CHAPTER 3. Sequences. 1. Basic Properties

Size: px
Start display at page:

Download "CHAPTER 3. Sequences. 1. Basic Properties"

Transcription

1 CHAPTER 3 Sequences We begin our study of analysis with sequences. There are several reasons for starting here. First, sequences are the simplest way to introduce limits, the central idea of calculus. Second, sequences are a direct route to the topology of the real numbers. The combination of limits and topology provides the tools to finally prove the theorems you ve already used in your calculus course.. Basic Properties DEFINITION 3.. A sequence is a function a : N! R. Instead of using the standard function notation of a(n) for sequences, it is usually more convenient to write the argument of the function as a subscript, a n. EXAMPLE 3.. Let the sequence a n = /n. The first three elements are a = 0, a 2 = /2, a 3 = 2/3, etc. EXAMPLE 3.2. Let the sequence b n = 2 n. Then b = 2, b 2 = 4, b 3 = 8, etc. EXAMPLE 3.3. Let the sequence c n = 00 5n so c = 95, c 2 = 90, c 3 = 85, etc. EXAMPLE 3.4. If a and r are constants, then a sequence given by c = a, c 2 = ar, c 3 = ar 2 and in general c n = ar n is called a geometric sequence. The number r is called the ratio of the sequence. Staying away from the trivial cases where a = 0 or r = 0, a geometric sequence can always be recognized by noticing that c n+ c n = r for all n 2 N. Example 3.2 is a geometric sequence with a = r = 2. EXAMPLE 3.5. If a and d are constants, then a sequence of the form d n = a + (n )d is called an arithmetic sequence. Another way of looking at this is that d n is an arithmetic sequence if d n+ d n = d for all n 2 N. Example 3.3 is an arithmetic sequence with a = 95 and d = 5. EXAMPLE 3.6. Some sequences are not defined by an explicit formula, but are defined recursively. This is an inductive method of definition in which successive terms of the sequence are defined by using other terms of the sequence. The most famous of these is the Fibonacci sequence. To define the Fibonacci sequence, f n, let f = 0, f 2 = and for n > 2, let f n = f n 2 + f n. The first few terms are 0,,,2,3,5,8,... There actually is a simple formula that directly gives f n, and its derivation is Exercise

2 3-2 CHAPTER 3. SEQUENCES EXAMPLE 3.7. These simple definitions can lead to complex problems. One famous case is a hailstone sequence. Let h be any natural number. For n >, recursively define ( 3hn +, if h n is odd h n = h n /2, if h n is even. Lothar Collatz conjectured in 937 that any hailstone sequence eventually settles down to repeating the pattern,4,2,,4,2,. Many people have tried to prove this and all have failed. It s often inconvenient for the domain of a sequence to be N, as required by Definition 3.. For example, the sequence beginning, 2, 4, 8,... can be written 2 0,2,2 2,2 3,... Written this way, it s natural to let the sequence function be 2 n with domain!. As long as there is a simple substitution to write the sequence function in the form of Definition 3., there s no reason to adhere to the letter of the law. In general, the domain of a sequence can be any set of the form {n 2 Z : n N} for some N 2 Z. DEFINITION 3.2. A sequence a n is bounded if {a n : n 2 N} is a bounded set. This definition is extended in the obvious way to bounded above and bounded below. The sequence of Example 3. is bounded, but the sequence of Example 3.2 is not, although it is bounded below. DEFINITION 3.3. A sequence a n converges to L 2 R if for all " > 0 there exists an N 2 N such that whenever n N, then a n L <". If a sequence does not converge, then it is said to diverge. When a n converges to L, we write lim n! a n = L, or often, more simply, a n! L. EXAMPLE 3.8. Let a n = /n be as in Example 3.. We claim a n!. To see this, let " > 0 and choose N 2 N such that /N < ". Then, if n N so a n!. a n = ( /n) =/n /N < ", EXAMPLE 3.9. The sequence b n = 2 n of Example 3.2 diverges. To see this, suppose not. Then there is an L 2 R such that b n! L. If" =, there must be an N 2 N such that b n L <" whenever n N. Choose n N. L 2 n < implies L < 2 n +. But, then b n+ L = 2 n+ L > 2 n+ (2 n + ) = 2 n = ". This violates the condition on N. We conclude that for every L 2 R there exists an " > 0 such that for no N 2 N is it true that whenever n N, then b n L <". Therefore, b n diverges. DEFINITION 3.4. A sequence a n diverges to if for every B > 0 there is an N 2 N such that n N implies a n > B. The sequence a n is said to diverge to if a n diverges to.

3 . BASIC PROPERTIES 3-3 When a n diverges to, we write lim n! a n =, or often, more simply, a n!. A common mistake is to forget that a n!actually means the sequence diverges in a particular way. Don t be fooled by the suggestive notation into treating as a number! EXAMPLE 3.0. It is easy to prove that the sequence a n = 2 n of Example 3.2 diverges to. THEOREM 3.5. If a n! L, then L is unique. PROOF. Suppose a n! L and a n! L 2. Let " > 0. According to Definition 3.2, there exist N, N 2 2 N such that n N implies a n L <"/2 and n N 2 implies a n L 2 <"/2. Set N = max{n, N 2 }. If n N, then L L 2 = L a n + a n L 2 L a n + a n L 2 <"/2 + "/2 = ". Since " is an arbitrary positive number an application of Exercise 2.2 shows L = L 2. THEOREM 3.6. a n! L iff for all " > 0, the set {n : a n (L ",L + ")} is finite. PROOF. ()) Let " > 0. According to Definition 3.2, there is an N 2 N such that {a n : n N} Ω (L ",L + "). Then {n : a n (L ",L + ")} Ω {,2,...,N }, which is finite. (() Let " > 0. By assumption {n : a n (L ",L +")} is finite, so let N = max{n : a n (L ",L+")}+. If n N, then a n 2 (L ",L+"). By Definition 3.2, a n! L. COROLLARY 3.7. If a n converges, then a n is bounded. PROOF. Suppose a n! L. According to Theorem 3.6 there are a finite number of terms of the sequence lying outside (L,L+). Since any finite set is bounded, the conclusion follows. The converse of this theorem is not true. For example, a n = ( ) n is bounded, but does not converge. The main use of Corollary 3.7 is as a quick first check to see whether a sequence might converge. It s usually pretty easy to determine whether a sequence is bounded. If it isn t, it must diverge. The following theorem lets us analyze some complicated sequences by breaking them down into combinations of simpler sequences. THEOREM 3.8. Let a n and b n be sequences such that a n! A and b n! B. Then (a) a n + b n! A + B, (b) a n b n! AB, and (c) a n /b n! A/B as long as b n 6= 0 for all n 2 N and B 6= 0. PROOF. (a) Let " > 0. There are N, N 2 2 N such that n N implies a n A <"/2 and n N 2 implies b n B <"/2. Define N = max{n, N 2 }. If n N, then (a n + b n ) (A + B) a n A + b n B <"/2 + "/2 = ".

4 3-4 CHAPTER 3. SEQUENCES Therefore a n + b n! A + B. (b) Let " > 0 and Æ > 0 be an upper bound for a n. Choose N, N 2 2 N such that n N =) a n A <"/2( B +) and n N 2 =) b n B <"/2Æ. If n N = max{n, N 2 }, then a n b n AB = a n b n a n B + a n B AB a n b n a n B + a n B AB = a n b n B + B a n A < Æ " 2Æ + B " 2( B +) < "/2 + "/2 = ". (c) First, notice that it suffices to show that /b n! /B, because part (b) of this theorem can be used to achieve the full result. Let " > 0. Choose N 2 N so that the following two conditions are satisfied: n N =) b n > B /2 and b n B <B 2 "/2. Then, when n N, Ø Ø Ø ØØØ b n B Ø = B b n ØØØ b n B Ø < B 2 "/2 (B/2)B Ø = ". Therefore /b n! /B. If you re not careful, you can easily read too much into the previous theorem and try to use its converse. Consider the sequences a n = ( ) n and b n = a n. Their sum, a n + b n = 0, product a n b n = and quotient a n /b n = all converge, but the original sequences diverge. It is often easier to prove that a sequence converges by comparing it with a known sequence than it is to analyze it directly. For example, a sequence such as a n = sin 2 n/n 3 can easily be seen to converge to 0 because it is dominated by /n 3. The following theorem makes this idea more precise. It s called the Sandwich Theorem here, but is also called the Squeeze, Pinching, Pliers or Comparison Theorem in different texts. THEOREM 3.9 (Sandwich Theorem). Suppose a n, b n and c n are sequences such that a n b n c n for all n 2 N. (a) If a n! L and c n! L, then b n! L. (b) If b n!, then c n!. (c) If b n!, then a n!. (a) Let " > 0. There is an N 2 N large enough so that when n N, then L " < a n and c n < L + ". These inequalities imply L " < a n b n c n < L + ". Theorem 3.6 shows b n! L. (b) Let B > 0 and choose N 2 N so that n N =) b n > B. Then c n b n > B whenever n N. This shows c n!. (c) This is essentially the same as part (b). PROOF.

5 2. MONOTONE SEQUENCES Monotone Sequences One of the problems with using the definition of convergence to prove a given sequence converges is the limit of the sequence must be known in order to verify the sequence converges. This gives rise in the best cases to a chicken and egg problem of somehow determining the limit before you even know the sequence converges. In the worst case, there is no nice representation of the limit to use, so you don t even have a target to shoot at. The next few sections are ultimately concerned with removing this deficiency from Definition 3.2, but some interesting side-issues are explored along the way. Not surprisingly, we begin with the simplest case. DEFINITION 3.0. A sequence a n is increasing, if a n+ a n for all n 2 N. It is strictly increasing if a n+ > a n for all n 2 N. A sequence a n is decreasing, if a n+ a n for all n 2 N. It is strictly decreasing if a n+ < a n for all n 2 N. If a n is any of the four types listed above, then it is said to be a monotone sequence. Notice the and in the definitions of increasing and decreasing sequences, respectively. Many calculus texts use strict inequalities because they seem to better match the intuitive idea of what an increasing or decreasing sequence should do. For us, the non-strict inequalities are more convenient. THEOREM 3.. A bounded monotone sequence converges. PROOF. Suppose a n is a bounded increasing sequence, L = lub{a n : n 2 N} and " > 0. Clearly, a n L for all n 2 N. According to Theorem 2.9, there exists an N 2 N such that a N > L ". Because the sequence is increasing, L a n a N > L " for all n N. This shows a n! L. If a n is decreasing, let b n = a n and apply the preceding argument. The key idea of this proof is the existence of the least upper bound of the sequence when the range of the sequence is viewed as a set of numbers. This means the Completeness Axiom implies Theorem 3.. In fact, it isn t hard to prove Theorem 3. also implies the Completeness Axiom, showing they are equivalent statements. Because of this, Theorem 3. is often used as the Completeness Axiom on R instead of the least upper bound property we used in Axiom 8. EXAMPLE 3.. The sequence e n = + n n converges. Looking at the first few terms of this sequence, e = 2, e 2 = 2.25, e 3 º 2.37, e 4 º 2.44, it seems to be increasing. To show this is indeed the case, fix n 2 N and use the binomial theorem to expand the product as! nx n (3.) e n = k k=0 n k

6 3-6 CHAPTER 3. SEQUENCES and (3.2) e n+ = n+ X k=0 For k n, the kth term of (3.) is! n + k (n + ) k.! n n(n )(n 2) (n (k )) = k nk k!n k = n n 2 n k + k! n n n = µ µ 2 µ k k! n n n < µ µ 2 µ k k! n + n + n + = n µ µ n n + (k ) k! n + n + n + (n + )n(n )(n 2) (n + (k )) = k!(n + )! k n + = k (n + ) k, which is the kth term of (3.2). Since (3.2) also has one more positive term in the sum, it follows that e n < e n+, and the sequence e n is increasing. Noting that /k! /2 k for k 2 N, we can bound the kth term of (3.).! n k n k = n! k!(n k)! n k = n n 2 n k + n n n < k! 2 k. Substituting this into (3.) yields! nx n e n = k so e n is bounded. k=0 n k < n = + 2 n < 3, 2 k!

7 3. SUBSEQUENCES AND THE BOLZANO-WEIERSTRASS THEOREM 3-7 Since e n is increasing and bounded, Theorem 3. implies e n converges. Of course, you probably remember from your calculus course that e n! e º THEOREM 3.2. An unbounded monotone sequence diverges to or, depending on whether it is increasing or decreasing, respectively. PROOF. Suppose a n is increasing and unbounded. If B > 0, the fact that a n is unbounded yields an N 2 N such that a N > B. Since a n is increasing, a n a N > B for all n N. This shows a n!. The proof when the sequence decreases is similar. 3. Subsequences and the Bolzano-Weierstrass Theorem DEFINITION 3.3. Let a n be a sequence and æ : N! N be a function such that m < n implies æ(m) < æ(n); i.e., æ is a strictly increasing sequence of natural numbers. Then b n = a ± æ(n) = a æ(n) is a subsequence of a n. The idea here is that the subsequence b n is a new sequence formed from an old sequence a n by possibly leaving terms out of a n. In other words, all the terms of b n must also appear in a n, and they must appear in the same order. EXAMPLE 3.2. Let æ(n) = 3n and a n be a sequence. Then the subsequence a æ(n) looks like a 3, a 6, a 9,...,a 3n,... The subsequence has every third term of the original sequence. EXAMPLE 3.3. If a n = sin(nº/2), then some possible subsequences are b n = a 4n+ =) b n =, and c n = a 2n =) c n = 0, d n = a n 2 =) d n = ( + ( ) n+ )/2. THEOREM 3.4. a n! L iff every subsequence of a n converges to L. PROOF. ()) Suppose æ : N! N is strictly increasing, as in the preceding definition. With a simple induction argument, it can be seen that æ(n) n for all n. (See Exercise 3.8.) Now, suppose a n! L and b n = a æ(n) is a subsequence of a n.if" > 0, there is an N 2 N such that n N implies a n 2 (L ",L + "). From the preceding paragraph, it follows that when n N, then b n = a æ(n) = a m for some m n. So, b n 2 (L ",L + ") and b n! L. (() Since a n is a subsequence of itself, it is obvious that a n! L. The main use of Theorem 3.4 is not to show that sequences converge, but, rather to show they diverge. It gives two strategies for doing this: find two subsequences converging to different limits, or find a divergent subsequence. In Example 3.3, the subsequences b n and c n demonstrate the first strategy, while d n demonstrates the second.

8 3-8 CHAPTER 3. SEQUENCES Even if a given sequence is badly behaved, it is possible there are well-behaved subsequences. For example, consider the divergent sequence a n = ( ) n. In this case, a n diverges, but the two subsequences a 2n = and a 2n+ = are constant sequences, so they converge. THEOREM 3.5. Every sequence has a monotone subsequence. PROOF. Let a n be a sequence and T = {n 2 N : m > n =) a m a n }. There are two cases to consider, depending on whether T is finite. First, assume T is infinite. Define æ() = mint and assuming æ(n) is defined, set æ(n + ) = mint \{æ(),æ(2),...,æ(n)}. This inductively defines a strictly increasing function æ : N! N. The definition of T guarantees a æ(n) is an increasing subsequence of a n. Now, assume T is finite. Let æ() = max T +. If æ(n) has been chosen for some n > maxt, then the definition of T implies there is an m > æ(n) such that a m a æ(n). Set æ(n + ) = m. This inductively defines the strictly increasing function æ : N! N such that a æ(n) is a decreasing subsequence of a n. If the sequence in Theorem 3.5 is bounded, then the corresponding monotone subsequence is also bounded. Recalling Theorem 3., we arrive at the following famous theorem. THEOREM 3.6 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence. 4. Lower and Upper Limits of a Sequence There are an uncountable number of strictly increasing functions æ : N! N, so every sequence a n has an uncountable number of subsequences. If a n converges, then Theorem 3.4 shows all of these subsequences converge to the same limit. It s also apparent that when a n!or a n!, then all its subsequences diverge in the same way. When a n does not converge or diverge to ±, the situation is a bit more difficult because some subsequences may converge and others may diverge. EXAMPLE 3.4. Let Q = {q n : n 2 N} and Æ 2 R. Since every interval contains an infinite number of rational numbers, it is possible to choose æ() = min{k : q k Æ <}. In general, assuming æ(n) has been chosen, choose æ(n + ) = min{k > æ(n): q k Æ </n}. Such a choice is always possible because Q \ (Æ /n,æ+/n)\{q k : k æ(n)} is infinite. This induction yields a subsequence q æ(n) of q n converging to Æ. If a n is a sequence and b n is a convergent subsequence of a n with b n! L, then L is called an accumulation point of a n. A convergent sequence has only one accumulation point, but a divergent sequence may have many accumulation points. As seen in Example 3.4, a sequence may have all of R as its set of accumulation points.

9 4. LOWER AND UPPER LIMITS OF A SEQUENCE 3-9 To make some sense out of this, suppose a n is a bounded sequence, and T n = {a k : k n}. Define `n = glbt n and µ n = lubt n. Because T n æ T n+, it follows that for all n 2 N, (3.3) ` `n `n+ µ n+ µ n µ. This shows `n is an increasing sequence bounded above by µ and µ n is a decreasing sequence bounded below by `. Theorem 3. implies both `n and µ n converge. If `n! ` and µ n! µ,(3.3) shows for all n, (3.4) `n ` µ µ n. Suppose b n! Ø is any convergent subsequence of a n. From the definitions of `n and µ n, it is seen that `n b n µ n for all n. Now(3.4) shows ` Ø µ. The normal terminology for ` and µ is given by the following definition. DEFINITION 3.7. Let a n be a sequence. If a n is bounded below, then the lower limit of a n is liminf a n = lim n! glb{a k : k n}. If a n is bounded above, then the upper limit of a n is limsup a n = lim n! lub{a k : k n}. When a n is unbounded, the lower and upper limits are set to appropriate infinite values, while recalling the familiar warnings about not being a number. Then and So, EXAMPLE 3.5. Define a n = µ n = lub{a k : k n} = `n = glb{a k : k n} = ( 2 + /n, n odd /n, n even. ( 2 + /n, n odd 2 + /(n + ), n even # 2 ( /n, n even /(n + ), n odd ". limsup a n = 2 > = liminf a n. Suppose a n is bounded above with T n, µ n and µ as in the discussion preceding the definition. We claim there is a subsequence of a n converging to limsup a n. The subsequence will be selected by induction. Choose æ() 2 N such that a æ() > µ. Suppose æ(n) has been selected for some n 2 N. Since µ æ(n)+ = lubt æ(n)+, there must be an a m 2 T æ(n)+ such that a m > µ æ(n)+ /(n + ). Then m > æ(n) and we set æ(n + ) = m.

10 3-0 CHAPTER 3. SEQUENCES This inductively defines a subsequence a æ(n), where (3.5) µ æ(n) µ æ(n)+ a æ(n) > µ æ(n)+ n +. for all n. The left and right sides of (3.5) both converge to limsup a n, so the Squeeze Theorem implies a æ(n)! limsup a n. In the cases when limsup a n =and limsup a n =, it is left to the reader to show there is a subsequence b n! limsup a n. Similar arguments can be made for liminf a n. Assuming æ(n) has been chosen for some n 2 N, To summarize: If Ø is an accumulation point of a n, then liminf a n Ø limsup a n. In case a n is bounded, both liminf a n and limsup a n are accumulation points of a n and a n converges iff liminf a n = lim n! a n = limsup a n. The following theorem has been proved. THEOREM 3.8. Let a n be a sequence. (a) There are subsequences of a n converging to liminf a n and limsup a n. (b) If Æ is an accumulation point of a n, then liminf a n Æ limsup a n. (c) liminf a n = limsup a n 2 R iff a n converges. 5. The Nested Interval Theorem DEFINITION 3.9. A collection of sets {S n : n 2 N} is said to be nested, if S n+ Ω S n for all n 2 N. THEOREM 3.20 (Nested Interval Theorem). If {I n = [a n,b n ]:n 2 N} is a nested collection of closed intervals such that lim n! (b n a n ) = 0, then there is an x 2 R such that T n2n I n = {x}. PROOF. Since the intervals are nested, it s clear that a n is an increasing sequence bounded above by b and b n is a decreasing sequence bounded below by a. Applying Theorem 3. twice, we find there are Æ,Ø 2 R such that a n! Æ and b n! Ø. We claim Æ = Ø. To see this, let " > 0 and use the shrinking condition on the intervals to pick N 2 N so that b N a N < ". The nestedness of the intervals implies a N a n < b n b N for all n N. Therefore a N lub{a n : n N} = Æ b N and a N glb{b n : n N} = Ø b N. This shows Æ Ø b N a N <". Since " > 0 was chosen arbitrarily, we conclude Æ = Ø. Let x = Æ = Ø. It remains to show that T n2n I n = {x}. First, we show that x 2 T n2n I n. To do this, fix N 2 N. Since a n increases to x, it s clear that x a N. Similarly, x b N. Therefore x 2 [a N,b N ]. Because N was chosen arbitrarily, it follows that x 2 T n2n I n. Next, suppose there are x, y 2 T n2n I n and let " > 0. Choose N 2 N such that b N a N < ". Then {x, y} Ω T n2n I n Ω [a N,b N ] implies x y <". Since " was chosen arbitrarily, we see x = y. Therefore T n2n I n = {x}.

11 3: Cauchy Sequences 3- EXAMPLE 3.6. If I n = (0,/n] for all n 2 N, then the collection {I n : n 2 N} is nested, but T n2n I n =;. This shows the assumption that the intervals be closed in the Nested Interval Theorem is necessary. EXAMPLE 3.7. If I n = [n,) then the collection {I n : n 2 N} is nested, but T n2n I n =;. This shows the assumption that the lengths of the intervals be bounded is necessary. (It will be shown in Corollary 5. that when their lengths don t go to 0, then the intersection is nonempty, but the uniqueness of x is lost.) 6. Cauchy Sequences Often the biggest problem with showing that a sequence converges using the techniques we have seen so far is we must know ahead of time to what it converges. This is the chicken and egg problem mentioned above. An escape from this dilemma is provided by Cauchy sequences. DEFINITION 3.2. A sequence a n is a Cauchy sequence if for all " > 0 there is an N 2 N such that n,m N implies a n a m <". This definition is a bit more subtle than it might at first appear. It sort of says that all the terms of the sequence are close together from some point onward. The emphasis is on all the terms from some point onward. To stress this, first consider a negative example. EXAMPLE 3.8. Suppose a n = P n /k for n 2 N. There s a trick for showing k= the sequence a n diverges. First, note that a n is strictly increasing. For any n 2 N, consider 2X n a 2 n = > k= n X n k = X 2X j j =0 k=0 2X j j =0 k=0 n 2 j + = X 2 j + k j =0 2 = n 2! Hence, the subsequence a 2 n is unbounded and the sequence a n diverges. (To see how this works, write out the first few sums of the form a 2 n.) On the other hand, a n+ a n =/(n + )! 0 and indeed, if m is fixed, a n+m a n!0. This makes it seem as though the terms are getting close together, as in the definition of a Cauchy sequence. But, a n is not a Cauchy sequence, as shown by the following theorem. THEOREM A sequence converges iff it is a Cauchy sequence. PROOF. ()) Suppose a n! L and " > 0. There is an N 2 N such that n N implies a n L <"/2. If m,n N, then a m a n = a m L + L a n a m L + L a m <"/2 + "/2 = ". This shows a n is a Cauchy sequence. Lee Larson (Lee.Larson@Louisville.edu)

12 3-2 CHAPTER 3. SEQUENCES (() Let a n be a Cauchy sequence. First, we claim that a n is bounded. To see this, let " = and choose N 2 N such that n,m N implies a n a m <. In this case, a N < a n < a N + for all n N, so {a n : n N} is a bounded set. The set {a n : n < N}, being finite, is also bounded. Since {a n : n 2 N} is the union of these two bounded sets, it too must be bounded. Because a n is a bounded sequence, Theorem 3.6 implies it has a convergent subsequence b n = a æ(n)! L. Let " > 0 and choose N 2 N so that n,m N implies a n a m <"/2 and b n L <"/2. If n N, then æ(n) n N and a n L = a n b n + b n L a n b n + b n L = a n a æ(n) + b n L < "/2 + "/2 = ". Therefore, a n! L. The fact that Cauchy sequences converge is yet another equivalent version of completeness. In fact, most advanced texts define completeness as Cauchy sequences converge. This is convenient in general spaces because the definition of a Cauchy sequence only needs the metric on the space and none of its other structure. A typical example of the usefulness of Cauchy sequences is given below. DEFINITION A sequence x n is contractive if there is a c 2 (0,) such that x k+ x k c x k x k for all k >. c is called the contraction constant. THEOREM If a sequence is contractive, then it converges. PROOF. Let x k be a contractive sequence with contraction constant c 2 (0,). We first claim that if n 2 N, then (3.6) x n x n+ c n x x 2. This is proved by induction. When n =, the statement is x x 2 c 0 x x 2 = x x 2, which is trivially true. Suppose that x n x n+ c n x x 2 for some n 2 N. Then, from the definition of a contractive sequence and the induction hypothesis, x n+ x n+2 c x n x n+ c c n x x 2 = c n x x 2. This shows the claim is true in the case n +. Therefore, by induction, the claim is true for all n 2 N. To show x n is a Cauchy sequence, let " > 0. Since c n! 0, we can choose N 2 N so that (3.7) c N ( c) x x 2 <".

13 3: Cauchy Sequences 3-3 Let n > m N. Then x n x m = x n x n + x n x n 2 + x n 2 x m+ + x m+ x m x n x n + x n x n x m+ x m Now, use (3.6) on each of these terms. c n 2 x x 2 +c n 3 x x 2 + +c m x x 2 = x x 2 (c n 2 + c n 3 + +c m ) Apply the formula for a geometric sum. (3.8) m cn m = x x 2 c c < x x 2 cm c Use (3.7) to estimate the following. x x 2 c N c " < x x 2 x x 2 = " This shows x n is a Cauchy sequence and must converge by Theorem EXAMPLE 3.9. Let < r < and define the sequence s n = P n k=0 r k. (You no doubt recognize this as the geometric series from your calculus course.) If r = 0, the convergence of s n is trivial. So, suppose r 6= 0. In this case, s n+ s n s n s n = r n+ Ø r n Ø = r < and s n is contractive. Theorem 3.24 implies s n converges. EXAMPLE Suppose f (x) = 2 + /x, a = 2 and a n+ = f (a n ) for n 2 N. It is evident that a n 2 for all n. Some algebra gives Ø a n+ a n ØØØ Ø a n a Ø = f (f (a n )) f (a n ) n f (a n ) a Ø = n + 2a n 5. This shows a n is a contractive sequence and, according to Theorem 3.24, a n! L for some L 2. Since, a n+ = 2 + /a n, taking the limit as n!of both sides gives L = 2 + /L. A bit more algebra shows L = + p 2. L is called a fixed point of the function f ; i.e. f (L) = L. Many approximation techniques for solving equations involve such iterative techniques depending upon contraction to find fixed points. The calculations in the proof of Theorem 3.24 give the means to approximate the fixed point to within an allowable error. Looking at line (3.8), notice x n x m < x x 2 cm c.

14 3-4 CHAPTER 3. SEQUENCES Let n!in this inequality to arrive at the error estimate (3.9) L x m x x 2 cm c. In Example 3.20, a = 2, a 2 = 5/2 and c /5. Suppose we want to approximate L to 5 decimal places of accuracy. It suffices to find n satisfying a n L < Using (3.9), with m = 9 shows a a 2 cm c Some arithmetic gives a 9 º The calculator value of confirming our estimate. L = + p 2 º , 7. Exercises 3.. Let the sequence a n = 6n. Use the definition of convergence for a 3n + 2 sequence to show a n converges If a n is a sequence such that a 2n! L and a 2n+! L, then a n! L Let a n be a sequence such that a 2n! A and a 2n a 2n! 0. Then a n! A If a n is a sequence of positive numbers converging to 0, then p a n! Find examples of sequences a n and b n such that a n! 0 and b n!such that (a) a n b n! 0 (b) a n b n! (c) lim n! a n b n does not exist, but a n b n is bounded. (d) Given c 2 R, a n b n! c If x n and y n are sequences such that lim n! x n = L 6= 0 and lim n! x n y n exists, then lim n! y n exists Determine the limit of a n = np n!. (Hint: If n is even, then n! > (n/2) n/2.) 3.8. If æ : N! N is strictly increasing, then æ(n) n for all n 2 N Analyze the sequence given by a n = P 2n k=n+ /k Every unbounded sequence contains a monotonic subsequence. 3.. Find a sequence a n such that given x 2 [0,], there is a subsequence b n of a n such that b n! x.

15 7. EXERCISES A sequence a n converges to 0 iff a n converges to Define the sequence a n = p n for n 2 N. Show that a n+ a n!0, but a n is not a Cauchy sequence Suppose a sequence is defined by a = 0, a = and a n+ = 2 (a n + a n ) for n 2. Prove a n converges, and determine its limit If the sequence a n is defined recursively by a = and a n+ = p a n +, then show a n converges and determine its limit Let a = 3 and a n+ = 2 /x n for n 2 N. Analyze the sequence If a n is a sequence such that lim n! a n+ /a n =Ω <, then a n! Prove that the sequence a n = n 3 /n! converges Let a n and b n be sequences. Prove that both sequences a n and b n converge iff both a n + b n and a n b n converge Let a n be a bounded sequence. Prove that given any " > 0, there is an interval I with length " such that {n : a n 2 I } is infinite. Is it necessary that a n be bounded? 3.2. A sequence a n converges in the mean if a n = n P n k= a k converges. Prove that if a n! L, then a n! L, but the converse is not true Find a sequence x n such that for all n 2 N there is a subsequence of x n converging to n If a n is a Cauchy sequence whose terms are integers, what can you say about the sequence? Show a n = P n /k! is a Cauchy sequence. k= If a n is a sequence such that every subsequence of a n has a further subsequence converging to L, then a n! L If a,b 2 (0,), then show np a n + b n! max{a,b} If 0 < Æ < and s n is a sequence satisfying s n+ <Æ s n, then s n! If c in the definition of a contractive sequence, can the sequence converge? If a n is a convergent sequence and b n is a sequence such that a m a n b m b n for all m,n 2 N, then b n converges.

16 3-6 CHAPTER 3. SEQUENCES If a n 0 for all n 2 N and a n! L, then p a n! p L If a n is a Cauchy sequence and b n is a subsequence of a n such that b n! L, then a n! L Let x = 3 and x n+ = 2 /x n for n 2 N. Analyze the sequence Let a n be a sequence. a n! L iff limsup a n = L = liminf a n Is limsup(a n + b n ) = limsup a n + limsupb n? If a n is a sequence of positive numbers, then /liminf a n = limsup/a n. (Interpret /=0 and /0 =) limsup(a n + b n ) limsup a n + limsupb n a n = /n is not contractive The equation x 3 4x + 2 = 0 has one real root lying between 0 and. Find a sequence of rational numbers converging to this root. Use this sequence to approximate the root to five decimal places Approximate a solution of x 3 5x + = 0 to within 0 4 using a Cauchy sequence Prove or give a counterexample: If a n! L and æ : N! N is bijective, then b n = a æ(n) converges. Note that b n might not be a subsequence of a n. (b n is called a rearrangement of a n.)

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

CHAPTER 5. The Topology of R. 1. Open and Closed Sets

CHAPTER 5. The Topology of R. 1. Open and Closed Sets CHAPTER 5 The Topology of R 1. Open and Closed Sets DEFINITION 5.1. A set G Ω R is open if for every x 2 G there is an " > 0 such that (x ", x + ") Ω G. A set F Ω R is closed if F c is open. The idea is

More information

Limits and Continuity

Limits and Continuity Chapter Limits and Continuity. Limits of Sequences.. The Concept of Limit and Its Properties A sequence { } is an ordered infinite list x,x,...,,... The n-th term of the sequence is, and n is the index

More information

CHAPTER 6. Limits of Functions. 1. Basic Definitions

CHAPTER 6. Limits of Functions. 1. Basic Definitions CHAPTER 6 Limits of Functions 1. Basic Definitions DEFINITION 6.1. Let D Ω R, x 0 be a limit point of D and f : D! R. The limit of f (x) at x 0 is L, if for each " > 0 there is a ± > 0 such that when x

More information

Infinite Sequences of Real Numbers (AKA ordered lists) DEF. An infinite sequence of real numbers is a function f : N R.

Infinite Sequences of Real Numbers (AKA ordered lists) DEF. An infinite sequence of real numbers is a function f : N R. Infinite Sequences of Real Numbers (AKA ordered lists) DEF. An infinite sequence of real numbers is a function f : N R. Usually (infinite) sequences are written as lists, such as, x n n 1, x n, x 1,x 2,x

More information

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem.

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. Limit of a sequence Definition. Sequence {x n } of real numbers is said to converge to a real number a if for

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

2.1 Convergence of Sequences

2.1 Convergence of Sequences Chapter 2 Sequences 2. Convergence of Sequences A sequence is a function f : N R. We write f) = a, f2) = a 2, and in general fn) = a n. We usually identify the sequence with the range of f, which is written

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Math 117: Topology of the Real Numbers

Math 117: Topology of the Real Numbers Math 117: Topology of the Real Numbers John Douglas Moore November 10, 2008 The goal of these notes is to highlight the most important topics presented in Chapter 3 of the text [1] and to provide a few

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

Math LM (24543) Lectures 01

Math LM (24543) Lectures 01 Math 32300 LM (24543) Lectures 01 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Introduction, Ross Chapter 1 and Appendix The Natural Numbers N and The

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

An analogy from Calculus: limits

An analogy from Calculus: limits COMP 250 Fall 2018 35 - big O Nov. 30, 2018 We have seen several algorithms in the course, and we have loosely characterized their runtimes in terms of the size n of the input. We say that the algorithm

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra 206/7 MA03 Introduction to Abstract Mathematics Second part, Analysis and Algebra Amol Sasane Revised by Jozef Skokan, Konrad Swanepoel, and Graham Brightwell Copyright c London School of Economics 206

More information

Limit and Continuity

Limit and Continuity Limit and Continuity Table of contents. Limit of Sequences............................................ 2.. Definitions and properties...................................... 2... Definitions............................................

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Analysis I We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Copier s Message These notes may contain errors. In fact, they almost

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Algorithms: Lecture 2

Algorithms: Lecture 2 1 Algorithms: Lecture 2 Basic Structures: Sets, Functions, Sequences, and Sums Jinwoo Kim jwkim@jjay.cuny.edu 2.1 Sets 2 1 2.1 Sets 3 2.1 Sets 4 2 2.1 Sets 5 2.1 Sets 6 3 2.1 Sets 7 2.2 Set Operations

More information

MATH 301 INTRO TO ANALYSIS FALL 2016

MATH 301 INTRO TO ANALYSIS FALL 2016 MATH 301 INTRO TO ANALYSIS FALL 016 Homework 04 Professional Problem Consider the recursive sequence defined by x 1 = 3 and +1 = 1 4 for n 1. (a) Prove that ( ) converges. (Hint: show that ( ) is decreasing

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Calculus (Real Analysis I)

Calculus (Real Analysis I) Calculus (Real Analysis I) (MAT122β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Calculus (Real Analysis I)(MAT122β) 1/172 Chapter

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3 Analysis Math Notes Study Guide Real Analysis Contents Ordered Fields 2 Ordered sets and fields 2 Construction of the Reals 1: Dedekind Cuts 2 Metric Spaces 3 Metric Spaces 3 Definitions 4 Separability

More information

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x.

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. Advanced Calculus I, Dr. Block, Chapter 2 notes. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. 2. Definition. A sequence is a real-valued function

More information

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19 Introductory Analysis I Fall 204 Homework #9 Due: Wednesday, November 9 Here is an easy one, to serve as warmup Assume M is a compact metric space and N is a metric space Assume that f n : M N for each

More information

Solutions to Homework Assignment 2

Solutions to Homework Assignment 2 Solutions to Homework Assignment Real Analysis I February, 03 Notes: (a) Be aware that there maybe some typos in the solutions. If you find any, please let me know. (b) As is usual in proofs, most problems

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k =

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k = Infinite Series We say an infinite series a k converges to s if its sequence of initial sums converges to s, that is, lim( n a k : n N) = s. Similar to sequence, note that a series converges if and only

More information

Subsequences and the Bolzano-Weierstrass Theorem

Subsequences and the Bolzano-Weierstrass Theorem Subsequences and the Bolzano-Weierstrass Theorem A subsequence of a sequence x n ) n N is a particular sequence whose terms are selected among those of the mother sequence x n ) n N The study of subsequences

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

Seunghee Ye Ma 8: Week 2 Oct 6

Seunghee Ye Ma 8: Week 2 Oct 6 Week 2 Summary This week, we will learn about sequences and real numbers. We first define what we mean by a sequence and discuss several properties of sequences. Then, we will talk about what it means

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

Proof Techniques (Review of Math 271)

Proof Techniques (Review of Math 271) Chapter 2 Proof Techniques (Review of Math 271) 2.1 Overview This chapter reviews proof techniques that were probably introduced in Math 271 and that may also have been used in a different way in Phil

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

Math 101: Course Summary

Math 101: Course Summary Math 101: Course Summary Rich Schwartz August 22, 2009 General Information: Math 101 is a first course in real analysis. The main purpose of this class is to introduce real analysis, and a secondary purpose

More information

MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE

MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE SEBASTIEN VASEY These notes describe the material for November 26, 2018 (while similar content is in Abbott s book, the presentation here is different).

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

MA131 - Analysis 1. Workbook 6 Completeness II

MA131 - Analysis 1. Workbook 6 Completeness II MA3 - Analysis Workbook 6 Completeness II Autumn 2004 Contents 3.7 An Interesting Sequence....................... 3.8 Consequences of Completeness - General Bounded Sequences.. 3.9 Cauchy Sequences..........................

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Building Infinite Processes from Finite-Dimensional Distributions

Building Infinite Processes from Finite-Dimensional Distributions Chapter 2 Building Infinite Processes from Finite-Dimensional Distributions Section 2.1 introduces the finite-dimensional distributions of a stochastic process, and shows how they determine its infinite-dimensional

More information

Introduction to Real Analysis

Introduction to Real Analysis Christopher Heil Introduction to Real Analysis Chapter 0 Online Expanded Chapter on Notation and Preliminaries Last Updated: January 9, 2018 c 2018 by Christopher Heil Chapter 0 Notation and Preliminaries:

More information

Section 4.1: Sequences and Series

Section 4.1: Sequences and Series Section 4.1: Sequences and Series In this section, we shall introduce the idea of sequences and series as a necessary tool to develop the proof technique called mathematical induction. Most of the material

More information

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov Writing more proofs Misha Lavrov ARML Practice 3/16/2014 and 3/23/2014 Warm-up Using the quantifier notation on the reference sheet, and making any further definitions you need to, write the following:

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

4.3 Limit of a Sequence: Theorems

4.3 Limit of a Sequence: Theorems 4.3. LIMIT OF A SEQUENCE: THEOREMS 0 4.3 Limit of a Sequence: Theorems 4.3. Elementary Theorems In example 76, we used an approximation to simplify the problem a little bit. In this particular example,

More information

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013 Mathematics Principles of Analysis Solutions for Problem Set 5 Due: March 15, 013 A Section 1. For each of the following sequences, determine three different subsequences, each converging to a different

More information

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 =

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 = Math 316, Intro to Analysis subsequences. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequences a n = ( 1) n = +1. It converges to 1. On the other hand, the subsequences

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 1. Real Number System 1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly familiar with

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

4.4 Uniform Convergence of Sequences of Functions and the Derivative

4.4 Uniform Convergence of Sequences of Functions and the Derivative 4.4 Uniform Convergence of Sequences of Functions and the Derivative Say we have a sequence f n (x) of functions defined on some interval, [a, b]. Let s say they converge in some sense to a function f

More information

a 2n = . On the other hand, the subsequence a 2n+1 =

a 2n = . On the other hand, the subsequence a 2n+1 = Math 316, Intro to Analysis subsequences. This is another note pack which should last us two days. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequence a n = It converges

More information

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R.

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Sequences Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Usually, instead of using the notation s(n), we write s n for the value of this function calculated at n. We

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: January 2011 Analysis I Time Allowed: 1.5 hours Read carefully the instructions on the answer book and make sure that the particulars required are entered

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

Higher-Order Equations: Extending First-Order Concepts

Higher-Order Equations: Extending First-Order Concepts 11 Higher-Order Equations: Extending First-Order Concepts Let us switch our attention from first-order differential equations to differential equations of order two or higher. Our main interest will be

More information

Sequences CHAPTER 3. Definition. A sequence is a function f : N R.

Sequences CHAPTER 3. Definition. A sequence is a function f : N R. CHAPTER 3 Sequences 1. Limits and the Archimedean Property Our first basic object for investigating real numbers is the sequence. Before we give the precise definition of a sequence, we will give the intuitive

More information

We are now going to go back to the concept of sequences, and look at some properties of sequences in R

We are now going to go back to the concept of sequences, and look at some properties of sequences in R 4 Lecture 4 4. Real Sequences We are now going to go back to the concept of sequences, and look at some properties of sequences in R Definition 3 A real sequence is increasing if + for all, and strictly

More information

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1

Quick Tour of the Topology of R. Steven Hurder, Dave Marker, & John Wood 1 Quick Tour of the Topology of R Steven Hurder, Dave Marker, & John Wood 1 1 Department of Mathematics, University of Illinois at Chicago April 17, 2003 Preface i Chapter 1. The Topology of R 1 1. Open

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 16 Sequences and

More information

MATH1050 Greatest/least element, upper/lower bound

MATH1050 Greatest/least element, upper/lower bound MATH1050 Greatest/ element, upper/lower bound 1 Definition Let S be a subset of R x λ (a) Let λ S λ is said to be a element of S if, for any x S, x λ (b) S is said to have a element if there exists some

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT Mini-Course on Limits and Sequences by Peter Kwadwo Asante B.S., Kwame Nkrumah University of Science and Technology, Ghana, 204 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS

SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS (Chapter 9: Discrete Math) 9.11 SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS PART A: WHAT IS AN ARITHMETIC SEQUENCE? The following appears to be an example of an arithmetic (stress on the me ) sequence:

More information

Definitions & Theorems

Definitions & Theorems Definitions & Theorems Math 147, Fall 2009 December 19, 2010 Contents 1 Logic 2 1.1 Sets.................................................. 2 1.2 The Peano axioms..........................................

More information

Mathematical induction. Limits of sequences

Mathematical induction. Limits of sequences LATEST EDITION APRIL 7, 205 AT 5:46 Mathematical induction. Limits of sequences Proofreading of English by Laurence Weinstock Table des matières Mathematical induction 2. Domino effect or chain reaction.....................

More information

Spaces of continuous functions

Spaces of continuous functions Chapter 2 Spaces of continuous functions 2.8 Baire s Category Theorem Recall that a subset A of a metric space (X, d) is dense if for all x X there is a sequence from A converging to x. An equivalent definition

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee CSCE 222 Discrete Structures for Computing Sequences and Summations Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Sequences 2 Sequences A sequence is a function from a subset of the set of

More information

Homework 1 Solutions

Homework 1 Solutions MATH 171 Spring 2016 Problem 1 Homework 1 Solutions (If you find any errors, please send an e-mail to farana at stanford dot edu) Presenting your arguments in steps, using only axioms of an ordered field,

More information

Notes on arithmetic. 1. Representation in base B

Notes on arithmetic. 1. Representation in base B Notes on arithmetic The Babylonians that is to say, the people that inhabited what is now southern Iraq for reasons not entirely clear to us, ued base 60 in scientific calculation. This offers us an excuse

More information

1 The topology of metric spaces

1 The topology of metric spaces Introductory Analysis I Fall 2014 Notes on Metric Spaces These notes are an alternative to the textbook, from and including Closed Sets and Open Sets (page 58) to and excluding Cantor Sets (page 95) 1

More information

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S) 106 CHAPTER 3. TOPOLOGY OF THE REAL LINE 3.3 Limit Points 3.3.1 Main Definitions Intuitively speaking, a limit point of a set S in a space X is a point of X which can be approximated by points of S other

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information