Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models

Size: px
Start display at page:

Download "Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models"

Transcription

1 Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models Julian Koellermeier, Manuel Torrilhon October 12th, 2015 Chinese Academy of Sciences, Beijing Julian Koellermeier, Manuel Torrilhon 1 / 27 Numerical Solutions for the Boltzmann Equation

2 Outline Introduction 1 Introduction Summary Julian Koellermeier, Manuel Torrilhon 2 / 27 Numerical Solutions for the Boltzmann Equation

3 Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Introduction Julian Koellermeier, Manuel Torrilhon 3 / 27 Numerical Solutions for the Boltzmann Equation

4 Introduction Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Aim Derive hyperbolic PDE systems for rarefied gas flows Extension of standard fluid dynamic equations Reentry flows Micro channel flows Julian Koellermeier, Manuel Torrilhon 4 / 27 Numerical Solutions for the Boltzmann Equation

5 Introduction Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Aim Derive hyperbolic PDE systems for rarefied gas flows Extension of standard fluid dynamic equations Reentry flows Micro channel flows Importance of Hyperbolicity Well-posedness and stability of the solution Julian Koellermeier, Manuel Torrilhon 4 / 27 Numerical Solutions for the Boltzmann Equation

6 Rarefied Gas Dynamics I Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Goal solve and simulate flow problems involving rarefied gases Knudsen number distinguish flow regimes by orders of the Knudsen number Kn = λ L λ is the mean free path length L is a reference length Flow regimes Kn 0.1: continuum model; Navier-Stokes Equation and extensions Kn 0.1: rarefied gas; Boltzmann Equation or Monte-Carlo simulations Julian Koellermeier, Manuel Torrilhon 5 / 27 Numerical Solutions for the Boltzmann Equation

7 Rarefied Gas Dynamics II Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Applications for large Kn = λ L large λ: rarefied gases, atmospheric reentry flights small L: micro-scale applications, Knudsen pump, MEMS Tasks computation of mass flow rates calculation of shock layer thickness accurate prediction of heat flux Julian Koellermeier, Manuel Torrilhon 6 / 27 Numerical Solutions for the Boltzmann Equation

8 Boltzmann Transport Equation Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction t f (t, x, c) + c i f (t, x, c) = S(f ) x i PDE for particles probability density function f (t, x, c) Describes change of f due to transport and collisions Collision operator S Usually a 7-dimensional phase space Julian Koellermeier, Manuel Torrilhon 7 / 27 Numerical Solutions for the Boltzmann Equation

9 Model Order Reduction Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Ansatz f (t, x, c) = M i=0 f i (t, x)h ρ,v,θ i (c) Julian Koellermeier, Manuel Torrilhon 8 / 27 Numerical Solutions for the Boltzmann Equation

10 Model Order Reduction Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Ansatz f (t, x, c) = M i=0 f i (t, x)h ρ,v,θ i (c) Reduction of Complexity One PDE for f (t, x, c) that is 7-dimensional Julian Koellermeier, Manuel Torrilhon 8 / 27 Numerical Solutions for the Boltzmann Equation

11 Model Order Reduction Rarefied Gas Dynamics Boltzmann Equation Model Order Reduction Ansatz f (t, x, c) = M i=0 f i (t, x)h ρ,v,θ i (c) Reduction of Complexity One PDE for f (t, x, c) that is 7-dimensional System of PDEs for ρ(t, x), v(t, x), θ(t, x), f i (t, x) that is 4-dimensional Julian Koellermeier, Manuel Torrilhon 8 / 27 Numerical Solutions for the Boltzmann Equation

12 Grad HME QBME OP Julian Koellermeier, Manuel Torrilhon 9 / 27 Numerical Solutions for the Boltzmann Equation

13 Grad s Method [Grad, 1949] Grad HME QBME OP Galerkin Approach Standard method Multiplication with test function and integration Julian Koellermeier, Manuel Torrilhon 10 / 27 Numerical Solutions for the Boltzmann Equation

14 Grad s Method [Grad, 1949] Grad HME QBME OP Galerkin Approach Standard method Multiplication with test function and integration Grad result t u M + A Grad x u M = 0, Julian Koellermeier, Manuel Torrilhon 10 / 27 Numerical Solutions for the Boltzmann Equation

15 Grad s Method [Grad, 1949] Grad HME QBME OP Galerkin Approach Standard method Multiplication with test function and integration Grad result t u M + A Grad x u M = 0, u 4 = (ρ, v, θ, f 3, f 4 ) T Julian Koellermeier, Manuel Torrilhon 10 / 27 Numerical Solutions for the Boltzmann Equation

16 Grad s Method [Grad, 1949] Galerkin Approach Standard method Grad HME QBME OP Multiplication with test function and integration Grad result t u M + A Grad x u M = 0, A Grad = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f 3 2 v 4 f 3θ 3f ρ 5f θ v Julian Koellermeier, Manuel Torrilhon 10 / 27 Numerical Solutions for the Boltzmann Equation

17 Grad s Method [Grad, 1949] Galerkin Approach Standard method Grad HME QBME OP Multiplication with test function and integration Grad result t u M + A Grad x u M = 0, A Grad = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f 3 2 v 4 f 3θ 3f ρ 5f θ v Loss of hyperbolicity Julian Koellermeier, Manuel Torrilhon 10 / 27 Numerical Solutions for the Boltzmann Equation

18 Grad HME QBME OP (HME) [Cai et al., 2012] Modification of equations Based on Grad s method Modification of terms in last equation to achieve hyperbolicity Julian Koellermeier, Manuel Torrilhon 11 / 27 Numerical Solutions for the Boltzmann Equation

19 Grad HME QBME OP (HME) [Cai et al., 2012] Modification of equations Based on Grad s method Modification of terms in last equation to achieve hyperbolicity HME result t u M + A HME x u M = 0, A HME = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f 3 2 v 4 ρ 0 f 3 θ v f 3θ Julian Koellermeier, Manuel Torrilhon 11 / 27 Numerical Solutions for the Boltzmann Equation

20 Grad HME QBME OP (HME) [Cai et al., 2012] Modification of equations Based on Grad s method Modification of terms in last equation to achieve hyperbolicity HME result t u M + A HME x u M = 0, A HME = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f 3 2 v 4 ρ 0 f 3 θ v f 3θ Globally hyperbolic for every state vector u M Julian Koellermeier, Manuel Torrilhon 11 / 27 Numerical Solutions for the Boltzmann Equation

21 Grad HME QBME OP Quadrature-Based Moment Equations (QBME) [JK 2013] Quadrature-Based Projection Approach Based on Grad s method Substitution of integrals by Gaussian quadrature Julian Koellermeier, Manuel Torrilhon 12 / 27 Numerical Solutions for the Boltzmann Equation

22 Grad HME QBME OP Quadrature-Based Moment Equations (QBME) [JK 2013] Quadrature-Based Projection Approach Based on Grad s method Substitution of integrals by Gaussian quadrature QBME result t u M + A QBME x u M = 0, A QBME = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f f 4 θ v 4 f 3θ ρ 5f 4 f 3 θ+ 15f 4 ρθ v Julian Koellermeier, Manuel Torrilhon 12 / 27 Numerical Solutions for the Boltzmann Equation

23 Grad HME QBME OP Quadrature-Based Moment Equations (QBME) [JK 2013] Quadrature-Based Projection Approach Based on Grad s method Substitution of integrals by Gaussian quadrature QBME result t u M + A QBME x u M = 0, A QBME = u 4 = (ρ, v, θ, f 3, f 4 ) T v ρ θ ρ v θ v ρ 0 ρθ 0 4f f 4 θ v 4 f 3θ ρ 5f 4 f 3 θ+ 15f 4 ρθ v Globally hyperbolic for every state vector u M Julian Koellermeier, Manuel Torrilhon 12 / 27 Numerical Solutions for the Boltzmann Equation

24 Operator Projection Framework Grad HME QBME OP Moment equations D t w + MD x w = 0 P projection matrix w := P w projected flow variables D := P DP T projected derivative matrix M := P MP T projected multiplication matrix Julian Koellermeier, Manuel Torrilhon 13 / 27 Numerical Solutions for the Boltzmann Equation

25 Operator Projection Framework Grad HME QBME OP Moment equations t w + D 1 MD x w = 0 P projection matrix w := P w projected flow variables D := P DP T projected derivative matrix M := P MP T projected multiplication matrix Globally hyperbolic for every state vector w Julian Koellermeier, Manuel Torrilhon 14 / 27 Numerical Solutions for the Boltzmann Equation

26 Model Summary Introduction Grad HME QBME OP Properties globally hyperbolic system multiple spatial dimensions rotational invariance single framework includes all theories Problems analysis of system including collision operator numerical simulations Julian Koellermeier, Manuel Torrilhon 15 / 27 Numerical Solutions for the Boltzmann Equation

27 Model Summary Introduction Grad HME QBME OP Properties globally hyperbolic system multiple spatial dimensions rotational invariance single framework includes all theories Problems analysis of system including collision operator numerical simulations Julian Koellermeier, Manuel Torrilhon 15 / 27 Numerical Solutions for the Boltzmann Equation

28 Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Julian Koellermeier, Manuel Torrilhon 16 / 27 Numerical Solutions for the Boltzmann Equation

29 Non-Conservative PDE systems Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Standard conservative PDE system t u + x F(u) = 0 Julian Koellermeier, Manuel Torrilhon 17 / 27 Numerical Solutions for the Boltzmann Equation

30 Non-Conservative PDE systems Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Standard conservative PDE system t u + x F(u) = 0 Non-conservative PDE system t u + A(u) x u = 0 Julian Koellermeier, Manuel Torrilhon 17 / 27 Numerical Solutions for the Boltzmann Equation

31 Non-Conservative PDE systems Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Standard conservative PDE system t u + x F(u) = 0 Non-conservative PDE system t u + A(u) x u = 0 Can be written in conservative form iff A(u) = F(u) u HME and QBME are partially-conservative systems Julian Koellermeier, Manuel Torrilhon 17 / 27 Numerical Solutions for the Boltzmann Equation

32 Non-Conservative PDE systems Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Standard conservative PDE system t u + x F(u) = 0 Non-conservative PDE system t u + A(u) x u = 0 Can be written in conservative form iff A(u) = F(u) u HME and QBME are partially-conservative systems Special numerical methods are needed Julian Koellermeier, Manuel Torrilhon 17 / 27 Numerical Solutions for the Boltzmann Equation

33 Non-Conservative Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Wave Propagation scheme [LeVeque, 1997] Upwind type scheme First order and almost second order Implemented on 2D uniform cartesian grids PRICE-C scheme [Canestrelli, 2009] Centered scheme First order and arbitrary order Implemented on 2D unstructured grids Julian Koellermeier, Manuel Torrilhon 18 / 27 Numerical Solutions for the Boltzmann Equation

34 Non-Conservative Variables Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Non-conservative PDE system t u + A(u) x u = 0 Julian Koellermeier, Manuel Torrilhon 19 / 27 Numerical Solutions for the Boltzmann Equation

35 Non-Conservative Variables Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Non-conservative PDE system Variable transformation t u + A(u) x u = 0 w = B 1 (u) u = B (w) Transformed non-conservative PDE system t w + 1 B (w) B (w) A (B (w)) w w xw = 0 Julian Koellermeier, Manuel Torrilhon 19 / 27 Numerical Solutions for the Boltzmann Equation

36 Non-Conservative Variables Non-Conservative PDE systems Non-Conservative Non-Conservative Variables Non-conservative PDE system Variable transformation t u + A(u) x u = 0 w = B 1 (u) u = B (w) Transformed non-conservative PDE system t w + 1 B (w) B (w) A (B (w)) w w xw = 0 Primitive vs partially conserved variables Primitive variables: u = (ρ, v, θ, f 3, f 4 ) Partially conserved variables: w = ( ρ, ρv, ρ ( v 2 + θ ), f 3, f 4 ) Julian Koellermeier, Manuel Torrilhon 19 / 27 Numerical Solutions for the Boltzmann Equation

37 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison Julian Koellermeier, Manuel Torrilhon 20 / 27 Numerical Solutions for the Boltzmann Equation

38 Shock Tube Test Case Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison Julian Koellermeier, Manuel Torrilhon 21 / 27 Numerical Solutions for the Boltzmann Equation

39 Shock Tube Test Case Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison Riemann problem with BGK collision operator t u + A x u = 1 Pu, x [ 2, 2] τ ρ L = 7, ρ R = 1 Variable vector u = (ρ, v, θ, f 3, f 4 ) Relaxation time τ = Kn ρ non-linear Julian Koellermeier, Manuel Torrilhon 21 / 27 Numerical Solutions for the Boltzmann Equation

40 QBME vs Grad, Kn = 0.05 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison ρ Grad 7 ρ QBME p Grad p QBME 0.6 u Grad u QBME Julian Koellermeier, Manuel Torrilhon 22 / 27 Numerical Solutions for the Boltzmann Equation

41 QBME vs HME, Kn = 0.5 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison ρ HME 7 ρ QBME p HME p QBME 0.6 u HME u QBME Julian Koellermeier, Manuel Torrilhon 23 / 27 Numerical Solutions for the Boltzmann Equation

42 PRICE vs WP, Kn = 0.5 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison ρ PRICE 7 ρ WP p PRICE p WP 0.6 u PRICE u WP Julian Koellermeier, Manuel Torrilhon 24 / 27 Numerical Solutions for the Boltzmann Equation

43 PRICE vs WP2, Kn = 0.5 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison ρ PRICE 7 ρ WP2 p PRICE p WP2 0.6 u PRICE u WP Julian Koellermeier, Manuel Torrilhon 25 / 27 Numerical Solutions for the Boltzmann Equation

44 Shock Tube Test Case Model Comparison Method Comparison Variable Set Comparison Primitive vs Partially Conserved, Kn = 0.5 ρ prim 7 ρ partconv p prim p partconv 0.6 u prim u partconv Julian Koellermeier, Manuel Torrilhon 26 / 27 Numerical Solutions for the Boltzmann Equation

45 Summary and Further Work Summary Equations: QBME, HME Numerics: Wave Propagation, PRICE Results: Comparison of models, numerical schemes, variable sets Differences between models are larger than between numerical schemes Further Work More simulations and test cases Higher order PRICE scheme Julian Koellermeier, Manuel Torrilhon 27 / 27 Numerical Solutions for the Boltzmann Equation

46 Summary and Further Work Summary Equations: QBME, HME Numerics: Wave Propagation, PRICE Results: Comparison of models, numerical schemes, variable sets Differences between models are larger than between numerical schemes Further Work More simulations and test cases Higher order PRICE scheme Thank you for your attention! Julian Koellermeier, Manuel Torrilhon 27 / 27 Numerical Solutions for the Boltzmann Equation

47 References Introduction J. Koellermeier, R.P. Schaerer and M. Torrilhon. A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods, Kinet. Relat. Mod. 7(3) (2014), J. Koellermeier, M. Torrilhon. Using Quadrature-Based Projection Methods, 29th Rarefied Gas Dynamics, Xi an (2014) Y. Fan, J. Koellermeier, J. Li, R. Li. A framework on the globally hyperbolic moment method for kinetic equations using operator projection method accepted Z. Cai, Y. Fan and R. Li. Globally hyperbolic regularization of Grad s moment system, Comm. Pure Appl. Math., 67(3) (2014), H. Grad. On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2(4) (1949), A. Canestrelli. Numerical Modelling of Alluvial Rivers by Shock Capturing Methods, Universita Degli Studi di Padova, (2009). R. LeVeque. Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, J. Comput. Phys., 131 (1997), Julian Koellermeier, Manuel Torrilhon 28 / 27 Numerical Solutions for the Boltzmann Equation

Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form

Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form Julian Koellermeier, Manuel Torrilhon May 18th, 2017 FU Berlin J. Koellermeier 1 / 52 Partially-Conservative

More information

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models On a New Diagram Notation for the Derivation of Hyperbolic Moment Models Julian Koellermeier, Manuel Torrilhon, Yuwei Fan March 17th, 2017 Stanford University J. Koellermeier 1 / 57 of Hyperbolic Moment

More information

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods Using Quadrature-Based Projection Methods Julian Köllermeier, Manuel Torrilhon 29th International Symposium on Rarefied Gas Dynamics, Xi an July 14th, 2014 Julian Köllermeier, Manuel Torrilhon 1 / 12 Outline

More information

Simplified Hyperbolic Moment Equations

Simplified Hyperbolic Moment Equations Simplified Hyperbolic Moment Equations Julian Koellermeier and Manuel Torrilhon Abstract Hyperbolicity is a necessary property of model equations for the solution of the BGK equation to achieve stable

More information

A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids

A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids Diese Arbeit wurde vorgelegt am Lehrstuhl für Mathematik (MathCCES) A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids CES Seminar Computational Engineering

More information

Atmospheric Entry. Technology, Mathematical Model and Simulation

Atmospheric Entry. Technology, Mathematical Model and Simulation Atmospheric Entry Technology, Mathematical Model and Simulation Julian Köllermeier RWTH Aachen, August 26th 2016 Outline 1. Introduction to Atmospheric Reentry 2. Rarefied Gases: From Science Fiction to

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods

Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods Master Thesis Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Comparison of maximum entropy and quadrature-based moment closures for shock transitions prediction in one-dimensional gaskinetic theory

Comparison of maximum entropy and quadrature-based moment closures for shock transitions prediction in one-dimensional gaskinetic theory Comparison of maximum entropy and quadrature-based moment closures for shock transitions prediction in one-dimensional gaskinetic theory Jérémie Laplante and Clinton P. T. Groth Citation: AIP Conference

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF TAU Extensions for High Enthalpy Flows Sebastian Karl AS-RF Contents Motivation Extensions available in the current release: Numerical schemes for super- and hypersonic flow fields Models for gas mixtures,

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Bulk equations and Knudsen layers for the regularized 13 moment equations

Bulk equations and Knudsen layers for the regularized 13 moment equations Continuum Mech. Thermon. 7 9: 77 89 DOI.7/s6-7-5- ORIGINAL ARTICLE Henning Struchtrup Toby Thatcher Bulk equations and Knudsen layers for the regularized 3 moment equations Received: 9 December 6 / Accepted:

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

The Regularized 13 Moment Equations for Rarefied and Vacuum Gas Flows

The Regularized 13 Moment Equations for Rarefied and Vacuum Gas Flows xxxx The Regularized 13 Moment Equations for Rarefied and Vacuum Gas Flows Henning Struchtrup Peyman Taheri Anirudh Rana University of Victoria, Canada Manuel Torrilhon RWTH Aachen Goal: Accurate and efficient

More information

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods Hyperbolic Moment Equations Using Quarature-Base Projection Methos J. Koellermeier an M. Torrilhon Department of Mathematics, RWTH Aachen University, Aachen, Germany Abstract. Kinetic equations like the

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

arxiv: v2 [math-ph] 29 Nov 2010

arxiv: v2 [math-ph] 29 Nov 2010 An Efficient NRxx Method for Boltzmann-BGK Equation Zhenning Cai, Ruo Li and Yanli Wang arxiv:1011.5789v2 [math-ph] 29 Nov 2010 November 6, 2018 Abstract In [3], we proposed a numerical regularized moment

More information

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method Research Journal of Applied Sciences, Engineering and Technology 6(14): 50-55, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 08, 01 Accepted: December 8,

More information

Li Ruo. Adaptive Mesh Method, Numerical Method for Fluid Dynamics, Model Reduction of Kinetic Equation

Li Ruo. Adaptive Mesh Method, Numerical Method for Fluid Dynamics, Model Reduction of Kinetic Equation Li Ruo Contact Information Mailing Address: School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China Tel: 86-10-6276-7345(O), 86-150-1019-4872(M) E-mail: rli@math.pku.edu.cn Homepage:

More information

Generalized Gas Dynamic Equations

Generalized Gas Dynamic Equations 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009 Orlando Florida AIAA 2009-672 Generalized Gas Dynamic Equations Kun Xu Mathematics Department

More information

Why Should We Be Interested in Hydrodynamics?

Why Should We Be Interested in Hydrodynamics? Why Should We Be Interested in Hydrodynamics? Li-Shi Luo Department of Mathematics and Statistics Center for Computational Sciences Old Dominion University, Norfolk, Virginia 23529, USA Email: lluo@odu.edu

More information

Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-Variate Pearson-IV-Distributions

Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-Variate Pearson-IV-Distributions Commun. Comput. Phys. doi: 0.408/cicp.009.09.049 Vol. 7, No. 4, pp. 639-673 April 00 Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-Variate Pearson-IV-Distributions Manuel Torrilhon Seminar

More information

Non-Equilibrium Flow Modeling Using High- Order Schemes for the Boltzmann Model Equations

Non-Equilibrium Flow Modeling Using High- Order Schemes for the Boltzmann Model Equations Purdue University Purdue e-pubs School of Aeronautics and Astronautics Faculty Publications School of Aeronautics and Astronautics 28 Non-Equilibrium Flow Modeling Using High- Order Schemes for the Boltzmann

More information

Failures of the Burnett and super-burnett equations in steady state processes

Failures of the Burnett and super-burnett equations in steady state processes Continuum Mech. Thermodyn. (2005) 7: 43 50 Digital Object Identifier (DOI) 0.007/s006-004-086-0 Original article Failures of the Burnett and super-burnett equations in steady state processes H. Struchtrup

More information

Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method

Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method 75 Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method A. C. M. Sousa,2, M. Hadavand & A. Nabovati 3 Department of Mechanical Engineering, University

More information

arxiv: v1 [physics.flu-dyn] 14 Feb 2017

arxiv: v1 [physics.flu-dyn] 14 Feb 2017 This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 arxiv:170.0410v1 [physics.flu-dyn] 14 Feb 017 A comment on An improved macroscale model for gas slip flow

More information

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering

More information

Problems of Flows Through Short Channels Studied by Means of the Boltzmann Equation

Problems of Flows Through Short Channels Studied by Means of the Boltzmann Equation Problems of Flows Through Short Channels Studied by Means of the Boltzmann Equation Aristov V.V., Frolova A.A. and Zabelok S.A. Dorodnicyn Computing Centre of Russian Academy of Sciences Kolobov V.I. and

More information

Rocket Science, Reentry and the Race to Mars. From Science Fiction to Simulation

Rocket Science, Reentry and the Race to Mars. From Science Fiction to Simulation Rocket Science, Reentry and the Race to Mars From Science Fiction to Simulation Julian Köllermeier RWTH Aachen, November 1st 2015 The Mars half the diameter of the Earth 40% of Earth s gravity 2 moons

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran

Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran Outlines: Introduction DSMC Collision Schemes Results Conclusion

More information

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 018, Glasgow, UK FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

Behaviour of microscale gas flows based on a power-law free path distribution function

Behaviour of microscale gas flows based on a power-law free path distribution function Behaviour of microscale gas flows based on a power-law free path distribution function Nishanth Dongari, Yonghao Zhang and Jason M Reese Department of Mechanical Engineering, University of Strathclyde,

More information

Analytical and numerical solutions of the regularized 13 moment equations for rarefied gases

Analytical and numerical solutions of the regularized 13 moment equations for rarefied gases xxxx Analytical and numerical solutions of the regularized 13 moment equations for rarefied gases Henning Struchtrup University of Victoria, Canada Manuel Torrilhon ETH Zürich Peyman Taheri University

More information

Fluid Dynamics from Kinetic Equations

Fluid Dynamics from Kinetic Equations Fluid Dynamics from Kinetic Equations François Golse Université Paris 7 & IUF, Laboratoire J.-L. Lions golse@math.jussieu.fr & C. David Levermore University of Maryland, Dept. of Mathematics & IPST lvrmr@math.umd.edu

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures

Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures Vladimir V. Riabov Rivier College, Nashua, New Hampshire, USA Abstract. Diffusion effects in the spherical expanding flows of argon-helium

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Shigeru TAKATA ( 髙田滋 ) Department of Mechanical Engineering and Science, (also Advanced Research Institute

More information

MODELLING OF THE BOUNDARY CONDITION FOR MICRO CHANNELS WITH USING LATTICE BOLTZMANN METHOD (LBM)

MODELLING OF THE BOUNDARY CONDITION FOR MICRO CHANNELS WITH USING LATTICE BOLTZMANN METHOD (LBM) Reports Awarded with "Best Paper" Crystal Prize 17 FRI-1.417-1-MEMBT-05 MODELLING OF THE BOUNDARY CONDITION FOR MICRO CHANNELS WITH USING LATTICE BOLTZMANN METHOD (LBM) Rsc. Asst. İlkay Çolpan, BSc Department

More information

Numerical methods for kinetic equations

Numerical methods for kinetic equations Numerical methods for kinetic equations Lecture 6: fluid-kinetic coupling and hybrid methods Lorenzo Pareschi Department of Mathematics and Computer Science University of Ferrara, Italy http://www.lorenzopareschi.com

More information

An improved unified gas-kinetic scheme and the study of shock structures

An improved unified gas-kinetic scheme and the study of shock structures IMA Journal of Applied Mathematics (2011) 76, 698 711 doi:10.1093/imamat/hxr002 Advance Access publication on March 16, 2011 An improved unified gas-kinetic scheme and the study of shock structures KUN

More information

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Overview Micro/Nano Couette Flow DSMC Algorithm Code Validation Entropy and

More information

ON HYPERBOLICITY OF 13-MOMENT SYSTEM. Zhenning Cai. Yuwei Fan. Ruo Li. (Communicated by Yan Guo)

ON HYPERBOLICITY OF 13-MOMENT SYSTEM. Zhenning Cai. Yuwei Fan. Ruo Li. (Communicated by Yan Guo) Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 20XX doi:10.3934/xx.xx.xx.xx pp. X XX ON HYPERBOLICITY OF 13-MOMENT SYSTEM Zhenning Cai CAPT & School of Mathematical Sciences Peking University

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows

Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flows Timothy R. Deschenes and Iain D. Boyd Department of Aerospace Engineering, University of Michigan, Ann Arbor,

More information

Lattice Boltzmann Methods for Fluid Dynamics

Lattice Boltzmann Methods for Fluid Dynamics Lattice Boltzmann Methods for Fluid Dynamics Steven Orszag Department of Mathematics Yale University In collaboration with Hudong Chen, Isaac Goldhirsch, and Rick Shock Transient flow around a car LBGK

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme

The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme Wei Gao Quanhua Sun Kun Xu Abstract The equivalent partial differential equation is derived for the gas-kinetic BGK scheme (GKS) [Xu J.

More information

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Oleg Sazhin Ural State University, Lenin av.5, 6283 Ekaterinburg, Russia E-mail: oleg.sazhin@uralmail.com Abstract. The

More information

Projection Dynamics in Godunov-Type Schemes

Projection Dynamics in Godunov-Type Schemes JOURNAL OF COMPUTATIONAL PHYSICS 142, 412 427 (1998) ARTICLE NO. CP985923 Projection Dynamics in Godunov-Type Schemes Kun Xu and Jishan Hu Department of Mathematics, Hong Kong University of Science and

More information

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS The Seventh Nobeyama Workshop on CFD: To the Memory of Prof. Kuwahara Sanjo Kaikan, the University of Tokyo, Japan, September. 23-24, 2009 SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS Jaw-Yen

More information

Summary We develop an unconditionally stable explicit particle CFD scheme: Boltzmann Particle Hydrodynamics (BPH)

Summary We develop an unconditionally stable explicit particle CFD scheme: Boltzmann Particle Hydrodynamics (BPH) Summary Steps in BPH Space is divided into Cartesian cells Finite number of particles ~10 6-10 7 Particles fly freely between t n and t n+1 Mass, momentum and total energy are conserved Relax into a (LTE)

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows K. Xu and J.C. Huang Mathematics Department, Hong Kong University of Science and Technology, Hong Kong Department of Merchant Marine, National

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

DSMC simulations of thermal escape

DSMC simulations of thermal escape DSMC simulations of thermal escape Alexey N. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin Materials Science & Engineering University of Virginia, USA Financial support is provided by NASA through Planetary

More information

Stability and consistency of kinetic upwinding for advection diffusion equations

Stability and consistency of kinetic upwinding for advection diffusion equations IMA Journal of Numerical Analysis (006 6, 686 7 doi:0.093/imanum/drl005 Advance Access publication on March, 006 Stability and consistency of kinetic upwinding for advection diffusion equations MANUEL

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Follow this and additional works at:

Follow this and additional works at: Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-19-2016 The Effects

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 INVESTIGATION OF AMPLITUDE DEPENDENCE ON NONLINEAR ACOUSTICS USING THE DIRECT SIMULATION MONTE CARLO METHOD PACS: 43.5.Ed Hanford, Amanda

More information

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Sandra Pieraccini, Gabriella Puppo July 25, 2 Abstract In this work a new class of numerical methods for the BGK model of

More information

Hypersonic Blunt Body Thermophysics Using a Unified Kinetic/Continuum Solver

Hypersonic Blunt Body Thermophysics Using a Unified Kinetic/Continuum Solver 41st AIAA Thermophysics Conference 22-25 June 2009, San Antonio, Texas AIAA 2009-3838 Hypersonic Blunt Body Thermophysics Using a Unified Kinetic/Continuum Solver Andrew J. Lofthouse U.S. Air Force Institute

More information

1 Continuum Models Some History and Background Added Value of Continuum Equations... 6

1 Continuum Models Some History and Background Added Value of Continuum Equations... 6 Re g u la riz a tio n o f Gra d s 1 3 -Mo m e nt-equ a tio n s in K in e tic Ga s Th e o ry Manuel Torrilhon Department of Mathematics & Center for Computational Engineering Science RWTH Aachen University

More information

Predicting Breakdown of the Continuum Equations Under Rarefied Flow Conditions

Predicting Breakdown of the Continuum Equations Under Rarefied Flow Conditions Predicting Breakdown of the Continuum Equations Under Rarefied Flow Conditions Iain D. Boyd Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 Abstract. The breakdown of the

More information

Connection Between the Lattice Boltzmann Equation and the Beam Scheme

Connection Between the Lattice Boltzmann Equation and the Beam Scheme NASA/CR-1999-209001 ICASE Report No. 99-10 Connection Between the Lattice Boltzmann Equation and the Beam Scheme Kun Xu Hong Kong University of Science and Technology, Kowloon, Hong Kong Li-Shi Luo ICASE,

More information

Direct modeling for computational fluid dynamics

Direct modeling for computational fluid dynamics Acta Mech Sin (5) 3(3):33 38 DOI.7/s49-5-453- RESEARCH PAPER Direct modeling for computational fluid dynamics Kun u Received: 5 January 5 / Revised: 5 February 5 / Accepted: 3 March 5 / Published online:

More information

A cut cell method for the 3D simulation of Crookes radiometer

A cut cell method for the 3D simulation of Crookes radiometer A cut cell method for the D simulation of Crookes radiometer Guillaume Dechristé and Luc Mieussens Univ. Bordeaux, IMB, UMR 5251, F-400 Talence, France. CNRS, IMB, UMR 5251, F-400 Talence, France. Abstract.

More information

All-Particle Multiscale Computation of Hypersonic Rarefied Flow

All-Particle Multiscale Computation of Hypersonic Rarefied Flow 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-822 All-Particle Multiscale Computation of Hypersonic Rarefied

More information

Subsonic choked flow in the microchannel

Subsonic choked flow in the microchannel PHYSICS OF FLUIDS 18, 127104 2006 Subsonic choked flow in the microchannel Xie Chong a Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics of the Chinese Academy of Sciences, 15 West

More information

Heat transfer in micro devices packaged in partial vacuum

Heat transfer in micro devices packaged in partial vacuum Heat transfer in micro devices packaged in partial vacuum AnirudhRana 1, Manuel Torrilhon 2, HenningStruchtrup 1 1 DepartmentofMechanicalEngineering, University of Victoria, Victoria BC, Canada 2 DepartmentofMathematics,

More information

DSMC solver for an optimized Space Crew reentry Orbital Vehicle

DSMC solver for an optimized Space Crew reentry Orbital Vehicle DSMC solver for an optimized Space Crew reentry Orbital Vehicle Vigneshwaran Krishnamurthy 1,a, Ram Arvinth Shanmugam Periasamy 1,b, Vertika Saxena 1,c, Nandita Nurani Hari 1,d and Suriyaprabha Chandrasekar

More information

Scaling Parameters in Rarefied Flow and the Breakdown of the Navier-Stokes Equations Mechanical Engineering Research Report No: 2004/09

Scaling Parameters in Rarefied Flow and the Breakdown of the Navier-Stokes Equations Mechanical Engineering Research Report No: 2004/09 Scaling Parameters in Rarefied Flow and the Breakdown of the Navier-Stokes Equations Mechanical Engineering Research Report No: 2004/09 Michael Macrossan, Centre for Hypersonics, University of Queensland

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011.

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. C. Ringhofer ringhofer@asu.edu, math.la.asu.edu/ chris OVERVIEW Quantum and classical description of many particle

More information

On the motion induced in a gas confined in a small-scale gap due to instantaneous boundary heating

On the motion induced in a gas confined in a small-scale gap due to instantaneous boundary heating J. Fluid Mech. (7), vol. 593, pp. 453 46. c 7 Cambridge University Press doi:.7/s78658 Printed in the United Kingdom 453 On the motion induced in a gas confined in a small-scale gap due to instantaneous

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

The lattice Boltzmann equation: background and boundary conditions

The lattice Boltzmann equation: background and boundary conditions The lattice Boltzmann equation: background and boundary conditions Tim Reis Department of Mathematics Sciences University of Greenwich Leslie Comrie Seminar Series November 2016 Acknowledgements: P. Dellar

More information

Part 23 Gas-Kinetic BGK Schemes

Part 23 Gas-Kinetic BGK Schemes Part 23 Gas-Kinetic BGK Schemes A New High-Order Multidimensional Scheme Qibing Li, Kun Xu and Song Fu Abstract A third-order accurate multidimensional gas-kinetic BGK scheme is constructed through the

More information

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method Alexis Vasseur, and Yi Wang Department of Mathematics, University of Texas

More information

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs. Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Shanghai Jiao Tong University,

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution

Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution Continuum Mech. Thermodyn. (23) 25:573 63 DOI.7/s6-2-252-y ORIGINAL ARTICLE James G. McDonald Clinton P. T. Groth Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based

More information

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF)

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) arxiv:1608.07869, arxiv:1711.01657, arxiv:1709.06644 Frankfurt University 1.February.2018 Preview

More information

Numerical Simulations. Duncan Christie

Numerical Simulations. Duncan Christie Numerical Simulations Duncan Christie Motivation There isn t enough time to derive the necessary methods to do numerical simulations, but there is enough time to survey what methods and codes are available

More information

Micro-Scale Gas Transport Modeling

Micro-Scale Gas Transport Modeling Micro-Scale Gas Transport Modeling Continuum & Slip Flow Regimes: Navier-Stokes Equations Slip Boundary Conditions U g U w = ( σ ) σ U Kn n Slip, Transitional & Free Molecular: Direct Simulation Monte

More information

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Heinrich Freistühler and Blake Temple Proceedings of the Royal Society-A May 2017 Culmination of a 15 year project: In this we propose:

More information

Can constitutive relations be represented by non-local equations?

Can constitutive relations be represented by non-local equations? Can constitutive relations be represented by non-local equations? Tommaso Ruggeri Dipartimento di Matematica & Centro di Ricerca per le Applicazioni della Matematica (CIRAM) Universitá di Bologna Fractional

More information

Visualizing Non-Equilibrium Flow Simulations using 3-D Velocity Distribution Functions

Visualizing Non-Equilibrium Flow Simulations using 3-D Velocity Distribution Functions Visualizing Non-Equilibrium Flow Simulations using 3-D Velocit Distribution Functions A. Venkattraman and A.A. Alexeenko School of Aeronautics & Astronautics, Purdue Universit, West Lafaette IN 797 Abstract.

More information

arxiv: v1 [physics.comp-ph] 7 Mar 2018

arxiv: v1 [physics.comp-ph] 7 Mar 2018 A BGK model for high temperature rarefied gas flows C. Baranger 1, G. Marois 1, J. Mathé 1, J. Mathiaud 1, L. Mieussens arxiv:1803.0617v1 [physics.comp-ph] 7 Mar 018 1 CEA-CESTA 15 avenue des Sablières

More information

Simulation of Rarefied Gas Flow in Slip and Transitional Regimes by the Lattice Boltzmann Method

Simulation of Rarefied Gas Flow in Slip and Transitional Regimes by the Lattice Boltzmann Method www.cfdl.issres.net Vol. 2 (2) June 2010 Simulation of Rarefied Gas Flow in Slip and Transitional Regimes by the Lattice Boltzmann Method N. Azwadi C. Sidik 1C, N.C. Horng 1, M.A. Mussa 2, and S. Abdullah

More information

An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term

An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term Alexander Kurganov Department of Mathematics, Tulane University, 683 Saint Charles Avenue, New Orleans, LA 78,

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information