ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

Size: px
Start display at page:

Download "ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes"

Transcription

1 ESCI 341 Atmosherc Thermodynamcs Lesson 6 Thermodynamc Processes Reerences: An Introducton to Atmosherc Thermodynamcs, Tsons Introducton to Theoretcal Meteorology, Hess Physcal Chemstry (4 th edton), Lene Thermodynamcs and an Introducton to Thermostatstcs, Callen ISOTHERMAL PROCESSES I a rocess s sothermal (dt = 0) then or an deal gas the rst law becomes dq = d For an deal gas we can substtute or rom the deal gas law to get whch ntegrates to d dq = R T q = R T ln We can also use the enthaly orm o the deal gas law, whch or an sothermal rocess becomes dq = d When ths s ntegrated we get q = R T ln ISOCHORIC PROCESSES I a rocess s sochorc (constant olume) then the rst law or an deal gas becomes dq = c dt Ths can be ntegrated to get (assumng c s constant) ( T T ) q = c ISOBARIC PROCESSES For an sobarc rocess, d = 0 Thereore the rst law or an deal gas becomes whch ntegrates to dq = c dt

2 ( T T ) q = c ADIABATIC PROCESSES An adabatc rocess s one n whch there s no heat transer (dq = 0) The two orms o the rst law o thermodynamcs or an adabatc rocess n an deal gas are c dt = d c dt = d I we start wth the rst orm o the rst law or an deal gas (the one nolng c ) and substtute or ressure rom the deal gas law, we get ο Integratng ths ges whch can also be wrtten as dt d c + R = 0 T c lnt + R ln R c T (1) ο We e reously shown that c c = R Thereore, we can wrte Eqn (1) as ( c c ) T and denng the rato c c γ we get c 1 T γ (2) ο Usng the deal gas law, ths equaton can also be wrtten as γ (3) or T (4) Equatons (2), (3), and (4) are known as the Posson relatons (note that the constant on the rght-hand-sde s not necessarly the same n each equaton T T γ 1 γ Posson relatons 2

3 The Posson relatons relate T,, and n deal gases undergong quas-statc, adabatc rocesses I you know the ntal alues o two o these arables, and one o ther nal alues, you can nd the other two nal alues by usng these relatons It s mortant to realze that Posson s relatons are only ald or deal gases undergong quas-statc adabatc rocesses! It s narorate to use them or nonadabatc rocesses POTENTIAL TEMPERATURE Potental temerature (denoted as θ ) s dened as the temerature an ar arcel would hae t were moed dry-adabatcally to a reerence ressure, 0, o 1000 mb From the Posson relaton or T and [Eqn (4)] we get (see Exercse 11) R d c 0 θ = T I an ar arcel undergoes an adabatc rocess ts otental temerature s consered WORK IN AN ADIABATIC PROCESS For an adabatc rocess the change n nternal energy s solely due to work done on or by the system, du = dw ο Note that ths s true or any system (not just deal gasses) and regardless o whether the adabatc rocess s quas-statc or not For an deal gas, du = c dt = dw ADIABATIC FREE EXPANSION I an deal gas s allowed to adabatcally reely exand, unoosed, ts temerature wll not change To see why, recall that or an deal gas undergong adabatc exanson cdt = dw In a ree exanson there s no work done, so there s no change n temerature But what about the exresson 3

4 dw = d? The gas exanded, so secc olume changed, so shouldn t there be work accomlshed? KEY POINT: Remember that the exresson dw = d only ales to quasstatc rocesses A ree exanson s not quas-statc, so we can t calculate work usng ths exresson EXERCISES 1 Show that or an sothermal rocess or an deal gas q = R T ln 2 For an sothermal rocess or an deal gas, show that the work done by the system s w = R T ln or w = R T ln 3 a For an sobarc rocess show that ( T T ) + ( ) u = c b Is ths true or all gasses, or only deal gasses? 4 Startng wth c dt = dq +d, dere the Posson relaton T 5 A 15-kg arcel o dry ar s at a temerature o 15 C and a ressure o 1013 mb 4

5 a How many moles o ar are n the arcel? (The molecular weght o ar s 2896 g/mol) b What s the olume o the arcel? c What s the secc olume o the arcel? d I 50 KJ o heat are added to the arcel whle ts olume s held constant, what s the new temerature o the arcel? (The secc heat o ar at constant olume s 717 J-kg 1 -K 1 ) 6 An arcel o dry ar s at a temerature o 15 C and a ressure o 1013 mb Heat s added to the arcel to cause t to exand It exands at constant ressure to 15 tmes ts orgnal olume a What s the new temerature o the arcel? b How much work (er unt mass) was done by the arcel durng ths exanson? c What was the change n secc nternal energy o the ar arcel? d What was the amount o heat er unt mass that was added to the ar arcel? 7 An ar arcel s at a temerature o 15 C and a ressure o 1013 mb Heat s added to the arcel to cause t to exand It exands at constant temerature untl ts olume s 15 tme t orgnal olume a What s the new ressure o the ar arcel? 5

6 b How much heat er unt mass was added to the ar arcel? c How much work er unt mass was done n exandng the ar arcel? d What was the change n secc nternal energy o the ar arcel? 8 A dry ar arcel at an ntal temerature o 20 C and a ressure o 950 mb s orced to rse adabatcally u a mountan sloe The to o the mountan s at a ressure o 720 mb a What s the temerature o the ar arcel when t reaches the to o the mountan? b What s the work done by the ar arcel? 9 A cylnder lled wth helum (a monatomc deal gas) has a olume o 18x10 6 cm 3, a ressure o 12x10 5 mb, and a temerature o 300K The cylnder s contaned n an eacuated room wth a olume o 16 m 3 The cylnder rutures and helum lls the room a What s the ressure n the room ater the cylnder rutures? b What s the temerature n the room ater the cylnder rutures? c What s the work done by the exandng helum? 10 A arcel o dry ar s ntally at a ressure o 900 mb and a temerature o 15 C It rses to the 400 mb leel a What amount o heat (er mass) must be exchanged wth ts surroundngs the temerature s to reman constant at 15 C durng the ascent? Wll the heat be ganed or lost by the arcel? 6

7 b I the arcel rst ascends adabatcally to 400 mb, and then heat s added to t to rase ts temerature back to 15 C, how much heat must be added? Is ths the same amount o heat as the reous queston? I not, why not? 11 Usng the Posson relaton show that T R ( ) d c θ = T 0 12 For a non-deal gas, wll an adabatc ree exanson result n a temerature change? Exlan 7

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

Lecture 3 Examples and Problems

Lecture 3 Examples and Problems Lecture 3 Examles and Problems Mechancs & thermodynamcs Equartton Frst Law of Thermodynamcs Ideal gases Isothermal and adabatc rocesses Readng: Elements Ch. 1-3 Lecture 3, 1 Wllam Thomson (1824 1907) a.k.a.

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

Physics 207 Lecture 27

Physics 207 Lecture 27 hyscs 07 Lecture 7 hyscs 07, Lecture 7, Dec. 6 Agenda: h. 0, st Law o Thermodynamcs, h. st Law o thermodynamcs ( U Q + W du dq + dw ) Work done by an deal gas n a ston Introducton to thermodynamc cycles

More information

Isothermal vs. adiabatic compression

Isothermal vs. adiabatic compression Isothermal vs. adabatc comresson 1. One and a half moles of a datomc gas at temerature 5 C are comressed sothermally from a volume of 0.015 m to a volume of 0.0015 m. a. Sketch the rocess on a dagram and

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

Chapter 20 The First Law of Thermodynamics

Chapter 20 The First Law of Thermodynamics Chapter he Frst aw o hermodynamcs. developng the concept o heat. etendng our concept o work to thermal processes 3. ntroducng the rst law o thermodynamcs. Heat and Internal Energy Internal energy: s the

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law TMOS 5130 Lecture 7 The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Caacity Secial Cases of the First Law Pressure-Volume Work Exanding Volume Pressure δw = f & dx δw = F ds

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State Chater 3 The Knetc Theory of Gases 3.1. Ideal Gases 3.1.1. Exermental Laws and the Equaton of State 3.1.2. Molecular Model of an Ideal Gas 3.3. Mean Free Path 3.4. The Boltzmann Dstrbuton Law and The Dstrbuton

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

NAME and Section No.

NAME and Section No. Chemstry 391 Fall 2007 Exam I KEY (Monday September 17) 1. (25 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). Defne the terms: open system, closed system and solated system

More information

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX -

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX - - APPENDIX - MAYARD S PROBLEM SOLVING METOD A sample o word problems rom hgh school (nd cycle) to college leel s used to llustrate ths smple method that can also be used n all grade leels. 4 smple steps

More information

First Law of Thermodynamics

First Law of Thermodynamics Frst Law of Thermodynamcs Readng: Chapter 18, Sectons 18-7 to 18-11 Heat and Work When the pston s dsplaced by ds, force exerted by the gas = F = pa, work done by the gas: dw Fds ( pa)( ds) p( Ads) p d.

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 006 ME 440 Aerosace Engneerng Fundamentals roulson hrust Jet Engne F m( & Rocket Engne F m & F ρ A - n ) ρ A he basc rncle nsde the engne s to convert the ressure and thermal energy of the workng

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Chapter 6 Second Law of Thermodynamics

Chapter 6 Second Law of Thermodynamics Capter 6 Second Law o Termodynamcs Te rst law o termodynamcs s an energy conservaton statement. It determnes weter or not a process can take place energetcally. It does not tell n wc drecton te process

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f. Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj?

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj? 376 Lea & Burke Physcs; The Nature of Thngs 19.44 J»(Pa) At constant V A \ LjSj?! '/! If / l/l /!! j j J [ ^ 1 I X j j> 1 ' : / J! 60 100 T('K) 200 Constant V lnes are mapped onto straght lnes on the P-T

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative Physcs (PHYF hap : Heat and the Frst aw of hermodynamcs -. Work and Heat n hermodynamc Processes A thermodynamc system s a system that may exchange energy wth ts surroundngs by means of heat and work.

More information

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin General Physics I Lecture 5: Heat and he 1st Law o hermodynamics Pro. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Latent Heat in Phase Changes Latent Heat he latent heat o vaporization or

More information

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

Entropy generation in a chemical reaction

Entropy generation in a chemical reaction Entropy generaton n a chemcal reacton E Mranda Área de Cencas Exactas COICET CCT Mendoza 5500 Mendoza, rgentna and Departamento de Físca Unversdad aconal de San Lus 5700 San Lus, rgentna bstract: Entropy

More information

ESCI Cloud Physics and Precipitation Processes Lesson 4 - Convection Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 4 - Convection Dr. DeCaria References: ESCI 340 - Cloud Physcs and Precptaton Processes Lesson 4 - Convecton Dr. DeCara Glossary of Meteorology, 2nd ed., Amercan Meteorologcal Socety A Short Course n Cloud Physcs, 3rd ed., Rogers

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Be true to your work, your word, and your friend.

Be true to your work, your word, and your friend. Chemstry 13 NT Be true to your work, your word, and your frend. Henry Davd Thoreau 1 Chem 13 NT Chemcal Equlbrum Module Usng the Equlbrum Constant Interpretng the Equlbrum Constant Predctng the Drecton

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulc Head and Flud Potental What makes water flow? Consder ressure Water Level o A Water Level C o o + B Pressure at A atmosherc (

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p ) Examle roblems Chater : he Kinetic heory o Gases Homework:, 8,,, 5, 7 (. 5-5) 9. An automobile tire has a volume o.64 x m and contains air at a gauge ressure (above atmosheric ressure) o 65 kpa when the

More information

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information