye for the exchange transformation. c For an orthogonal oint transformation of q in a system of n degrees of freedom, show that the new momenta are likewise given by the orthogonal transformation of an n dimensional vector whose comonents are the old momenta lus a gradient in configuration sace. Problem 9.8 Prove directly that the transformation Q q, P 2 2 Q 2 2, P 2 2q q 2 is canonical and find a generating function. After a little hacking I came u with the generating function F 3, Q, q 2, Q 2 2Q 2 Q + q 2 Q 2

9 Homer Reid s Solutions to Goldstein Problems: Chater 9 9 which is of mixed F 3, F tye. This is Legendre-transformed into a function of the F tye according to The least action rincile then says F q, Q, q 2, Q 2 F 3 + q. q + 2 q 2 Hq i, i P Q + P 2 Q 2 KQ i, P i + F 3 ṗ + F 3 Q whence clearly + F 3 2 q 2 + F 3 2 Q 2 + q + q ṗ q F 3 Q P F 3 2Q F 3 2 Q 2 P 2 F 3 2 2Q q 2 2q q 2. Problem 9.4 By any method you choose show that the following transformation is canonical: x 2P sin Q + P 2, x 2 2P cos Q Q 2 y 2P cos Q + Q 2, y 2 2P sin Q P 2 where is some fixed arameter. Aly this transformation to the roblem of a article of charge q moving in a lane that is erendicular to a constant magnetic field B. Exress the Hamiltonian for this roblem in the Q i, P i coordinates, letting the arameter take the form 2 qb c. From this Hamiltonian obtain the motion of the article as a function of time. We will rove that the transformation is canonical by finding a generating function. Our first ste to this end will be to exress everything as a function

10 Homer Reid s Solutions to Goldstein Problems: Chater 9 0 of some set of four variables of which two are old variables and two are new. After some hacking, I arrived at the set {x, Q, y, Q 2 }. In terms of this set, the remaining quantities are y 2 x 2 y cot Q + Q x cot Q 2 Q x 2 y 2 x 2 P 8 2 x y y csc 2 Q P 2 2 x + y 2 We now seek a generating function of the form F x, Q, y, Q 2. This is of mixed tye, but can be related to a generating function of ure F character according to F x, Q, y, Q 2 F x, Q, y, Q 2 y y. Then the rincile of least action leads to the condition x ẋ + y ẏ P Q + P 2 Q 2 + F x ẋ + F y ṗ y + F Q + F 2 Q 2 + yṗ y + y ẏ from which we obtain x F x 3 y F y 4 P F 5 P 2 F 2. 6 Doing the easiest first, comaring 2 and 6 we see that F must have the form F x, Q, y, Q 2 2 xq 2 yq 2 + gx, Q, y. 7 Plugging this in to 4 and comaring with 4 we find gx, Q, y 2 x y y cot Q + ψx, Q. 8 Plugging 7 and 8 into 3 and comaring with 0, we see that ψ x 2 4 x cot Q

11 Homer Reid s Solutions to Goldstein Problems: Chater 9 or ψx, Q 2 x 2 cot Q. 9 8 Finally, combining 9, 8, 7, and 5 and comaring with we see that we may simly take φq 0. The final form of the generating function is then F x, Q, y, Q 2 2 x + 2 x 2 y Q x y y cot Q and its existence roves the canonicality of the transformation. Turning now to the solution of the roblem, we take the B field in the z direction, i.e. B B 0ˆk, and ut Then the Hamiltonian is Hx, y, x, y 2m A B 0 2 2m 2m y î + x ĵ. q c A 2 [ x + qb 2 0 2c y + y qb 0 2c x [ 2 2 ] x y + y 2 2 x where we ut 2 qb/c. In terms of the new variables, this is 2 ] HQ, Q 2, P, P 2 [ 2 2P cos Q + ] 2 2P sin Q 2m 2 m P ω c P where ω c qb/mc is the cyclotron frequency. From the Hamiltonian equations of motion alied to this Hamiltonian we see that Q 2, P, and P 2 are all constant, while the equation of motion for Q is Q H ω c Q ω c t + φ for some hase φ. Putting r 2P /, x 0 P 2 /, y 0 Q 2 / we then have x rsin ω c t + φ + x 0, x mω c 2 [r cosω ct + φ y 0 ] y rcos ω c t + φ + y 0, y mω c 2 [r sinω ct + φ + x 0 ] in agreement with the standard solution to the roblem.

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

Assignment 8. [η j, η k ] = J jk

Assignment 8. [η j, η k ] = J jk Assignment 8 Goldstein 9.8 Prove directly that the transformation is canonical and find a generating function. Q 1 = q 1, P 1 = p 1 p Q = p, P = q 1 q We can establish that the transformation is canonical

More information

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1 PHY 546: Theoretical Dynaics, Fall 05 Noveber 3 rd, 05 Assignent #, Solutions Graded probles Proble.a) Given the -diensional syste we want to show that is a constant of the otion. Indeed,.b) dd dt Now

More information

Canonical transformations (Lecture 4)

Canonical transformations (Lecture 4) Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson

More information

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions NIU PHYS 500, Fall 006 Classical Mechanics Solutions for HW6 Assignment: HW6 [40 points] Assigned: 006/11/10 Due: 006/11/17 Solutions P6.1 [4 + 3 + 3 = 10 points] Consider a particle of mass m moving in

More information

Homework 4. Goldstein 9.7. Part (a) Theoretical Dynamics October 01, 2010 (1) P i = F 1. Q i. p i = F 1 (3) q i (5) P i (6)

Homework 4. Goldstein 9.7. Part (a) Theoretical Dynamics October 01, 2010 (1) P i = F 1. Q i. p i = F 1 (3) q i (5) P i (6) Theoretical Dynamics October 01, 2010 Instructor: Dr. Thomas Cohen Homework 4 Submitted by: Vivek Saxena Goldstein 9.7 Part (a) F 1 (q, Q, t) F 2 (q, P, t) P i F 1 Q i (1) F 2 (q, P, t) F 1 (q, Q, t) +

More information

Simplifications to Conservation Equations

Simplifications to Conservation Equations Chater 5 Simlifications to Conservation Equations 5.1 Steady Flow If fluid roerties at a oint in a field do not change with time, then they are a function of sace only. They are reresented by: ϕ = ϕq 1,

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Homework 3. 1 Goldstein Part (a) Theoretical Dynamics September 24, The Hamiltonian is given by

Homework 3. 1 Goldstein Part (a) Theoretical Dynamics September 24, The Hamiltonian is given by Theoretical Dynamics September 4, 010 Instructor: Dr. Thomas Cohen Homework 3 Submitted by: Vivek Saxena 1 Goldstein 8.1 1.1 Part (a) The Hamiltonian is given by H(q i, p i, t) = p i q i L(q i, q i, t)

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

An Exactly Solvable 3 Body Problem

An Exactly Solvable 3 Body Problem An Exactly Solvable 3 Body Problem The most famous n-body problem is one where particles interact by an inverse square-law force. However, there is a class of exactly solvable n-body problems in which

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Hamilton-Jacobi theory

Hamilton-Jacobi theory Hamilton-Jacobi theory November 9, 04 We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynamical system there exists a canonical transformation to a set of

More information

Lecture 5. Alexey Boyarsky. October 21, Legendre transformation and the Hamilton equations of motion

Lecture 5. Alexey Boyarsky. October 21, Legendre transformation and the Hamilton equations of motion Lecture 5 Alexey Boyarsky October 1, 015 1 The Hamilton equations of motion 1.1 Legendre transformation and the Hamilton equations of motion First-order equations of motion. In the Lagrangian formulation,

More information

PHY 5246: Theoretical Dynamics, Fall November 16 th, 2015 Assignment # 11, Solutions. p θ = L θ = mr2 θ, p φ = L θ = mr2 sin 2 θ φ.

PHY 5246: Theoretical Dynamics, Fall November 16 th, 2015 Assignment # 11, Solutions. p θ = L θ = mr2 θ, p φ = L θ = mr2 sin 2 θ φ. PHY 5246: Theoretical Dynamics, Fall 215 November 16 th, 215 Assignment # 11, Solutions 1 Graded problems Problem 1 1.a) The Lagrangian is L = 1 2 m(ṙ2 +r 2 θ2 +r 2 sin 2 θ φ 2 ) V(r), (1) and the conjugate

More information

Liouville Equation. q s = H p s

Liouville Equation. q s = H p s Liouville Equation In this section we will build a bridge from Classical Mechanics to Statistical Physics. The bridge is Liouville equation. We start with the Hamiltonian formalism of the Classical Mechanics,

More information

Outline. Liouville s theorem Canonical coordinates Hamiltonian Symplecticity Symplectic integration Symplectification algorithm

Outline. Liouville s theorem Canonical coordinates Hamiltonian Symplecticity Symplectic integration Symplectification algorithm Outline Liouville s theorem Canonical coordinates Hamiltonian Symlecticity Symlectic integration Symlectification algorithm USPAS: Lecture on Hamiltonian Dynamics Vasiliy Morozov, January 15 -- 1 -- Liouville

More information

The Particle-Field Hamiltonian

The Particle-Field Hamiltonian The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) p j . (5.1) !q j. " d dt = 0 (5.2) !p j . (5.

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) p j . (5.1) !q j.  d dt = 0 (5.2) !p j . (5. Chapter 5. Hamiltonian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 5.1 The Canonical Equations of Motion As we saw in section 4.7.4, the generalized

More information

Hamiltonian Field Theory

Hamiltonian Field Theory Hamiltonian Field Theory August 31, 016 1 Introduction So far we have treated classical field theory using Lagrangian and an action principle for Lagrangian. This approach is called Lagrangian field theory

More information

Canonical transformations and exact invariants for time-dependent Hamiltonian systems

Canonical transformations and exact invariants for time-dependent Hamiltonian systems Ann. Phys. Leipzig 11 00 1, 15 38 Canonical transformations and exact invariants for time-dependent Hamiltonian systems Jürgen Struckmeier a and Claus Riedel Gesellschaft für Schwerionenforschung GSI,

More information

The Accelerator Hamiltonian in a Straight Coordinate System

The Accelerator Hamiltonian in a Straight Coordinate System Hamiltoninan Dynamics for Particle Accelerators, Lecture 2 The Accelerator Hamiltonian in a Straight Coordinate System Andy Wolski University of Liverpool, and the Cockcroft Institute, Daresbury, UK. Given

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

AMS10 HW1 Grading Rubric

AMS10 HW1 Grading Rubric AMS10 HW1 Grading Rubric Problem 1 (16ts- ts/each). Left hand side is shown to equal right hand side using examles with real vectors. A vector sace is a set V on which two oerations, vector addition and

More information

Part II. Classical Dynamics. Year

Part II. Classical Dynamics. Year Part II Year 28 27 26 25 24 23 22 21 20 2009 2008 2007 2006 2005 28 Paper 1, Section I 8B Derive Hamilton s equations from an action principle. 22 Consider a two-dimensional phase space with the Hamiltonian

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

The Geometry of Euler s equation. Introduction

The Geometry of Euler s equation. Introduction The Geometry of Euler s equation Introduction Part 1 Mechanical systems with constraints, symmetries flexible joint fixed length In principle can be dealt with by applying F=ma, but this can become complicated

More information

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) January 26, 2016 90/441 Lecture outline We will discuss the Hamiltonian flow in the phase space. This flow represents a time dependent

More information

HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS

HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016 2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Quantization of the Photon Field QED

Quantization of the Photon Field QED Quantization of the Photon Field QED 21.05.2012 0.1 Reminder: Classical Electrodynamics Before we start quantizing the hoton field, let us reflect on classical electrodynamics. The Hamiltonian is given

More information

CALCULUS I. Practice Problems Integrals. Paul Dawkins

CALCULUS I. Practice Problems Integrals. Paul Dawkins CALCULUS I Practice Problems Integrals Paul Dawkins Table of Contents Preface... Integrals... Introduction... Indefinite Integrals... Comuting Indefinite Integrals... Substitution Rule for Indefinite Integrals...

More information

Statistical Mechanics Solution Set #1 Instructor: Rigoberto Hernandez MoSE 2100L, , (Dated: September 4, 2014)

Statistical Mechanics Solution Set #1 Instructor: Rigoberto Hernandez MoSE 2100L, , (Dated: September 4, 2014) CHEM 6481 TT 9:3-1:55 AM Fall 214 Statistical Mechanics Solution Set #1 Instructor: Rigoberto Hernandez MoSE 21L, 894-594, hernandez@gatech.edu (Dated: September 4, 214 1. Answered according to individual

More information

8.7 Associated and Non-associated Flow Rules

8.7 Associated and Non-associated Flow Rules 8.7 Associated and Non-associated Flow Rules Recall the Levy-Mises flow rule, Eqn. 8.4., d ds (8.7.) The lastic multilier can be determined from the hardening rule. Given the hardening rule one can more

More information

HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

HEAT AND LAPLACE TYPE EQUATIONS WITH COMPLEX SPATIAL VARIABLES IN WEIGHTED BERGMAN SPACES

HEAT AND LAPLACE TYPE EQUATIONS WITH COMPLEX SPATIAL VARIABLES IN WEIGHTED BERGMAN SPACES Electronic Journal of ifferential Equations, Vol. 207 (207), No. 236,. 8. ISSN: 072-669. URL: htt://ejde.math.txstate.edu or htt://ejde.math.unt.edu HEAT AN LAPLACE TYPE EQUATIONS WITH COMPLEX SPATIAL

More information

1 Properties of Spherical Harmonics

1 Properties of Spherical Harmonics Proerties of Sherical Harmonics. Reetition In the lecture the sherical harmonics Y m were introduced as the eigenfunctions of angular momentum oerators lˆz and lˆ2 in sherical coordinates. We found that

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

On singular lagrangians and Dirac s method

On singular lagrangians and Dirac s method INVESTIGACIÓN Revista Mexicana de Física 58 (01 61 68 FEBRERO 01 On singular lagrangians and Dirac s method J.U. Cisneros-Parra Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Zona Uniiversitaria,

More information

Classical Mechanics in Hamiltonian Form

Classical Mechanics in Hamiltonian Form Classical Mechanics in Hamiltonian Form We consider a point particle of mass m, position x moving in a potential V (x). It moves according to Newton s law, mẍ + V (x) = 0 (1) This is the usual and simplest

More information

Hamilton s principle and Symmetries

Hamilton s principle and Symmetries Hamilton s principle and Symmetries Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2011 August 18, 2011 The Hamiltonian The change in the Lagrangian due to a virtual change of coordinates is dl

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

EULER-LAGRANGE TO HAMILTON. The goal of these notes is to give one way of getting from the Euler-Lagrange equations to Hamilton s equations.

EULER-LAGRANGE TO HAMILTON. The goal of these notes is to give one way of getting from the Euler-Lagrange equations to Hamilton s equations. EULER-LAGRANGE TO HAMILTON LANCE D. DRAGER The goal of these notes is to give one way of getting from the Euler-Lagrange equations to Hamilton s equations. 1. Euler-Lagrange to Hamilton We will often write

More information

Principles of Computed Tomography (CT)

Principles of Computed Tomography (CT) Page 298 Princiles of Comuted Tomograhy (CT) The theoretical foundation of CT dates back to Johann Radon, a mathematician from Vienna who derived a method in 1907 for rojecting a 2-D object along arallel

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Gauge Fixing and Constrained Dynamics in Numerical Relativity

Gauge Fixing and Constrained Dynamics in Numerical Relativity Gauge Fixing and Constrained Dynamics in Numerical Relativity Jon Allen The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is reviewed. Gauge freedom is discussed and

More information

Hamiltonian Solution I

Hamiltonian Solution I Physics 4 Lecture 5 Hamiltonian Solution I Lecture 5 Physics 4 Classical Mechanics II September 7th 2007 Here we continue with the Hamiltonian formulation of the central body problem we will uncover the

More information

Solutions 4: Free Quantum Field Theory

Solutions 4: Free Quantum Field Theory QFT PS4 Solutions: Free Quantum Field Theory 8//8 Solutions 4: Free Quantum Field Theory. Heisenberg icture free real scalar field We have φt, x π 3 a e iωt+i x + a e iωt i x ω i By taking an exlicit hermitian

More information

Sums of independent random variables

Sums of independent random variables 3 Sums of indeendent random variables This lecture collects a number of estimates for sums of indeendent random variables with values in a Banach sace E. We concentrate on sums of the form N γ nx n, where

More information

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017 Name (Last name, First name): MTH 310 Comlex Variables Practice Exam 1 Feb. 10, 017 Exam Instructions: You have 1 hour & 10 minutes to comlete the exam. There are a total of 7 roblems. You must show your

More information

Unimodularity and preservation of measures in nonholonomic mechanics

Unimodularity and preservation of measures in nonholonomic mechanics Unimodularity and preservation of measures in nonholonomic mechanics Luis García-Naranjo (joint with Y. Fedorov and J.C. Marrero) Mathematics Department ITAM, Mexico City, MEXICO ẋ = f (x), x M n, f smooth

More information

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + +

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + + Out: 8 November Due: 3 November Problem : You are given the following system: Gs () =. s + s+ a) Using Lalace and Inverse Lalace, calculate the unit ste resonse of this system (assume zero initial conditions).

More information

Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics

Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics G. Stupakov Revision 20 Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics The US Particle Accelerator School June 13-24, 2011 Melville, New York 2011 Contents 1 Preliminaries

More information

L(q, q) = m 2 q2 V (q) 2 m + V (q)

L(q, q) = m 2 q2 V (q) 2 m + V (q) Lecture 7 Phase Space, Part 1 MATH-GA 71.1 Mechanics 1 Phase portraits 1.1 One dimensional system Consider the generic one dimensional case of a point mass m described by a generalized coordinate q and

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE III Wednesday, August 6, 000 8:0 to :0 a.m., only Notice... Scientific calculators

More information

ME scope Application Note 16

ME scope Application Note 16 ME scoe Alication Note 16 Integration & Differentiation of FFs and Mode Shaes NOTE: The stes used in this Alication Note can be dulicated using any Package that includes the VES-36 Advanced Signal Processing

More information

Solutions to Problem Set #11 Physics 151

Solutions to Problem Set #11 Physics 151 Solutions to Problem Set #11 Physics 151 Problem 1 The Hamiltonian is p k H = + m Relevant Poisson brackets are H p [ H, ] = =, p m H [ p, H] = = k We can now write the formal solution for (t as 3 t t

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 1 Defining statistical mechanics: Statistical Mechanics provies the connection between microscopic motion of individual atoms of matter and macroscopically

More information

The kinetic equation (Lecture 11)

The kinetic equation (Lecture 11) The kinetic equation (Lecture 11) January 29, 2016 190/441 Lecture outline In the preceding lectures we focused our attention on a single particle motion. In this lecture, we will introduce formalism for

More information

[#1] R 3 bracket for the spherical pendulum

[#1] R 3 bracket for the spherical pendulum .. Holm Tuesday 11 January 2011 Solutions to MSc Enhanced Coursework for MA16 1 M3/4A16 MSc Enhanced Coursework arryl Holm Solutions Tuesday 11 January 2011 [#1] R 3 bracket for the spherical pendulum

More information

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics c Hans C. Andersen October 1, 2009 While we know that in principle

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

3.4 Design Methods for Fractional Delay Allpass Filters

3.4 Design Methods for Fractional Delay Allpass Filters Chater 3. Fractional Delay Filters 15 3.4 Design Methods for Fractional Delay Allass Filters Above we have studied the design of FIR filters for fractional delay aroximation. ow we show how recursive or

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Physics 170 Week 9 Lecture 2

Physics 170 Week 9 Lecture 2 Physics 170 Week 9 Lecture 2 http://www.phas.ubc.ca/ gordonws/170 Physics 170 Week 9 Lecture 2 1 Textbook Chapter 1: Section 1.6 Physics 170 Week 9 Lecture 2 2 Learning Goals: We will solve an example

More information

References: 1. Cohen Tannoudji Chapter 5 2. Quantum Chemistry Chapter 3

References: 1. Cohen Tannoudji Chapter 5 2. Quantum Chemistry Chapter 3 Lecture #6 Today s Program:. Harmonic oscillator imortance. Quantum mechanical harmonic oscillations of ethylene molecule 3. Harmonic oscillator quantum mechanical general treatment 4. Angular momentum,

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

PROPERTIES OF L P (K)-SOLUTIONS OF LINEAR NONHOMOGENEOUS IMPULSIVE DIFFERENTIAL EQUATIONS WITH UNBOUNDED LINEAR OPERATOR

PROPERTIES OF L P (K)-SOLUTIONS OF LINEAR NONHOMOGENEOUS IMPULSIVE DIFFERENTIAL EQUATIONS WITH UNBOUNDED LINEAR OPERATOR PROPERTIES OF L P (K)-SOLUTIONS OF LINEAR NONHOMOGENEOUS IMPULSIVE DIFFERENTIAL EQUATIONS WITH UNBOUNDED LINEAR OPERATOR Atanaska Georgieva Abstract. Sufficient conditions for the existence of L (k)-solutions

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics 2 (6668/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics 2 (6668/01) Mark Scheme (Results) Summer 06 Pearson Edexcel GCE in Further Pure Mathematics (6668/0) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding

More information

S = ( µ φ µ φ m 2 φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: φ a φ a φ m 2 φ φ (3) π = L φ = φ (4) φ (5)

S = ( µ φ µ φ m 2 φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: φ a φ a φ m 2 φ φ (3) π = L φ = φ (4) φ (5) Problem. (a) We are given the action to be: S ( µ φ µ φ m φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: Then the momentum densities are: L µ φ µ φ m φ φ () L φ φ a φ a φ m φ φ

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

Calculation of gravity due to a vertical cylinder using a spherical harmonic series and numerical integration

Calculation of gravity due to a vertical cylinder using a spherical harmonic series and numerical integration CSIRO PUBISHING Exloration Geohysics htt://dx.doi.org/.7/eg43 Calculation of gravity due to a vertical cylinder using a sherical harmonic series and numerical integration Sung-Ho Na,3 Hyoungrea Rim,3,4

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

Legendre Transforms, Calculus of Varations, and Mechanics Principles

Legendre Transforms, Calculus of Varations, and Mechanics Principles page 437 Appendix C Legendre Transforms, Calculus of Varations, and Mechanics Principles C.1 Legendre Transforms Legendre transforms map functions in a vector space to functions in the dual space. From

More information

MATH 361: NUMBER THEORY ELEVENTH LECTURE

MATH 361: NUMBER THEORY ELEVENTH LECTURE MATH 361: NUMBER THEORY ELEVENTH LECTURE The subjects of this lecture are characters, Gauss sums, Jacobi sums, and counting formulas for olynomial equations over finite fields. 1. Definitions, Basic Proerties

More information

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

ZEEMAN EFFECT: p...(1). Eigenfunction for this Hamiltonian is specified by

ZEEMAN EFFECT: p...(1). Eigenfunction for this Hamiltonian is specified by ZEEMAN EFFECT: Zeeman Effect is a magneto-otical henomenon discovered by Zeeman in 1896. He observed that when an atom (light soce) is laced in an external magnetic field, the sectral lines it emits are

More information

Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters

Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters Udacity and Mercedes February 7, 07 Introduction Lesson Ma 3 Estimation Problem Refresh 4 Measurement Udate Quiz 5 Kalman Filter Equations

More information

FE FORMULATIONS FOR PLASTICITY

FE FORMULATIONS FOR PLASTICITY G These slides are designed based on the book: Finite Elements in Plasticity Theory and Practice, D.R.J. Owen and E. Hinton, 1970, Pineridge Press Ltd., Swansea, UK. 1 Course Content: A INTRODUCTION AND

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

From quantum to classical statistical mechanics. Polyatomic ideal gas.

From quantum to classical statistical mechanics. Polyatomic ideal gas. From quantum to classical statistical mechanics. Polyatomic ideal gas. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 5, Statistical Thermodynamics, MC260P105,

More information

Dynamics of spinning particles in Schwarzschild spacetime

Dynamics of spinning particles in Schwarzschild spacetime Dynamics of spinning particles in Schwarzschild spacetime, Volker Perlick, Claus Lämmerzahl Center of Space Technology and Microgravity University of Bremen, Germany 08.05.2014 RTG Workshop, Bielefeld

More information

Classical mechanics of particles and fields

Classical mechanics of particles and fields Classical mechanics of particles and fields D.V. Skryabin Department of Physics, University of Bath PACS numbers: The concise and transparent exposition of many topics covered in this unit can be found

More information

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121 Classical Mechanics/Electricity and Magnetism Preliminary Exam August 20, 2008 09:00-15:00 in P-121 Answer THREE (3) questions from each of the TWO (2) sections A and B for a total of SIX (6) solutions.

More information

Topic 7: Using identity types

Topic 7: Using identity types Toic 7: Using identity tyes June 10, 2014 Now we would like to learn how to use identity tyes and how to do some actual mathematics with them. By now we have essentially introduced all inference rules

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Newtonian Mechanics. Chapter Classical space-time

Newtonian Mechanics. Chapter Classical space-time Chapter 1 Newtonian Mechanics In these notes classical mechanics will be viewed as a mathematical model for the description of physical systems consisting of a certain (generally finite) number of particles

More information

integral invariant relations is not limited to one or two such

integral invariant relations is not limited to one or two such The Astronomical Journal, 126:3138 3142, 2003 December # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. EFFICIENT ORBIT INTEGRATION BY SCALING AND ROTATION FOR CONSISTENCY

More information

The oerators a and a obey the commutation relation Proof: [a a ] = (7) aa ; a a = ((q~ i~)(q~ ; i~) ; ( q~ ; i~)(q~ i~)) = i ( ~q~ ; q~~) = (8) As a s

The oerators a and a obey the commutation relation Proof: [a a ] = (7) aa ; a a = ((q~ i~)(q~ ; i~) ; ( q~ ; i~)(q~ i~)) = i ( ~q~ ; q~~) = (8) As a s They can b e used to exress q, and H as follows: 8.54: Many-body henomena in condensed matter and atomic hysics Last modied: Setember 4, 3 Lecture. Coherent States. We start the course with the discussion

More information