Seite 1. The photoneutron source nelbe at HZDR

Size: px
Start display at page:

Download "Seite 1. The photoneutron source nelbe at HZDR"

Transcription

1 Seite 1 The photoneutron source nelbe at HZDR

2 Helmholtz-Zentrum Dresden-Rossendorf Radiation physics High field laboratory ELBE accelerator Ion beam physics Radiochemistry Radiopharmacy Nuclear safety research Helmholtz Research Programme: Matter Health Energy Public funded national research laboratory 800 employees, federal+state budget: 61 M EUR Seite 2

3 ELBE: Electron Linear accelerator with high Brilliance and low Emittance DT generator E e 40 MeV I e 1 ma Micropulse duration t < 10 ps f = 13 MHz / 2 n nelbe photoneutron source nelbe is the only photoneutron source at a superconducting cw-linear accelerator HZDR invites external groups for experiments at ELBE Seite 3

4 nelbe photoneutron source nelbe neutron beam ELBE electron beam Seite 4

5 nelbe at ELBE : something special superconducting electron accelerator cw operation with variable micropulse repetition rate micropulse charge 80 pc (thermionic Injector) micropulse length t < 10 ps precise definition of time of flight For time of flight measurements the repetition rate is adjustable 13 MHz / 2 n, n = 0,,10 Very high repetition rate (200 khz), low instantaneous neutron-flux background of photon flash from bremsstrahlung is reduced since Januar 2010 : SRF Laser-Injector development bunch charge up to 1 nc (not yet reached) fligh path m neutron flux on target sample cm -2 s -1 neutron energy range (Liquid lead target, without moderator ) 100 kev < E n < 10 MeV energy resolution E/E < 1 % with 6.0 m flight path Seite 5

6 nelbe neutron spectrum October : neutron source strength: 1.4*10 11 n/s neutrons on target: 4.5*10 4 n/(cm 2 s) <I e- > = 19 A Max. thermionic injector at 200 khz rate November 2007 Fission chamber as primary beam monitor ( from PTB, Braunschweig) Spectrum is very similar to fast neutron spectrum e.g. 235 U(n,f) (ENDF-VII) Seite 6

7 National Center for High-Power Radiation sources 80 m 30 m NEW nelbe NEW LCBS NEW PW-Laser National Center for High-Power Radiation Sources X-ray source using Laser-Compton-Backscattering High-Power Laser (PW) for Ion Acceleration ground breaking started April 2010 New Neutron Time-of-Flight Facility for Transmutation Studies Autumn 2012 Seite 7

8 New neutron time of flight facility photoneutron source with liquid lead loop Parallel operation with Laser Experiments more beam time For nuclear data measurements Large neutron time of flight hall Length 9 m Distance from neutron beam line to surrounding concrete 3 m in all directions Seite 8

9 The new nelbe neutron time of flight facility Time of flight hall Data acquisition room 6 m? 6 m 9 m Seite 9

10 nelbe research program: Investigation of fast neutron induced reactions of relevance for nuclear transmutation and improvement of nuclear safety. 1. Inelastic neutron scattering (n,n ) 56 Fe, Mo, Pb, 23 Na and total neutron cross sections tot (Ta, Au, Al, C, H) 2. Investigation of minor actinides (radioactive targets) Collaboration with n-tof at CERN Joint research project Nuclear physics data of relevance for transmutation (German Federal Ministry for Science and Technology funded, 02NUK13) Neutron induced fission cross section of 235,238 U, 239,242 Pu Seite 10

11 Transmutationsrelevante kernphysikalische Untersuchungen langlebiger Aktinide Joint project for maintenance of compentencies in nuclear safety- and radiation research: Production and use of fast neutrons to investigate inelastic neutron scattering and fission of minor actinides MeV Gamma-Spectroscopy and development of high-resolution detectors (Comptoncamera) Production and use of thin actinide targets Seminars for young scientist involved PTB Braunschweig May 2010 Experimental Systems und Methods der Transmutation research Cologne, March 2011 Theoretical Concepts of nuclear reactions in heavy nuclei Munich, July th Advanced school in radiation detection and measurements Mainz, May 2012 Nuclear Chemistry of the Actinides Seite 11

12 Electrochemical deposition - Molecular Plating (MP) Deposition Deposition from from organic organic media media as as a molecule molecule (nitrate (nitrate oxide) oxide) Solvent: Solvent: isopropanol isopropanol or or isobutanol isobutanol Deposition Deposition time: time: h h Current Current density: density: ma/cm ma/cm 2 2 Voltage: Voltage: V V Chemical Chemical purification purification prior prior to to deposition deposition possible possible Recovery Recovery and and chemical chemical purification purification of of used used target target material material ( 248 ( 248 Cm: Cm: > > $/mg) $/mg) Small Small and and simple simple set-up set-up Components Components easy easy to to replace replace in in order order to to avoid avoid cross-contamination cm Rh-wire (anode) PEEK-funnel Organic solution Backing (Be, Ti, Al) Titanium block (cathode) Seite 12 Deposition yield: up up to to 90% 90% Target thickness: mg/cm 2 2 possible Water cooling

13 Radiographic Image of a nat U sample 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0,9-1 0,8-0,9 0,7-0,8 0,6-0,7 0,5-0,6 0,4-0,5 0,3-0,4 0,2-0,3 0,1-0,2 0-0,1 Backing: polished Ti 250 m Surface area: 43 cm 2 Areal density g/cm 2 Also usage of Ti coated Si-wafers to reduce surface roughness: Nd deposits Seite 13 Courtesy: A. Vascon, K. Eberhardt, Johannes-Gutenberg Universität Mainz

14 Summary and outlook nelbe is intended to deliver data on fast neutron induced reactions the ELBE electron beam delivers a high neutron flux with very good time structure different kinds of experiments can be done: inelastic scattering using a double time of flight setup: Fe-56 and Na-23 neutron transmission: Al, Ta, Pb elastic scattering: D(n,n)D fission: U, Am, Np, Pu Future planned improvements: LaBr 3 detectors instead of BaF 2 better photon energy resolution new bigger experimental area within extension of ELBE facility Seite 14

15 Nuclear Transmutation Project Roland Beyer, Evert Birgersson, Anna Ferrari, Roland Hannaske, Mathias Kempe, Toni Kögler, Michele Marta, Ralf Massarczyk, Andrija Matic, Georg Schramm Arnd Junghans, Daniel Bemmerer, Eckart Grosse*, Klaus-Dieter Schilling, Ronald Schwengner, Andreas Wagner Development of the nelbe photoneutron source together with the Institut für Sicherheitsforschung, Frank-Peter Weiss and also with IKTP, TU Dresden, Hartwig Freiesleben, Klaus Seidel through a DFG project. * ( also at IKTP Dresden) Seite 15

16 Seite 16 Thank you for your attention

17 Production and use of thin actinide targets Production of thin homogeneous isotopically pure actinide layers by Klaus Eberhardt, Alessio Vascon, Johannes Gutenberg Universität Mainz Molecular plating technique: Deposition from organic media as a molecule (nitrate oxide) Surface characterisation by scanning microscopy (SEM, AFM,...) Calibration of a beam monitor: 235 U Fission chamber with PTB Measurements on photodisintegration of 239 Pu at ELBE Neutron-induced fission cross section of 242 Pu at nelbe Storage and Handling at HZDR Radiochemical Laboratories Dedicated glove box for handling actinide targets built. Fission chamber development ongoing Development of fast preamplifier readout electronics Seite 17

18 Seite 18 Measurements of photon production cross section

19 Seite 19 Measurements of photon production cross section with target without target

20 ELBE: Electron Linear accelerator with high Brilliance and low Emittance DT generator E e 40 MeV I e 1 ma Micropulse duration t < 10 ps f = 13 MHz / 2 n nelbe photoneutron source HZDR invites external groups for experiments at ELBE Seite 20

21 nelbe photoneutron target Electron beam power up to 40 kw power density in the neutron radiator up to 25 kw/cm 3 liquid lead circuit for heat transport Seite 21

22 Neutron time of flight spectrum with fission chamber Measured with PTB 235 U fission chamber n t = 5 mg/cm 2 Photofission: t(fwhm) = 4 ns Seite 22 low thermal neutron background J Cd /J < 8*10-5 from comparison with/without Cd absorber

23 nelbe double ToF detector setup BaF 2 array for gamma detection (42 crystals, 20 cm, Ø 5.3 cm) neutron beam flight paths: source - sample: 600 cm sample - BaF 2 : 30 cm sample - plastics: 100 cm PTB 235 U fission chamber for neutron flux determination sample: nat Fe (99.8%) % 56 Fe mass: g g 56 Fe 4 plastic scintillators for neutron detection (1 m, 11 x 42 mm 2 ) Background from elastic scattering to BaF 2 and subsequent inelastic scattering Improve shielding and geometry of BaF 2 detectors Seite 23

24 Improved double time of flight geometry and shielding Plastics BaF 2 -Setup borated polyethylene block between BaF 2 and plastics combination of two single sided readout 20 cm long crystals to one double sided readout 40 cm long detector number of random events reduced by one order of magnitude angular coverage: - n = = = +/- ( ) Seite 24

25 Experimental methods and results Inelastic scattering e n neutron source 56 Fe(n, n' ) 56 Fe 56 Fe n * Fe n' * Fe 56 Fe γ absorber with sample (78 h live time) fission chamber sample γ n neutron detectors γ detectors Seite 25

26 Total neutron cross section of Tantalum Transmission measurement T N N 0 exp( tot n t) Target: nat Ta 3.52 cm Bremsstrahlungabsorber: nat Pb 3 cm Counting cycle*: 80% target in 20% target out t Target ladder: Pb absorber Ta sample Measurement time 48 hours live time - target in 92% (2 khz) live time target out 80% (7 khz) measured with scalers * Y. Danon, NIM A 485 (2002) 585 Plastic scintillator with low detection threshold NIMA 575 (2007) 449 Flight path: 6.52 m Repetition rate: 100 khz Seite 26

27 Total neutron cross section of nat Ta E n - stat / -- E n /E n 0.2 MeV 5 % - 0.6% 2 MeV 1.2 % - 0.8% 7 MeV 2.3 % - 1.0% Seite 27

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Institute of Radiation Physics Roland Beyer www.fzd.de Member of the Leibniz Association Data needs for transmutation

More information

Measurement of the 242 Pu neutron induced fission cross section at nelbe Arnd Junghans Helmholtz-Zentrum Dresden-Rossendorf, Germany

Measurement of the 242 Pu neutron induced fission cross section at nelbe Arnd Junghans Helmholtz-Zentrum Dresden-Rossendorf, Germany Measurement of the Pu neutron induced fission cross section at nelbe Arnd Junghans Helmholtz-Zentrum Dresden-Rossendorf, Germany The new nelbe time-of-flight facility Neutron induced fission cross section

More information

FAST NEUTRON CROSS-SECTION MEASUREMENTS WITH THE NELBE NEUTRON TIME-OF-FLIGHT FACILITY. Postfach D Dresden, Germany

FAST NEUTRON CROSS-SECTION MEASUREMENTS WITH THE NELBE NEUTRON TIME-OF-FLIGHT FACILITY. Postfach D Dresden, Germany FAST NEUTRON CROSS-SECTION MEASUREMENTS WITH THE NELBE NEUTRON TIME-OF-FLIGHT FACILITY A. Wagner 1*, D. Bemmerer 1, R. Beyer 1, E. Birgersson 1, A. Ferrari 1, E. Grosse 1,3, R. Hannaske 1, A. R. Junghans

More information

Measurement of the inelastic neutron scattering cross section of 56 Fe

Measurement of the inelastic neutron scattering cross section of 56 Fe EPJ Web of Conferences 8, 07007 (2010) DOI: 10.1051/epjconf/20100807007 c Owned by the authors, published by EDP Sciences, 2010 Measurement of the inelastic neutron scattering cross section of 56 Fe R.

More information

Measurement of the inelastic neutron scattering cross section of 56 Fe

Measurement of the inelastic neutron scattering cross section of 56 Fe Measurement of the inelastic neutron scattering cross section of Fe Roland Beyer, Evert Birgersson, Anna Ferrari, Eckart Grosse, Roland Hannaske, Arnd R. Junghans, Ralph Massarczyk, Andrija Matic, Ralf

More information

Development of a neutron time-of-flight source at the ELBE accelerator

Development of a neutron time-of-flight source at the ELBE accelerator Development of a neutron time-of-flight source at the ELBE accelerator *,1, E. Altstadt 2, C. Beckert 2, R. Beyer 1, H. Freiesleben 3, V. Galindo 2, M. Greschner 3, E. Grosse 1,3, A. R. Junghans 1, D.

More information

Fast neutron measurements at the nelbe time-of-flight facility

Fast neutron measurements at the nelbe time-of-flight facility EPJ Web of Conferences 93, 02015 (2015) DOI: 10.1051/ epjconf/ 20159302015 C Owned by the authors, published by EDP Sciences, 2015 Fast neutron measurements at the nelbe time-of-flight facility A. R. Junghans

More information

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis Journal of Physics: Conference Series PAPER OPEN ACCESS Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis To cite this article: R Hannaske et al 2016

More information

Present and Future of Fission at n_tof

Present and Future of Fission at n_tof 16th ASRC International Workshop " Nuclear Fission and Structure of Exotic Nuclei " Present and Future of Fission at n_tof Christina Weiss, CERN, Geneva/Switzerland 20.03.2014 Present and Future of Fission

More information

A PHOTO-NEUTRON SOURCE FOR TIME-OF-FLIGHT MEASUREMENTS AT THE RADIATION SOURCE ELBE

A PHOTO-NEUTRON SOURCE FOR TIME-OF-FLIGHT MEASUREMENTS AT THE RADIATION SOURCE ELBE A PHOTO-NEUTRON SOURCE FOR TIME-OF-FLIGHT MEASUREMENTS AT THE RADIATION SOURCE ELBE Eberhard Altstadt, Carsten Beckert, Hartwig Freiesleben 1, Vladimir Galindo, Eckart Grosse 2, Arnd R. Junghans 2, Joakim

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

Photon-scattering experiments at γelbe and at HIγS Data analysis Results Comparison of experimental results with model predictions

Photon-scattering experiments at γelbe and at HIγS Data analysis Results Comparison of experimental results with model predictions Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Pygmy dipole strength in 86 Kr and systematics of N = 5 isotones R. Schwengner 1, R. Massarczyk 1,2,

More information

Journal of Radiation Protection and Research

Journal of Radiation Protection and Research 1) JONG WOON KIM AND YOUNG-OUK LEE: DETAILED ANALYSIS OF THE KAERI ntof FACILITY Journal of Radiation Protection and Research pissn 2508-1888 eissn 2466-2461 http://dx.doi.org/10.14407/jrpr.2016.41.2.141

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy R. Krause-Rehberg and many colleagues of Univ. Halle and HZDR Martin-Luther University

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 8 Ta Clarke Smith, Gerald Feldman, and the HIγS Collaboration George Triangle C. Smith, G. Feldman (GWU) Washington University

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

EPOS an intense positron beam project at the Research Center Rossendorf

EPOS an intense positron beam project at the Research Center Rossendorf EPOS an intense positron beam project at the Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, V. Bondarenko 1, A. Rogov 2, K. Noack 2 1 Martin-Luther-University Halle 2 Research

More information

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy Nuclear Resonance Fluorescence with monoenergetic photons and fundamental experiments at ELI-NP Julius Wilhelmy Institute for Nuclear Physics, University of Cologne g BMBF Verbund 05P2015 Darmstadt Köln

More information

Research Center Dresden Rossendorf

Research Center Dresden Rossendorf News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden Rossendorf EPOS-Team & R. Krause-Rehberg Extended Concept of EPOS Progress of the mono-energetic Positron Beam (MePS)

More information

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Yu.V. Grigoriev 1,2, D.V. Khlustin 1, Zh.V. Mezentseva 2, Yu.V. Ryabov 1 1 Institute for Nuclear

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner.

A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner. Magic Maggiore Technical Reachback Workshop 15 min. (March 28-30, 2017, JRC Ispra, Italy) A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive

More information

Neutron transmission and capture measurements for 241 Am at GELINA

Neutron transmission and capture measurements for 241 Am at GELINA Neutron transmission and capture measurements for 241 Am at GELINA C. Lampoudis, S. Kopecky, A. Plompen, C. Sage P. Schillebeeckx, R. Wynants, O. Bouland, G. Noguere and F. Gunsing 3 rd International Workshop

More information

Photoneutron reactions studies at ELI-NP using a direct neutron multiplicity sorting method Dan Filipescu

Photoneutron reactions studies at ELI-NP using a direct neutron multiplicity sorting method Dan Filipescu EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

New Phenomena in Gamma-Ray Strength Functions

New Phenomena in Gamma-Ray Strength Functions Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Ronald Schwengner Institut für Strahlenphysik http://www.hzdr.de New Phenomena in Gamma-Ray Strength

More information

High precision neutron inelastic cross section measurements

High precision neutron inelastic cross section measurements High precision neutron inelastic cross section measurements A. Olacel, C. Borcea, M. Boromiza, A. Negret IFIN-HH, DFN Outline The experimental setup GELINA GAINS Data analysis algorithm. Monte Carlo simulations

More information

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering Arjan Plompen Measurements of sodium inelastic scattering and deuterium elastic scattering Overview Na inelastic scattering with GAINS C. Rouki et al., Nucl. Instrum. Meth. A 672 (2012) 82 Na elastic and

More information

Neutron Facilities. X. Ledoux. Ganil, Caen, France

Neutron Facilities. X. Ledoux. Ganil, Caen, France Neutron Facilities X. Ledoux Ganil, Caen, France 1 Neutron Facilities X. Ledoux Ganil, Caen, France Very Wide subject : 250 research reactors are operational 164 accelerators in the IAEA database IAEA

More information

Preparation of 249 Cf targets for the synthesis of element 120

Preparation of 249 Cf targets for the synthesis of element 120 Preparation of 249 targets for the synthesis of element 120 J. Runke 1, Ch.E. Düllmann 1,2,3, K. Eberhardt 2, P.A. Ellison 4,5, K.E. Gregorich 4, E. Jäger 1, B. Kindler 1, J. Krier 1, B. Lommel 1, C. Mokry

More information

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, 1 Martin-Luther-University Halle 2 Research Center Rossendorf Martin-Luther-Universität

More information

Principles of neutron TOF cross section measurements

Principles of neutron TOF cross section measurements Principles of neutron TOF cross section measurements J. Heyse, C. Paradela, P. Schillebeeckx EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) H.I. Kim Korea Atomic Energy Research

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

The intense positron source EPOS at Research Center Rossendorf

The intense positron source EPOS at Research Center Rossendorf The intense positron source EPOS at Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, A. Krille 1, V. Bondarenko 1 1 -Wittenberg 2 FZ Rossendorf Martin-Luther-Universität RK Halle

More information

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Ralph Massarczyk Helmholtz-Zentrum Dresden-Rossendorf 29.05.2013 R.Massarczyk (HZDR) dipole strength in

More information

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Daniel Higgins 1,2*, Uwe Greife 1, Shea Mosby 2, and Fredrik Tovesson 2 1 Colorado School of Mines, Physics Department,

More information

JRC Place on dd Month YYYY Event Name 1

JRC Place on dd Month YYYY Event Name 1 JRC Place on dd Month YYYY Event Name 1 A new measurement of the prompt fission neutron emission spectrum of 235 U(n,f) Correlation of prompt neutron emission with fission fragment properties F.-J. Hambsch

More information

Neutrons For Science

Neutrons For Science Neutrons For Science NFS is one of the two facilities of the LINAG Experimental Area se of the LINAG s beams to produce neutrons between 1 and 40 MeV The NFS is composed of : - A neutron beam in a Time-Of-Flight

More information

Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays

Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays Ryoichi Hajima Japan Atomic Energy Agency IZEST Tokyo 2013 Nov. 18, 2013 Collaborators Quantum

More information

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements T. Kieck 1, H. Dorrer 1, Ch. E. Düllmann 1,2, K. Eberhardt 1, L. Gamer 3, L. Gastaldo 3, C. Hassel 3, U. Köster 4, B. Marsh 5, Ch. Mokry 1, S. Rothe

More information

Neutron Capture Experiments with DANCE

Neutron Capture Experiments with DANCE Neutron Capture Experiments with DANCE G. E. Mitchell North Carolina State University Raleigh, NC USA This work was supported in part by the U. S. DoE Grants No. DE-FG52-06NA26194 and DE-FG02-97-ER41042.

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS. Nuclear Physics Institute AS CR, Rez Czech Republic

EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS. Nuclear Physics Institute AS CR, Rez Czech Republic EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS A. Kugler, V. Wagner Nuclear Physics Institute AS CR, 25068 Rez Czech Republic I. Introduction One of important aspects

More information

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab Positron program at the Idaho Accelerator Center Giulio Stancari Idaho State University and Jefferson Lab International Workshop on Positrons at Jefferson Lab Newport News, Virginia (USA), 26 March 2009

More information

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method Nuclear Physics Institute, Academy of Sciences of the Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Cross-section

More information

Investigation of dipole strength at the ELBE accelerator in Dresden-Rossendorf

Investigation of dipole strength at the ELBE accelerator in Dresden-Rossendorf EPJ Web of Conferences 21, 04006 (2012) DOI: 10.1051/ epjconf/ 20122104006 C Owned by the authors, published by EDP Sciences, 2012 Investigation of dipole strength at the ELE accelerator in Dresden-Rossendorf

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Preparatory experiments for cold-neutron induced fission studies at IKI

Preparatory experiments for cold-neutron induced fission studies at IKI Preparatory experiments for cold-neutron induced fission studies at IKI A. Oberstedt 1, S. Oberstedt 2, R. Billnert 1, J. Karlsson 1, X. Ledoux 3, J.-G. Marmouget 3 and F.-J. Hambsch 2 1 School of Science

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers R. Krause-Rehberg 1, A. Wagner 2 and many colleagues of Univ. Halle and

More information

Contrabands detection with a low energy electron linac driven photoneutron source

Contrabands detection with a low energy electron linac driven photoneutron source Contrabands detection with a low energy electron linac driven photoneutron source Yigang Yang Tsinghua University, Beijing, China yangyigang@mail.tsinghua.edu.cn Outline 1. Research motivation 2. e-linac

More information

Nuclear Photonics: Basic facts, opportunities, and limitations

Nuclear Photonics: Basic facts, opportunities, and limitations Nuclear Photonics: Basic facts, opportunities, and limitations Norbert Pietralla, TU Darmstadt SFB 634 GRK 2128 Oct.17th, 2016 Nuclear Photonics 2016, Monterey Nuclear Photonics: Basic Facts Prof.Dr.Dr.h.c.

More information

Nuclear Data Study for Nuclear Transmutation

Nuclear Data Study for Nuclear Transmutation Nuclear Data Study for Nuclear Transmutation Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology Masayuki IGASHIRA Contents 1. Introduction 2. Present Status of the Accuracy of Nuclear

More information

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE R.Schwengner 1, G.Rusev 1, N.Benouaret 1,2, R.Beyer 1, F.Dönau 1, M.Erhard 1, E.Grosse 1,3, A.R.Junghans 1, K.Kosev 1, J.Klug

More information

Day-one photonuclear physics at ELI-NP

Day-one photonuclear physics at ELI-NP Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II Day-one photonuclear physics at ELI-NP Dimiter L. Balabanski Advanced many-body and statistical methods in mesoscopic systems III, Busteni,

More information

Neutron capture cross section on Lu isotopes at DANCE

Neutron capture cross section on Lu isotopes at DANCE Neutron capture cross section on Lu isotopes at DANCE Los Alamos National Laboratory Los Alamos, New-Mexico 8755, USA and CEA, DAM, DIF F-9197 Arpajon, France E-mail: olivier.roig@cea.fr A. Couture 1 Los

More information

Performance test of triple GEM detector at CERN n_tof facility

Performance test of triple GEM detector at CERN n_tof facility Performance test of triple GEM detector at CERN n_tof facility S.Puddu 2,4, G.Claps 1, G. Croci 3, F. Murtas 1,2, A.Pietropaolo 3, C. Severino 2,4, M. Silari 2 1) LNF-INFN 2) CERN 3)IFP-CNR 4)LHEP-Bern

More information

Scintillators for photon detection at at medium energies

Scintillators for photon detection at at medium energies Scintillators for photon detection at at medium energies R.Novotny II.Physics II.Physics Institute, Institute, University University Giessen, Giessen, Germany Germany and and for for the the TAPS TAPS

More information

The main sources of neutrons

The main sources of neutrons 1.Introduction 2.High neutron fluxes 3.The drive for Multi-MW beams: a) Spallation neutron sources b) Accelerator driven sources-transmutation c) IFMIF-Testing materials for ITER d) Radioactive Ion Beams

More information

Chapter 3: Neutron Activation and Isotope Analysis

Chapter 3: Neutron Activation and Isotope Analysis Chapter 3: Neutron Activation and Isotope Analysis 3.1. Neutron Activation Techniques 3.2. Neutron Activation of Paintings 3.3. From Qumran to Napoleon 3.4. Neutron Activation with Accelerators 3.5. Isotope

More information

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU V. Shvedunov Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University 26 November 2013 Betatron 1959-1985 Low intensity

More information

SOFIA Fission studies at GSI

SOFIA Fission studies at GSI SOFIA Fission studies at GSI Julie-Fiona Martin for the SOFIA collaboration CEA, DAM, DIF Perspective on Nuclear Data for the Next Decade - Oct. 2014 1 Intro 2 Experimental setup Secondary beam Fission

More information

Measurement of prompt fission γ-ray spectra in fast neutroninduced

Measurement of prompt fission γ-ray spectra in fast neutroninduced Available online at www.sciencedirect.com Physics Procedia 31 (2012 ) 13 20 GAMMA-1 Emission of Prompt Gamma-Rays in Fission and Related Topics Measurement of prompt fission γ-ray spectra in fast neutroninduced

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

STATUS AND PERSPECTIVES OF THE N_TOF FACILITY AT CERN. Marco Calviani (CERN) and the n_tof CERN for the n_tof Collaboration

STATUS AND PERSPECTIVES OF THE N_TOF FACILITY AT CERN. Marco Calviani (CERN) and the n_tof CERN for the n_tof Collaboration STATUS AND PERSPECTIVES OF THE N_TOF FACILITY AT CERN Marco Calviani (CERN) and the n_tof Team @ CERN for the n_tof Collaboration n_tof history Feasibility New Target construction Commissioning May 2009

More information

Neutrons For Science (NFS) at SPIRAL-2 (Part II: pulsed neutron beam)

Neutrons For Science (NFS) at SPIRAL-2 (Part II: pulsed neutron beam) Neutrons For Science (NFS) at SPIRAL-2 (Part II: pulsed neutron beam) X. Ledoux 1 and D. Ridikas 2 1) CEA/DIF/DPTA/SPN, BP 12, 91680 Bruyères-le-Châtel, France 2) CEA/DSM/DAPNIA/SPhN, CEA Saclay, 91191

More information

Understanding the response of LXe to electronic and nuclear recoils at low energies

Understanding the response of LXe to electronic and nuclear recoils at low energies Understanding the response of LXe to electronic and nuclear recoils at low energies Christopher W. Geis Johannes-Gutenberg Universität Mainz 2015/01/09 geisch@uni-mainz.de http://xenon.uni-mainz.de 1 /

More information

Neutron cross-section measurements at the n_tof facility at CERN

Neutron cross-section measurements at the n_tof facility at CERN Nuclear Instruments and Methods in Physics Research B 213 (2004)49 54 www.elsevier.com/locate/nimb Neutron cross-section measurements at the n_tof facility at CERN N. Colonna *, The n_tof Collaboration

More information

TIGRESS Auxiliary Detectors

TIGRESS Auxiliary Detectors TIGRESS Auxiliary Detectors Gordon Ball, TRIUMF GRETINA Auxiliary Detector Workshop Washington University, St. Louis MO January 28 9, 2006 TIGRESS 32 Fold Segmented HPGe Clover Detector Four ~40% n type

More information

Determination of the boron content in polyethylene samples using the reactor Orphée

Determination of the boron content in polyethylene samples using the reactor Orphée Determination of the boron content in polyethylene samples using the reactor Orphée F. Gunsing, A. Menelle CEA Saclay, F-91191 Gif-sur-Yvette, France O. Aberle European Organization for Nuclear Research

More information

High Energy Photons at HI S

High Energy Photons at HI S High Energy Photons at HIS Rob Pywell High Intensity Gamma Source Duke University Thanks to Dr. Ying Wu, Duke University, for supplying some of the information in this talk. Precision Photo-Reaction Measurements

More information

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Flux and neutron spectrum measurements in fast neutron irradiation experiments Flux and neutron spectrum measurements in fast neutron irradiation experiments G.Gorini WORKSHOP A neutron irradiation facility for space applications Rome, 8th June 2015 OUTLINE ChipIr and SEE: New Istrument

More information

U.S. Experimental Activities Report. WPEC Meeting, May Donald L. Smith, Chair. on behalf of the

U.S. Experimental Activities Report. WPEC Meeting, May Donald L. Smith, Chair. on behalf of the U.S. Experimental Activities Report WPEC Meeting, 13-15 May 2002 by Donald L. Smith, Chair on behalf of the CSEWG Measurements and Basic Physics Committee Introduction This presentation summarizes the

More information

D. Cano Ott Nuclear Innovation Nuclear Fission Division Dept. of Energy. CIEMAT-IFIC-UPC collaboration

D. Cano Ott Nuclear Innovation Nuclear Fission Division Dept. of Energy. CIEMAT-IFIC-UPC collaboration Beta-delayed neutron measurements for nuclear technologies D. Cano Ott Nuclear Innovation Nuclear Fission Division Dept. of Energy CIEMAT-IFIC-UPC collaboration i i B i GT K f i I ( Z, Q i ) T 1/ 2 K 1

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

How to Prepare an Experiment using the Gamma Beam System at ELI-NP

How to Prepare an Experiment using the Gamma Beam System at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Structural Instruments 2007-2013 Project co-financed by the European Regional Development Fund How to Prepare an Experiment using the Gamma Beam System at ELI-NP Catalin

More information

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams Outline VELA & CLARA Accelerators VELA Commissioning VELA Exploitation

More information

Neutron and gamma ray measurements. for fusion experiments and spallation sources

Neutron and gamma ray measurements. for fusion experiments and spallation sources Neutron and gamma ray measurements for fusion experiments and spallation sources Carlo Cazzaniga prof.ssa Claudia Riccardi 1 External supervisor: dr. Marco Tardocchi Supervisor: 1) Istituto di Fisica del

More information

High energy gamma production: analysis of LAL 4-mirror cavity data

High energy gamma production: analysis of LAL 4-mirror cavity data High energy gamma production: analysis of LAL 4-mirror cavity data Iryna Chaikovska LAL, Orsay POSIPOL 211, August, 28 1 Experiment layout Electron energy Electron charge Revolution period Electron bunch

More information

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg SIF - XCIX Congresso Nazionale, Trieste 26 Settembre 2013 Stellar nucleosynthesis Elements in stars are mainly produced

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2 1 Karlsruhe

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

THE USE OF GE DETECTORS FOR (N,XN) CROSS-SECTION MEASUREMENTS AT INTENSE AND LOW FREQUENCY PULSED NEUTRON BEAMS. Abstract

THE USE OF GE DETECTORS FOR (N,XN) CROSS-SECTION MEASUREMENTS AT INTENSE AND LOW FREQUENCY PULSED NEUTRON BEAMS. Abstract THE USE OF GE DETECTORS FOR (N,XN) CROSS-SECTION MEASUREMENTS AT INTENSE AND LOW FREQUENCY PULSED NEUTRON BEAMS Strahinja Lukic, 1 Paule Baumann, 1 Catalin Borcea, 2 Erwin Jericha, 3 Stevan Jokic, 4 Aleksandra

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi H. Naik 1, G.N. Kim 2*, V.T. Nimje 3, K.C. Mittal 3, M.W. Lee 2, K. Kim 2, A. Goswami 1, M.-H. Cho 4 1 Radiochemistry

More information

Am cross section measurements at GELINA. S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S)

Am cross section measurements at GELINA. S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) 241 Am cross section measurements at GELINA S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) TOF - Facility GELINA Pulsed white neutron source (10 mev < E n < 20 MeV)

More information

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow,

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, Russia Classical neutron spectrum of fast breeder reactors

More information

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Detekce a spektrometrie neutronů. neutron detection and spectroscopy Detekce a spektrometrie neutronů neutron detection and spectroscopy 1. Slow neutrons 2. Fast neutrons 1 1. Slow neutrons neutron kinetic energy E a) charged particles are produced, protons, α particle,

More information

Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020.

Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020. Coordinated Research Project on Photonuclear Data and Photon Strength Functions Approved in July 2015; Code F41032; Duration 2016 t 2020. Photon nuclear data describing interactions of photons with atomic

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Needs for Nuclear Reactions on Actinides

Needs for Nuclear Reactions on Actinides Needs for Nuclear Reactions on Actinides Mark Chadwick Los Alamos National Laboratory Talk at the Workshop on Nuclear Data Needs & Capabilities for Applications, May 27-29, 2015 Nuclear Data for National

More information

A new detector for neutron beam monitoring

A new detector for neutron beam monitoring A new detector for neutron beam monitoring European Organization for Nuclear Research (CERN), Geneva, Switzerland in collaboration with Commissariat à l Energie Atomique (CEA), Saclay, France, Instituto

More information

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N: 2.5. Isotope analysis and neutron activation techniques The previously discussed techniques of material analysis are mainly based on the characteristic atomic structure of the elements and the associated

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 712 (2013) 8 112 Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information