THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

Size: px
Start display at page:

Download "THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE"

Transcription

1 THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE STAT1301 PROBABILITY AND STATISTICS I EXAMPLE CLASS 2 Review Definition of conditional probability For any two events A and B, the conditional probability of A given the occurrence of B is written as P (A B) and is defined as P (A B) P (A B) = P (B) provided that P (B > 0). Multiplication theorem (a) For any two events A and B with P (B) > 0, P (A B) = P (B)P (A B). (b) For any three events A, B, C with P (B C) > 0, P (A B C) = P (C)P (B C)P (A B C). Independence (a) Two events A and B are called independent if and only if P (A B) = P (A)P (B). If P (A) > 0,then A and B are independent if P (B A) = P (B). (b) The events A 1, A 2,, A k are (mutually) independent if and only if the probability of the intersection of any combination of them is equal to the product of the probabilities of the corresponding 1

2 single events. For example, A 1, A 2, A 3 are independent if and only if Bayes Theorem (Bayes rule, Bayes law) P (A 1 A 2 ) = P (A 1 )P (A 2 ) P (A 1 A 3 ) = P (A 1 )P (A 3 ) P (A 2 A 3 ) = P (A 2 )P (A 3 ) P (A 1 A 2 A 3 ) = P (A 1 )P (A 2 )P (A 3 ) For any two event A and B with P (A) > 0 and P (B) > 0, P (B A) = P (A B) P (B) P (A). Bayes Theorem If B 1, B 2,..., B k are mutually exclusive and exhaustive events (i.e. a partition of the sample space), and A is any event with P (A) > 0, then for any B j, P (B j A) = P (A B j)p (B j ) P (A) = P (B j)p (A B j ), k P (B i )P (A B i ) i=1 where k can also be. Law of total probability (a) If 0 < P (B) < 1, then P (A) = P (A B)P (B) + P (A B c )P (B c ) for any A. (b) If B 1, B 2,..., B k are mutually exclusive and exhaustive events (i.e. a partition of the sample space), then for any event A, k P (A) = P (A B j )P (B j ), where k can also be. j=1 2

3 Problems Problem 1 A and B are two events. Suppose that P (A B) = 0.6, P (B A) = 0.3, and P (A B) = LetP (A) = a. (a) Express P (A B) and P (B) in terms of a. (b) Using the results of (a), or otherwise, find the value of a. (c) Are A and B independent events? Explain your answer briefly. (a) P (A B) = P (B A)P (A) = 0.3a P (A B)P (B) = P (A B) 0.6P (B) = 0.3a P (B) = 0.5a (b) P (A B) = P (A) + P (B) P (A B) 0.72 = a + 0.5a 0.3a a = 0.6 (c) P (A B) = 0.6 = P (A) and P (B A) = 0.3 = = P (B) therefore A and B are independent events. Problem 2 A and B are two events. Suppose that P (B c A) = 3 4, P (Ac B) = 3 5, and P (Ac ) = 2 5, where Ac and B c are complementary events of A and B respectively. Let P (B) = p, where 0 < p < 1. (a) Find P (A B c ). (b) Express P (A c B) in terms of p. 3

4 (c) Using the fact that A c B is the complementary event of A B c, or otherwise, find the value of p. (d) Are A and B mutually exclusive? Explain your answer. (a) (b) (c) P (A B c ) = P (B c A)P (A) = P (B c A)[1 P (A c )] = 3 4 [1 2 5 ] = 9 20 P (A c B) = P (A c B)P (B) = 3 5 p P (A c B) = 1 P (A B c ) P (A c ) + P (B) P (A c B) = 1 P (A B c ) p 3 5 p = p = 3 20 p = 3 8 (d) therefore A and B are not mutually exclusive. P (A B) + P (A c B) = P (B) P (A B) = 3 8 P (A B) = Problem 3 (a) Say that C 1, C 2,, C k are (mutually) independent events that have respective probabilities p 1, p 2,, p k. Argue that the probability of at least one of C 1, C 2,, C k happens is equal to 1 (1 p 1 )(1 p 2 ) (1 p k ) HINT:(C 1 C 2 C k ) c = C c 1 C c 2 C c k 4

5 (b) Let C 1, C 2, C 3 be independent events with probabilities 1, 1, 1, respectively. Compute (i) P (C 1 C 2 C 3 ) (ii) P [(C c 1 C c 2) C 3 ] (a) We first consider C 1 and C 2, if the probability of at least one of them happens is P (C 1 C 2 ). P (C 1 C 2 ) = 1 P ((C 1 C 2 ) c ) = 1 P (C c 1 C c 2) Since C 1 and C 2 are independent,p(c 1 C 2 ) = P (C 1 )P (C 2 ). And since P (C 1 C 2 ) = P (C 1 ) + P (C 2 ) P (C 1 C 2 ),then we get P (C c 1 C c 2) = P ((C 1 C 2 ) c ) = 1 P (C 1 C 2 ) = 1 P (C 1 ) P (C 2 ) + P (C 1 C 2 ) = 1 P (C 1 ) P (C 2 ) + P (C 1 )P (C 2 ) = (1 P (C 1 ))(1 P (C 2 )) = P (C c 1)P (C c 2) Therefore C c 1 and C c 2 are independent. Then we can calculate P (C 1 C 2 ) = 1 P (C c 1)P (C c 2) = 1 (1 p 1 )(1 p 2 ) Based on mathematical induction we can get similar result, which is that C1, c C2, c, Ck c are independent, P (C1 c C2 c Ck c) =. Therefore the probability of at least one of C 1, C 2,, C k happens is P (C 1 C 2 C k ) = P (C1)P c (C2) c P (Ck c ), which is equal to P (C 1 C 2 C k ) = 1 P [(C 1 C 2 C k ) c ] = 1 P (C c 1 C c 2 C c k) = 1 P (C c 1)P (C c 2) P (C c k) = 1 (1 p 1 )(1 p 2 ) (1 p k ) (b) (i) P (C 1 C 2 C 3 ) = 1 (1 P (C 1 ))(1 P (C 2 ))(1 P (C 3 )) = = 3 4 (ii) P [(C c 1 C c 2) C 3 ] = 1 [1 P (C c 1 C c 2)](1 P (C 3 )) = 1 [1 P (C c 1)P (C c 2)](1 P (C 3 )) = 1 ( )(1 1 4 ) = 1 2 5

6 Problem 4 A small plane have gone down, and the search is organized into three regions. Starting with the likeliest, they are: Region Initial Chance Plane is There Chance of Being Overlooked in the Search Mountains Praire Sea The last column gives the chance that if the plane is there, it will not be found, it will not be found. For example, if it went down at sea, there is 90% chance it will have disappeared, or otherwise not be found. Since the pilot is not equipped to long survive a crash in the mountains, it is particularly important to determine the chance that the plane went down in the mountains. (a) Before any search is started, what is this chance in the mountains? (b) The initial search was in the mountains, and the plane was not found. Now what is the chance the plane is nevertheless in the mountains? (c) The search was continued over the other two regions, and unfortunately the plane was not found anywhere. Finally now what is the chance that the plane is in the mountains? (d) Describing how and why the chances changed from (a) to (b) to (c). Let M, P, S be the events that the plan went down in the mountains, Prairie, sea respectively. Let OM, OP, OS be the events that the plane is not found in mountains, prairie, sea respectively. Then we have P (M) = 0.5 P (P ) = 0.3 P (S) = 0.2 (a) P (M) = 0.5 P (OM M) = 0.3 P (OP M) = P (OS M) = 1 P (OP P ) = 0.2 P (OM M) = P (OS P ) = 1 P (OS S) = 0.9 P (OM S) = P (OP S) = 1 (b) P (M OM) = = P (OM M)P (M) P (OM M)P (M) + P (OM P )P (P ) + P (OM S)P (S) (0.3)(0.5) (0.3)(0.5) =

7 (c) P (OM, OP, OS) = P (OM, OP, OS M)P (M) + P (OM, OP, OS P )P (S) + P (OM, OP, OS S)P (S) = P (OM M)P (M) + P (OP P )P (P ) + P (OS S)P (S) = (0.3)(0.5) + (0.2)(0.3) + (0.9)(0.2) = 0.39 P (M OM, OP, OS) = P (OM M)P (M) P (OM, OP, OS) = (0.3)(0.5) 0.39 = (d) Prior to any search, the probability is 0.5. After the initial search, the plane was not found in the mountains. Therefore given this information the probability decreased to However, after the continued search, the plane was also not found in other regions. Hence the probability increased to due to this additional information. Problem 5 Let S = {1, 2,, n} and suppose that A and B are, independently, equally likely to be any of the 2 n subsets ( including the null set and S itself) of S. (a) Show that P (A B) = ( 3 4 )n. HINT: Let N(B) denote the number of elements in B. Use n P (A B) = P (A B N(B) = i)p (N(B) = i) (b) Show that P (A B = φ) = ( 3 4 )n. (a) Denote N(B) as the number of elements in B. Then Using law of total probability, P (A B) = = i=0 P (A B N(B) = i) = 2i 2 = n 2i n ( ) n P (N(B) = i) = /2 n j n P (A B N(B) = i)p (N(B) = i) i=0 n 2 i n i=0 n = 2 2n (2 i ) i=0 ( ) n /2 n j = 2 2n (2 + 1) n = ( 3 4 )n (binomial theorem) 7

8 (b) P (A B = φ) = P (A B c ) = ( 3 4 )n (B c and B have equivalent probabilistic behavior) Problem 6 (The Monty Hall Problem) Suppose you are on a game show, and you are given the choice of three boxes. In one box is a key to a new BMW while empty in others. You pick a box A. Then the host, Monty Hall, who knows what are inside the boxes, opens another box, say box B, which is empty. He then says to you, Do you want to abandon your box and pick box C? Is it to your advantage to switch your choice? Let SB = {hostchooseb}, we have known P (SB A) = 1 2 P (SB A c, B) = 0 P (SB A c, B c ) = 1 P (A) = P (B) = P (C) = 1 3 P (SB, B c A c ) = P (SB B c, A c )P (B c A c ) = 1 2 P (SB, B c A c ) = P (SB B c, A)P (B c A) = 1 2 Therefore P (A SB, B c ) = P (SB, B c 1 A)P (A) P (SB, B c A c )P (A c ) + P (SB, B c A)P (A) = =

Lecture 2. Conditional Probability

Lecture 2. Conditional Probability Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional

More information

STATISTICAL INDEPENDENCE AND AN INVITATION TO THE Art OF CONDITIONING

STATISTICAL INDEPENDENCE AND AN INVITATION TO THE Art OF CONDITIONING STATISTICAL INDEPENDENCE AND AN INVITATION TO THE Art OF CONDITIONING Tutorial 2 STAT1301 Fall 2010 28SEP2010, MB103@HKU By Joseph Dong Look, imagine a remote village where there has been a long drought.

More information

Lecture 3. January 7, () Lecture 3 January 7, / 35

Lecture 3. January 7, () Lecture 3 January 7, / 35 Lecture 3 January 7, 2013 () Lecture 3 January 7, 2013 1 / 35 Outline This week s lecture: Fast review of last week s lecture: Conditional probability. Partition, Partition theorem. Bayes theorem and its

More information

2.4 Conditional Probability

2.4 Conditional Probability 2.4 Conditional Probability The probabilities assigned to various events depend on what is known about the experimental situation when the assignment is made. Example: Suppose a pair of dice is tossed.

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

STAT509: Probability

STAT509: Probability University of South Carolina August 20, 2014 The Engineering Method and Statistical Thinking The general steps of engineering method are: 1. Develop a clear and concise description of the problem. 2. Identify

More information

Introduction to Probability Theory, Algebra, and Set Theory

Introduction to Probability Theory, Algebra, and Set Theory Summer School on Mathematical Philosophy for Female Students Introduction to Probability Theory, Algebra, and Set Theory Catrin Campbell-Moore and Sebastian Lutz July 28, 2014 Question 1. Draw Venn diagrams

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

Statistics 1 - Lecture Notes Chapter 1

Statistics 1 - Lecture Notes Chapter 1 Statistics 1 - Lecture Notes Chapter 1 Caio Ibsen Graduate School of Economics - Getulio Vargas Foundation April 28, 2009 We want to establish a formal mathematic theory to work with results of experiments

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

ORF 245 Fundamentals of Statistics Chapter 5 Probability

ORF 245 Fundamentals of Statistics Chapter 5 Probability ORF 245 Fundamentals of Statistics Chapter 5 Probability Robert Vanderbei Oct 2015 Slides last edited on October 14, 2015 http://www.princeton.edu/ rvdb Sample Spaces (aka Populations) and Events When

More information

Probability. 25 th September lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.)

Probability. 25 th September lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Probability 25 th September 2017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Properties of Probability Methods of Enumeration Conditional Probability Independent

More information

Chap 1: Experiments, Models, and Probabilities. Random Processes. Chap 1 : Experiments, Models, and Probabilities

Chap 1: Experiments, Models, and Probabilities. Random Processes. Chap 1 : Experiments, Models, and Probabilities EE8103 Random Processes Chap 1 : Experiments, Models, and Probabilities Introduction Real world word exhibits randomness Today s temperature; Flip a coin, head or tail? WalkAt to a bus station, how long

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Joint, Conditional, & Marginal Probabilities

Joint, Conditional, & Marginal Probabilities Joint, Conditional, & Marginal Probabilities The three axioms for probability don t discuss how to create probabilities for combined events such as P [A B] or for the likelihood of an event A given that

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Algebra. Formal fallacies (recap). Example of base rate fallacy: Monty Hall Problem.

Algebra. Formal fallacies (recap). Example of base rate fallacy: Monty Hall Problem. October 15, 2017 Algebra. Formal fallacies (recap). Example of base rate fallacy: Monty Hall Problem. A formal fallacy is an error in logic that can be seen in the argument's form. All formal fallacies

More information

(Refer Slide Time: 6:43)

(Refer Slide Time: 6:43) Probability and Random Variables/Processes for Wireless Communication Professor Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology Kanpur Module 2 Lecture No 7 Bayes

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Conditional Probability and Independence

Conditional Probability and Independence Conditional Probability and Independence September 3, 2009 1 Restricting the Sample Space - Conditional Probability How do we modify the probability of an event in light of the fact that something is known?

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

2) There should be uncertainty as to which outcome will occur before the procedure takes place.

2) There should be uncertainty as to which outcome will occur before the procedure takes place. robability Numbers For many statisticians the concept of the probability that an event occurs is ultimately rooted in the interpretation of an event as an outcome of an experiment, others would interpret

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Lecture 3: Probability

Lecture 3: Probability Lecture 3: Probability 28th of October 2015 Lecture 3: Probability 28th of October 2015 1 / 36 Summary of previous lecture Define chance experiment, sample space and event Introduce the concept of the

More information

Consider an experiment that may have different outcomes. We are interested to know what is the probability of a particular set of outcomes.

Consider an experiment that may have different outcomes. We are interested to know what is the probability of a particular set of outcomes. CMSC 310 Artificial Intelligence Probabilistic Reasoning and Bayesian Belief Networks Probabilities, Random Variables, Probability Distribution, Conditional Probability, Joint Distributions, Bayes Theorem

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

Basic Probability and Information Theory: quick revision

Basic Probability and Information Theory: quick revision Basic Probability and Information Theory: quick revision ML for NLP Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs4ll4/ February 17, 2015 In these notes we review the basics of probability theory and

More information

Conditional Probability Solutions STAT-UB.0103 Statistics for Business Control and Regression Models

Conditional Probability Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Conditional Probability Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Counting (Review) 1. There are 10 people in a club. How many ways are there to choose the following:

More information

Tutorial 3: Random Processes

Tutorial 3: Random Processes August 18 Semester 2018-II Tutorial 3: Random Processes Lecturer: Utpal Mukherji/ Parimal Parag Prepared by: Prathamesh Mayekar Note: LaTeX template courtesy of UC Berkeley EECS dept. 3.1 Conditional Probability

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Lecture 1: Review of Probability

Lecture 1: Review of Probability EAS31136/B9036: Statistics in Earth & Atmospheric Sciences Lecture 1: Review of Probability Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition of Wilks

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection

More information

ORF 245 Fundamentals of Statistics Chapter 1 Probability

ORF 245 Fundamentals of Statistics Chapter 1 Probability ORF 245 Fundamentals of Statistics Chapter 1 Probability Robert Vanderbei Sept 2014 Slides last edited on September 19, 2014 http://www.princeton.edu/ rvdb Course Info Prereqs: Textbook: Three semesters

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Bi=[X=i] i=i,z, forma partition. Example

Bi=[X=i] i=i,z, forma partition. Example Example Suppose that a person plays a game in which his score must be one of the 50 numbers 1, 2,,50 and that each of these 50 numbers is equally likely to be his score The first time he plays the game,

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. NPTEL National Programme on Technology Enhanced Learning. Probability Methods in Civil Engineering

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. NPTEL National Programme on Technology Enhanced Learning. Probability Methods in Civil Engineering INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL National Programme on Technology Enhanced Learning Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering IIT Kharagpur

More information

Basic Probabilistic Reasoning SEG

Basic Probabilistic Reasoning SEG Basic Probabilistic Reasoning SEG 7450 1 Introduction Reasoning under uncertainty using probability theory Dealing with uncertainty is one of the main advantages of an expert system over a simple decision

More information

Probability Pr(A) 0, for any event A. 2. Pr(S) = 1, for the sample space S. 3. If A and B are mutually exclusive, Pr(A or B) = Pr(A) + Pr(B).

Probability Pr(A) 0, for any event A. 2. Pr(S) = 1, for the sample space S. 3. If A and B are mutually exclusive, Pr(A or B) = Pr(A) + Pr(B). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 71. Decide in each case whether the hypothesis is simple

More information

CS684 Graph Algorithms

CS684 Graph Algorithms CS684 Graph Algorithms Administration and Mathematical Background Instructor: Fei Li lifei@cs.gmu.edu with subject: CS684 Office hours: Engineering Building, Room 5326, Monday 5:00pm - 7:00pm or by appointments

More information

Probability, Statistics, and Bayes Theorem Session 3

Probability, Statistics, and Bayes Theorem Session 3 Probability, Statistics, and Bayes Theorem Session 3 1 Introduction Now that we know what Bayes Theorem is, we want to explore some of the ways that it can be used in real-life situations. Often the results

More information

Chapter 7 Probability Basics

Chapter 7 Probability Basics Making Hard Decisions Chapter 7 Probability Basics Slide 1 of 62 Introduction A A,, 1 An Let be an event with possible outcomes: 1 A = Flipping a coin A = {Heads} A 2 = Ω {Tails} The total event (or sample

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Probability and distributions. Francesco Corona

Probability and distributions. Francesco Corona Probability Probability and distributions Francesco Corona Department of Computer Science Federal University of Ceará, Fortaleza Probability Many kinds of studies can be characterised as (repeated) experiments

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Formalizing Probability. Choosing the Sample Space. Probability Measures

Formalizing Probability. Choosing the Sample Space. Probability Measures Formalizing Probability Choosing the Sample Space What do we assign probability to? Intuitively, we assign them to possible events (things that might happen, outcomes of an experiment) Formally, we take

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

P Q (P Q) (P Q) (P Q) (P % Q) T T T T T T T F F T F F F T F T T T F F F F T T

P Q (P Q) (P Q) (P Q) (P % Q) T T T T T T T F F T F F F T F T T T F F F F T T Logic and Reasoning Final Exam Practice Fall 2017 Name Section Number The final examination is worth 100 points. 1. (10 points) What is an argument? Explain what is meant when one says that logic is the

More information

Intermediate Math Circles November 15, 2017 Probability III

Intermediate Math Circles November 15, 2017 Probability III Intermediate Math Circles November 5, 07 Probability III Example : You have bins in which there are coloured balls. The balls are identical except for their colours. The contents of the containers are:

More information

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information.

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information. CHAPTER 4 PROBABILITY Probability is used in inference statistics as a tool to make statement for population from sample information. Experiment is a process for generating observations Sample space is

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th

More information

Math 3338: Probability (Fall 2006)

Math 3338: Probability (Fall 2006) Math 3338: Probability (Fall 2006) Jiwen He Section Number: 10853 http://math.uh.edu/ jiwenhe/math3338fall06.html Probability p.1/8 2.2 Axioms, Interpretations, and Properties of Probability Probability

More information

Some Basic Concepts of Probability and Information Theory: Pt. 1

Some Basic Concepts of Probability and Information Theory: Pt. 1 Some Basic Concepts of Probability and Information Theory: Pt. 1 PHYS 476Q - Southern Illinois University January 18, 2018 PHYS 476Q - Southern Illinois University Some Basic Concepts of Probability and

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Lecture 04: Conditional Probability. Lisa Yan July 2, 2018

Lecture 04: Conditional Probability. Lisa Yan July 2, 2018 Lecture 04: Conditional Probability Lisa Yan July 2, 2018 Announcements Problem Set #1 due on Friday Gradescope submission portal up Use Piazza No class or OH on Wednesday July 4 th 2 Summary from last

More information

CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam

CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam February 1, 201. Start 7:00pm. End 9:00pm. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each

More information

Part (A): Review of Probability [Statistics I revision]

Part (A): Review of Probability [Statistics I revision] Part (A): Review of Probability [Statistics I revision] 1 Definition of Probability 1.1 Experiment An experiment is any procedure whose outcome is uncertain ffl toss a coin ffl throw a die ffl buy a lottery

More information

More on conditioning and Mr. Bayes

More on conditioning and Mr. Bayes More on conditioning and Mr. Bayes Saad Mneimneh 1 Multiplication rule for conditioning We can generalize the formula P(A,B) P(A B)P(B) to more than two events. For instance, P(A,B,C) P(A)P(B A)P(C A,B).

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Chapter 1 Principles of Probability

Chapter 1 Principles of Probability Chapter Principles of Probability Combining independent probabilities You have applied to three medical schools: University of California at San Francisco (UCSF), Duluth School of Mines (DSM), and Harvard

More information

Test One Mathematics Fall 2009

Test One Mathematics Fall 2009 Test One Mathematics 35.2 Fall 29 TO GET FULL CREDIT YOU MUST SHOW ALL WORK! I have neither given nor received aid in the completion of this test. Signature: pts. 2 pts. 3 5 pts. 2 pts. 5 pts. 6(i) pts.

More information

Statistics Statistical Process Control & Control Charting

Statistics Statistical Process Control & Control Charting Statistics Statistical Process Control & Control Charting Cayman Systems International 1/22/98 1 Recommended Statistical Course Attendance Basic Business Office, Staff, & Management Advanced Business Selected

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

Conditional Probability P( )

Conditional Probability P( ) Conditional Probability P( ) 1 conditional probability where P(F) > 0 Conditional probability of E given F: probability that E occurs given that F has occurred. Conditioning on F Written as P(E F) Means

More information

Probability 1 (MATH 11300) lecture slides

Probability 1 (MATH 11300) lecture slides Probability 1 (MATH 11300) lecture slides Márton Balázs School of Mathematics University of Bristol Autumn, 2015 December 16, 2015 To know... http://www.maths.bris.ac.uk/ mb13434/prob1/ m.balazs@bristol.ac.uk

More information

Random Signals and Systems. Chapter 1. Jitendra K Tugnait. Department of Electrical & Computer Engineering. James B Davis Professor.

Random Signals and Systems. Chapter 1. Jitendra K Tugnait. Department of Electrical & Computer Engineering. James B Davis Professor. Random Signals and Systems Chapter 1 Jitendra K Tugnait James B Davis Professor Department of Electrical & Computer Engineering Auburn University 2 3 Descriptions of Probability Relative frequency approach»

More information

CDA6530: Performance Models of Computers and Networks. Chapter 1: Review of Practical Probability

CDA6530: Performance Models of Computers and Networks. Chapter 1: Review of Practical Probability CDA6530: Performance Models of Computers and Networks Chapter 1: Review of Practical Probability Probability Definition Sample Space (S) which is a collection of objects (all possible scenarios or values).

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

MATH2206 Prob Stat/20.Jan Weekly Review 1-2

MATH2206 Prob Stat/20.Jan Weekly Review 1-2 MATH2206 Prob Stat/20.Jan.2017 Weekly Review 1-2 This week I explained the idea behind the formula of the well-known statistic standard deviation so that it is clear now why it is a measure of dispersion

More information

Probability Theory. Fourier Series and Fourier Transform are widely used techniques to model deterministic signals.

Probability Theory. Fourier Series and Fourier Transform are widely used techniques to model deterministic signals. Probability Theory Introduction Fourier Series Fourier Transform are widely used techniques to model deterministic signals. In a typical communication system, the output of an information source (e.g.

More information

ECE353: Probability and Random Processes. Lecture 3 - Independence and Sequential Experiments

ECE353: Probability and Random Processes. Lecture 3 - Independence and Sequential Experiments ECE353: Probability and Random Processes Lecture 3 - Independence and Sequential Experiments Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu

More information

Where are we in CS 440?

Where are we in CS 440? Where are we in CS 440? Now leaving: sequential deterministic reasoning Entering: probabilistic reasoning and machine learning robability: Review of main concepts Chapter 3 Making decisions under uncertainty

More information

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES COMMON TERMS RELATED TO PROBABILITY Probability is the measure of the likelihood that an event will occur Probability values are

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Workshop Organized by: ACM Unit, ISI Tutorial-1 Date: 05.07.2017 (Q1) Given seven points in a triangle of unit area, prove that three of them form a triangle of area not exceeding

More information

6 Event-based Independence and Conditional Probability. Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek

6 Event-based Independence and Conditional Probability. Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek 6 Event-based Independence and Conditional Probability Example Example Roll 6.1. a fair Roll dicea dice... Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek Example 6.2 (Slides). Diagnostic

More information

What is the probability of getting a heads when flipping a coin

What is the probability of getting a heads when flipping a coin Chapter 2 Probability Probability theory is a branch of mathematics dealing with chance phenomena. The origins of the subject date back to the Italian mathematician Cardano about 1550, and French mathematicians

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Exam 1 Solutions. Problem Points Score Total 145

Exam 1 Solutions. Problem Points Score Total 145 Exam Solutions Read each question carefully and answer all to the best of your ability. Show work to receive as much credit as possible. At the end of the exam, please sign the box below. Problem Points

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #3 (Conditional Probability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #3 (Conditional Probability) Last modified: October 5, 2004 References: PRP, sections 1.4, 1.5 and 1.7 EP, Chapter 2 MATHEMATICS, FALL 2004 MATHEMATICAL PROBABILITY Outline #3 (Conditional Probability) 1. Define conditional probability

More information