Sum of Square Roots for Natural Whole Numbers: A New Essay to Solve an Old Economic Problem

Size: px
Start display at page:

Download "Sum of Square Roots for Natural Whole Numbers: A New Essay to Solve an Old Economic Problem"

Transcription

1 1 Sum of Square Roots for Natural Whole Numbers: A New Essay to Solve an Old Economic Problem By Dr. Brahim MANSOURI, Professor of economics, Faculty of Juridical, Economic and Social Sciences, Cadi Ayyad University, Marrakech, Morocco. Published in Modern Discussion, September, 15 th, URL: Suppose that some coalition States gain a war against a defeated country. Assume that the allied governments force the defeated State to pay a war penalty such as every year (n), the failed State has to disburse a fixed monetary sum (X) multiplied by the square root of n, with n varying from 1 to the infinite. The question to answer therefore is: What is the total amount of money the defeated State should pay at the infinite assuming that States are eternal? This problem has received my particular attention during recent days. Even comprehensive research on the Web has not yielded expected outcomes. Many mathematical forums still discuss the issue to find a solution without success. Note that I have not yet conducted deeper bibliographical research on the issue outside of the Net and I have not contacted mathematicians

2 2 to get their points of view about the issue. Hence, I don t know if a specific formula exists anywhere to solve our economic problem. Knowing that I am economist rather than mathematician, I will personally try in what follows, to find a formula to solve this thorny problem with a hope that qualified mathematicians react to our findings and, eventually, help us to improve the mathematical reasoning. First of all, let us find a mathematical design for our economic problem. Every year (n), the defeated State should pay a fixed amount (X) multiplied by the square root of n, the latter varying from 1 to the infinity. It is easy to understand in this case that the failed State should pay at the infinite, the fixed amount (X) multiplied by the sum of square roots of all the infinite consecutive natural whole numbers (1; 2; 3;.,n). Formally, defining the total amount to pay and the square root of a whole number i as TAP and SQR(i) respectively, we can write: TAP = X.SQR(1)+X.SQR(2)+X.SQR(3)+ X.SQR(n)=X.SUM(SQR(i)); where SUM(SQR(i)) is the sum of square roots of i from 1 to the infinite number n. As everyone can understand, it is very difficult for humans to compute this entire infinite sum with harder efforts to calculate and sum all the n square roots. With no computer software or, at least, a relatively

3 3 powerful calculator, errors in computing and summing the square roots are seen to be unavoidable. The best solution will be therefore to find a simple formula for the specified sum, that is SUM(SQR(i)), to be then multiplied by X to obtain the total amount to pay by the defeated State at the infinite horizon. How can this simple formula be found? In what follows, we resort to mathematical analysis (especially integrals) coupled with simple geometrical reasoning. The starting point in our analysis is the square root function (SQR), defined in the set of real numbers (R), as f(x) = SQR(x), x varying from 0 (zero) to the infinity. When drawing the curve of the square root function, one can understand that such a curve maps the area between the curve and the horizontal axis. To measure such area, it is easy to compute the integral of the square root function between the infinite number n and 0 (zero), to obtain a value of area1 = 2/3.n.SQR(n). The computed integral may be seen as an infinitesimal sum of square roots. It cannot be considered as a discrete sum of square roots we need to solve our defeated State s economic problem. Nevertheless, the computed integral is very useful to find a good formula to calculate the discrete sum (SUM(SQR(i)) of the square roots. To do so, let us represent the n square roots as areas of the vertical rectangles breaking through the curve of the square root function, with, everywhere, a value of 1 for width and SQR(i) for the length, i varying from 1 to n. Examining

4 4 the curve of the square root function punctured by the various vertical rectangles, one can understand that most of the area for each rectangle is included under the curve area. In turn, the remaining area for each vertical rectangle, characterized here as error or residual above the square root curve, is obviously less than the area below the curve of the square root function. Therefore, the sum of the square roots (SUM(SQR(i)) for all the n natural whole numbers may be computed as the sum of the areas below and above the curve of the square root function, that is the sum of the areas for all the n vertical rectangles. While in line with the integration theory, we know that the area under the square root curve is (2/3.n.SQR(n) = 2/3.SQR(n^3)), we have no direct and clear idea about a possible measurement of the area above the curve, that is the sum of the remaining areas of the vertical rectangles. This is the major issue we deal with in the following developments in order to solve our specified economic problem. After drawing the curve of the square root function defined within the set of all positive real numbers and penciling all the vertical rectangles breaking through the drawn curve, the next intuitive idea consists of drawing another curve linking all the upper left corners of the vertical rectangles. Then, the newly drawn curve may be modeled as a function g such as g(x) = SQR(x+1), with g being defined in the set from -1 to the infinity. Knowing that the area (area2) between the g and f curves for SQR(x+1) and SQR(x) respectively may be computed as the difference

5 5 between the integrals of the two functions from 0 (zero) to the infinite number n, such area will be: AREA2 = 2/3.(( n + 1).SQR(n + 1) - n.sqr(n)-1) It is clear that the remaining areas of the vertical rectangles above the curve of the square root function form a certain proportion of AREA2 as formally specified through our equation above. What can be this proportion? How can mathematical reasoning help to compute it? In what extent, this proportion to be computed can be useful to find a simple formula for the sum of infinite natural whole numbers to finally solve the economic problem of the defeated State? In what follows, we try to answer these questions. First of all, we know that the remaining areas (RA) for the vertical rectangles above the curve of the square root function (f) equals the difference between the sum of the square roots of the n infinite natural whole numbers and the integral of the f function between n and 0 (zero). Geometrically speaking, this means that such remaining areas may be measured as the difference between the sum of the areas for all the n vertical rectangles and the area below the square root curve until the horizontal axis. Formally, we can write: RA = SUM(SQR(i)) 2/3.n.SQR(n)

6 6 We argue that at an infinite horizon, the proportion of the whole subarea (RA) to AREA2 will be: RA/AREA2 = (SUM(SQR(i)) 2/3.n.SQR(n))/(2/3.((n+1).SQR(n+1)- n.sqr(n))) = 1/2 This formula for the proportion of RA to AREA2 may be then used to compute the required sum of the square roots of the n natural whole numbers. The idea is straightforward: the required sum equals the area under the square root function (f), that is the area noted AREA1, to be augmented by adding the half of the area between the g and f curves, that is the half of the area noted AREA2. Formally, we can write for i varying from 0 (zero) to n: SUM(SQR(i)) = AREA AREA2 This means that: SUM(SQR(i)) = 2/3.n.SQR(n)+0.50.(2/3.((n+1).SQR(n+1)-n.SQR(n)-1)) = 1/3.((n+1).SQR(n+1)+n.SQR(n)-1) = 1/3.(SQR((n+1)^3)+SQR(n^3)-1) Therefore, for an infinite n number, to obtain the sum of the square roots of the n natural whole digits, we should add the third of the square root for the (n+1) th number powered to 3, that is SQR((n+1)^3), to the

7 7 third of the n th number powered to 3, that is SQR(n^3), and then subtract one third from such sum. The formula seems to perform well even for smaller values of n. Taking examples, we find that: - for the 10 first natural whole numbers, the estimated sum of the square roots according to our formula, is about against a very close value of nearly for the effective sum as computed using a computer software; - for the 20 first numbers, the estimated sum is about against an effective value of 19.19; - for the 100 first natural numbers, estimates yield compared to an effectively computed value of ; - the estimated square roots sum for the first 1000 natural whole numbers is against a real-world value of As soon as n grows, the gap between the estimated and effective values of the square roots sum evanishes. For instance, when n equals , the estimated and effective square roots sums are seen to be identical, with a same value of about For n =

8 , the estimated and effective square roots sums have the same value of nearly With respect to the defeated State s economic problem as above specified, our estimates reveal that this State should pay at a time horizon of n years, a war penalty (WP) of about: WP = X.(1/3.(SQR((n+1)^3)+SQR(n^3)-1)) Even for shorter time horizons, our estimates reveal that the found formula performs well to forecast the amount of war penalty in accordance with the initially specified economic problem. We know that, in our modern era with developed technologies, it is easier, through computer software packages, to compute the sum of square roots as well as to undertake other complex operations, but the designed formula may be useful, at least methodologically. It may also be used to solve other economic and extra-economic problems. Comments and suggestions are welcome By Dr. Brahim MANSOURI, Professor of economics, Faculty of Juridical, Economic and Social Sciences, Cadi Ayyad University, Marrakech, Morocco.

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

1.4 DEFINITION OF LIMIT

1.4 DEFINITION OF LIMIT 1.4 Definition of Limit Contemporary Calculus 1 1.4 DEFINITION OF LIMIT It may seem strange that we have been using and calculating the values of its for awhile without having a precise definition of it,

More information

1 What is the area model for multiplication?

1 What is the area model for multiplication? for multiplication represents a lovely way to view the distribution property the real number exhibit. This property is the link between addition and multiplication. 1 1 What is the area model for multiplication?

More information

Mathematics for Game Theory

Mathematics for Game Theory Mathematics for Game Theory Christoph Schottmüller August 9, 6. Continuity of real functions You might recall that a real function is continuous if you can draw it without lifting the pen. That gives a

More information

Projects in Geometry for High School Students

Projects in Geometry for High School Students Projects in Geometry for High School Students Goal: Our goal in more detail will be expressed on the next page. Our journey will force us to understand plane and three-dimensional geometry. We will take

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska LECTURE 1 INTRODUCTION Course Web Page www.cs.stonybrook.edu/ cse547 The webpage contains: detailed lectures notes slides; very detailed

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

8. TRANSFORMING TOOL #1 (the Addition Property of Equality)

8. TRANSFORMING TOOL #1 (the Addition Property of Equality) 8 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not change

More information

Mathematics E-15 Seminar on Limits Suggested Lesson Topics

Mathematics E-15 Seminar on Limits Suggested Lesson Topics Mathematics E-15 Seminar on Limits Suggested Lesson Topics Lesson Presentation Guidelines Each lesson should last approximately 45 minutes. This will leave us with some time at the end for constructive

More information

MHF4U: Practice Mastery Test #3

MHF4U: Practice Mastery Test #3 MHF4U: Practice Mastery Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Simplify a. b. 4x c. d. 2. Expand and simplify (2x + 1)(x - 3) a. b. c.

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude. Limits at Infinity Two additional topics of interest with its are its as x ± and its where f(x) ±. Before we can properly discuss the notion of infinite its, we will need to begin with a discussion on

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Do now as a warm up: Is there some number a, such that this limit exists? If so, find the value of a and find the limit. If not, explain why not.

Do now as a warm up: Is there some number a, such that this limit exists? If so, find the value of a and find the limit. If not, explain why not. Do now as a warm up: Is there some number a, such that this limit exists? If so, find the value of a and find the limit. If not, explain why not. 1 Continuity and One Sided Limits To say that a function

More information

Algorithms: Lecture 2

Algorithms: Lecture 2 1 Algorithms: Lecture 2 Basic Structures: Sets, Functions, Sequences, and Sums Jinwoo Kim jwkim@jjay.cuny.edu 2.1 Sets 2 1 2.1 Sets 3 2.1 Sets 4 2 2.1 Sets 5 2.1 Sets 6 3 2.1 Sets 7 2.2 Set Operations

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

Calculus of One Real Variable Prof. Joydeep Dutta Department of Economic Sciences Indian Institute of Technology, Kanpur

Calculus of One Real Variable Prof. Joydeep Dutta Department of Economic Sciences Indian Institute of Technology, Kanpur Calculus of One Real Variable Prof. Joydeep Dutta Department of Economic Sciences Indian Institute of Technology, Kanpur Lecture 08 Intermediate Value Theorem Welcome once again; as we continue moving

More information

30. TRANSFORMING TOOL #1 (the Addition Property of Equality)

30. TRANSFORMING TOOL #1 (the Addition Property of Equality) 30 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not

More information

Section 3.4 Library of Functions; Piecewise-Defined Functions

Section 3.4 Library of Functions; Piecewise-Defined Functions Section. Library of Functions; Piecewise-Defined Functions Objective #: Building the Library of Basic Functions. Graph the following: Ex. f(x) = b; constant function Since there is no variable x in the

More information

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes Jim Lambers MAT 460 Fall Semester 2009-10 Lecture 2 Notes These notes correspond to Section 1.1 in the text. Review of Calculus Among the mathematical problems that can be solved using techniques from

More information

Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation

Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation Author: Singer, Michael Date: 1 st May 2017 3 rd July 2018 Revision Abstract All forces in the universe are created from

More information

Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation

Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation Effect of Magnet Geometry on the Magnetic Component of the Lorentz Force Equation Author: Singer, Michael Date: 1st May 2017 email: singer43212@gmail.com Page 1 Abstract All forces in the universe are

More information

f(x) = lim x 0 + x = lim f(x) =

f(x) = lim x 0 + x = lim f(x) = Infinite Limits Having discussed in detail its as x ±, we would like to discuss in more detail its where f(x) ±. Once again we would like to emphasize that ± are not numbers, so if we write f(x) = we are

More information

COVARIANCE EXPLAINED GRAPHICALLY

COVARIANCE EXPLAINED GRAPHICALLY COVARIANCE EXPLAINED GRAPHICALLY Sometimes we can "augment knowledge" with an unusual or different approach. I would like this reply to be accessible to kindergartners and also have some fun, so everybody

More information

Secondary Math 3 Honors Unit 10: Functions Name:

Secondary Math 3 Honors Unit 10: Functions Name: Secondary Math 3 Honors Unit 10: Functions Name: Parent Functions As you continue to study mathematics, you will find that the following functions will come up again and again. Please use the following

More information

MSM120 1M1 First year mathematics for civil engineers Revision notes 4

MSM120 1M1 First year mathematics for civil engineers Revision notes 4 MSM10 1M1 First year mathematics for civil engineers Revision notes 4 Professor Robert A. Wilson Autumn 001 Series A series is just an extended sum, where we may want to add up infinitely many numbers.

More information

2. FUNCTIONS AND ALGEBRA

2. FUNCTIONS AND ALGEBRA 2. FUNCTIONS AND ALGEBRA You might think of this chapter as an icebreaker. Functions are the primary participants in the game of calculus, so before we play the game we ought to get to know a few functions.

More information

From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math.

From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math. From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math. Steven J. Miller, Williams College sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu (with Cameron and Kayla

More information

1 Continuity and Limits of Functions

1 Continuity and Limits of Functions Week 4 Summary This week, we will move on from our discussion of sequences and series to functions. Even though sequences and functions seem to be very different things, they very similar. In fact, we

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math.

From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math. From M&Ms to Mathematics, or, How I learned to answer questions and help my kids love math. Steven J. Miller, Williams College Steven.J.Miller@williams.edu http://web.williams.edu/mathematics/sjmiller/public_html/

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

7.1 One-to-One Functions

7.1 One-to-One Functions 514 transcendental functions 7.1 One-to-One Functions You ve seen that some equations have only one solution (for eample, 5 2 = 3 and 3 = 8), while some have two solutions ( 2 + 3 = 7) and some even have

More information

Mathematics Revision Guide. Shape and Space. Grade C B

Mathematics Revision Guide. Shape and Space. Grade C B Mathematics Revision Guide Shape and Space Grade C B 1 A of = b h 2 Area 6cm = 10 6 2 = 60 2 8cm = 30cm 2 6cm 12cm A of = (a+b) h 2 = (6+12) 5 2 = (18) 5 2 = 90 2 = 4 2 7cm 1 6cm A of = π r r = π 6 6 =

More information

GRE Quantitative Reasoning Practice Questions

GRE Quantitative Reasoning Practice Questions GRE Quantitative Reasoning Practice Questions y O x 7. The figure above shows the graph of the function f in the xy-plane. What is the value of f (f( ))? A B C 0 D E Explanation Note that to find f (f(

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Chapter 7: Von Neumann - Morgenstern Utilities Note: This

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

Lecture Sketching the root locus

Lecture Sketching the root locus Lecture 05.02 Sketching the root locus It is easy to get lost in the detailed rules of manual root locus construction. In the old days accurate root locus construction was critical, but now it is useful

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 28. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 199. It is available free to all individuals,

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15 Fundamentals of Operations Research Prof. G. Srinivasan Indian Institute of Technology Madras Lecture No. # 15 Transportation Problem - Other Issues Assignment Problem - Introduction In the last lecture

More information

Massachusetts Tests for Educator Licensure (MTEL )

Massachusetts Tests for Educator Licensure (MTEL ) Massachusetts Tests for Educator Licensure (MTEL ) BOOKLET 2 Mathematics Subtest Copyright 2010 Pearson Education, Inc. or its affiliate(s). All rights reserved. Evaluation Systems, Pearson, P.O. Box 226,

More information

MIT BLOSSOMS INITIATIVE

MIT BLOSSOMS INITIATIVE MIT BLOSSOMS INITIATIVE The Broken Stick Problem Taught by Professor Richard C. Larson Mitsui Professor of Engineering Systems and of Civil and Environmental Engineering Segment 1 Hi! My name is Dick Larson

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers Faculty of Mathematics Waterloo, Ontario N2L G Centre for Education in Mathematics and Computing Introduction Grades 7 & 8, Math Circles 0//2 October, 207 Series & Polygonal Numbers Mathematicians are

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1 CHAPTER. SEQUENCES AND SERIES.2 Series Example. Let a n = n p. (a) Find the first 5 terms of the sequence. Find a formula for a n+. (c) Find a formula for a 2n. (a) a = 2 a 2 = 2 p 3 a 3 = 3 p a = p 5

More information

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization Gaussian integrals Calvin W. Johnson September 9, 24 The basic Gaussian and its normalization The Gaussian function or the normal distribution, ep ( α 2), () is a widely used function in physics and mathematical

More information

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6

Math 131 notes. Jason Riedy. 6 October, Linear Diophantine equations : Likely delayed 6 Math 131 notes Jason Riedy 6 October, 2008 Contents 1 Modular arithmetic 2 2 Divisibility rules 3 3 Greatest common divisor 4 4 Least common multiple 4 5 Euclidean GCD algorithm 5 6 Linear Diophantine

More information

E Mathematics Operations & Applications: D. Data Analysis Activity: Data Analysis Rocket Launch

E Mathematics Operations & Applications: D. Data Analysis Activity: Data Analysis Rocket Launch Science as Inquiry: As a result of activities in grades 5-8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions, design

More information

Moral hazard in teams

Moral hazard in teams Division of the Humanities and Social Sciences Moral hazard in teams KC Border November 2004 These notes are based on the first part of Moral hazard in teams by Bengt Holmström [1], and fills in the gaps

More information

Summit Public Schools Summit, New Jersey Grade Level 12 / Content Area: Mathematics Length of Course: Full Year

Summit Public Schools Summit, New Jersey Grade Level 12 / Content Area: Mathematics Length of Course: Full Year Summit Public Schools Summit, New Jersey Grade Level 12 / Content Area: Mathematics Length of Course: Full Year Calculus Curriculum (Adam Leaman 2018) Course Description: Topics learned in Pre-Calculus

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

4.1 Real-valued functions of a real variable

4.1 Real-valued functions of a real variable Chapter 4 Functions When introducing relations from a set A to a set B we drew an analogy with co-ordinates in the x-y plane. Instead of coming from R, the first component of an ordered pair comes from

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

Minnesota K-12 Academic Standards in Mathematics (2007)

Minnesota K-12 Academic Standards in Mathematics (2007) 8.1.1.1 Classify real numbers as rational or irrational. Know that when a square root of a positive integer is not an integer, then it is irrational. Know that the sum of a rational number an irrational

More information

Free Pre-Algebra Lesson 9 page 1

Free Pre-Algebra Lesson 9 page 1 Free Pre-Algebra Lesson 9 page 1 Lesson 9 Prime Factorization Some whole numbers, such as 31, have only one pair of factors. The only way to write 31 as a product of whole numbers is 1 31. These numbers

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

AP Calculus AB. Limits & Continuity.

AP Calculus AB. Limits & Continuity. 1 AP Calculus AB Limits & Continuity 2015 10 20 www.njctl.org 2 Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical Approach

More information

A Note on Cost Reducing Alliances in Vertically Differentiated Oligopoly. Abstract

A Note on Cost Reducing Alliances in Vertically Differentiated Oligopoly. Abstract A Note on Cost Reducing Alliances in Vertically Differentiated Oligopoly Frédéric DEROÏAN FORUM Abstract In a vertically differentiated oligopoly, firms raise cost reducing alliances before competing with

More information

Computing Consecutive-Type Reliabilities Non-Recursively

Computing Consecutive-Type Reliabilities Non-Recursively IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003 367 Computing Consecutive-Type Reliabilities Non-Recursively Galit Shmueli Abstract The reliability of consecutive-type systems has been

More information

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume?

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume? Stat 400, section.1-.2 Random Variables & Probability Distributions notes by Tim Pilachowski For a given situation, or experiment, observations are made and data is recorded. A sample space S must contain

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 4

Discrete Mathematics for CS Spring 2008 David Wagner Note 4 CS 70 Discrete Mathematics for CS Spring 008 David Wagner Note 4 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all natural numbers,

More information

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case The Necessity of the Transversality Condition at Infinity: A (Very) Special Case Peter Ireland ECON 772001 - Math for Economists Boston College, Department of Economics Fall 2017 Consider a discrete-time,

More information

Okun's Law Testing Using Modern Statistical Data. Ekaterina Kabanova, Ilona V. Tregub

Okun's Law Testing Using Modern Statistical Data. Ekaterina Kabanova, Ilona V. Tregub Okun's Law Testing Using Modern Statistical Data Ekaterina Kabanova, Ilona V. Tregub The Finance University under the Government of the Russian Federation International Finance Faculty, Moscow, Russia

More information

What do we actually know about prime numbers distribution?

What do we actually know about prime numbers distribution? 1 On the number of composite numbers less than a given value. Lemmas, continued. Paper III: What do we know about prime numbers distribution? Paper II presented 3 of 7 lemmas that confirm the conjecture

More information

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 15 Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. The General Addition Rule When two events A and B are disjoint, we can use the addition rule for disjoint events from Chapter

More information

Introduction to Generating Functions

Introduction to Generating Functions Sicherman Dice Problems The purpose of this essay is to introduce the ideas of a generating function to students who have not seen it and to use these ideas to investigate, with exercises and problems,

More information

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky What follows is Vladimir Voevodsky s snapshot of his Fields Medal work on motivic homotopy, plus a little philosophy and from my point of view the main fun of doing mathematics Voevodsky (2002). Voevodsky

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

Generating Functions and the Fibonacci Sequence

Generating Functions and the Fibonacci Sequence Department of Mathematics Nebraska Wesleyan University June 14, 01 Fibonacci Sequence Fun Fact: November 3rd is Fibonacci Day! (1, 1,, 3) Definition The Fibonacci sequence is defined by the recurrence

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2 LIMITS AND DERIVATIVES LIMITS AND DERIVATIVES 2.2 The Limit of a Function In this section, we will learn: About limits in general and about numerical and graphical methods for computing them. THE LIMIT

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai Unit - I Polynomials Lecture 1B Long Division (Refer Slide Time: 00:19) We have looked at three things

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

How to Characterize Solutions to Constrained Optimization Problems

How to Characterize Solutions to Constrained Optimization Problems How to Characterize Solutions to Constrained Optimization Problems Michael Peters September 25, 2005 1 Introduction A common technique for characterizing maximum and minimum points in math is to use first

More information

AP Calculus AB. Limits & Continuity. Table of Contents

AP Calculus AB. Limits & Continuity.   Table of Contents AP Calculus AB Limits & Continuity 2016 07 10 www.njctl.org www.njctl.org Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Functional Limits and Continuity

Functional Limits and Continuity Chapter 4 Functional Limits and Continuity 4.1 Discussion: Examples of Dirichlet and Thomae Although it is common practice in calculus courses to discuss continuity before differentiation, historically

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits Lecture for Week 2 (Secs. 1.3 and 2.2 2.3) Functions and Limits 1 First let s review what a function is. (See Sec. 1 of Review and Preview.) The best way to think of a function is as an imaginary machine,

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

ALGEBRA 1 FINAL EXAM 2006

ALGEBRA 1 FINAL EXAM 2006 Overall instructions: Your Name Teacher ALGEBRA FINAL EXAM 2006 There is a mix of easier and harder problems. Don t give up if you see some questions that you don t know how to answer. Try moving on to

More information

THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION)

THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) The Limit Process THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) We could begin by saying that limits are important in calculus, but that would be a major understatement. Without limits, calculus would

More information

Find the value of the expression. You try: Find the value of the expression. Base is 2 Exponent is 4 (how many times the base is multiplied by itself)

Find the value of the expression. You try: Find the value of the expression. Base is 2 Exponent is 4 (how many times the base is multiplied by itself) 1 Find the value of the expression. 1 2 4 Find the value of the expression. Base is 2 Exponent is 4 (how many times the base is multiplied by itself) 2 4 = 2 x 2 x 2 x 2 2 4 is not 2 x 4 = 8 3 3 = 4 x

More information

Foundations of Math II Unit 5: Solving Equations

Foundations of Math II Unit 5: Solving Equations Foundations of Math II Unit 5: Solving Equations Academics High School Mathematics 5.1 Warm Up Solving Linear Equations Using Graphing, Tables, and Algebraic Properties On the graph below, graph the following

More information

2.2 BEGINS: POLYNOMIAL

2.2 BEGINS: POLYNOMIAL CHAPTER 2.2 HIGHER DEGREE POLY S 2.2 BEGINS: POLYNOMIAL Graphs of Polynomial Functions Polynomial functions are continuous. What this means to us is that the graphs of polynomial functions have no breaks,

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Intermediate Algebra Semester Summary Exercises. 1 Ah C. b = h

Intermediate Algebra Semester Summary Exercises. 1 Ah C. b = h . Solve: 3x + 8 = 3 + 8x + 3x A. x = B. x = 4 C. x = 8 8 D. x =. Solve: w 3 w 5 6 8 A. w = 4 B. w = C. w = 4 D. w = 60 3. Solve: 3(x ) + 4 = 4(x + ) A. x = 7 B. x = 5 C. x = D. x = 4. The perimeter of

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

Westmoreland County Public Schools Pacing Guide and Checklist Algebra 1

Westmoreland County Public Schools Pacing Guide and Checklist Algebra 1 Westmoreland County Public Schools Pacing Guide and Checklist 2018-2019 Algebra 1 translate algebraic symbolic quantitative situations represent variable verbal concrete pictorial evaluate orders of ops

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information