Von Schalen, Clustern und Halos

Size: px
Start display at page:

Download "Von Schalen, Clustern und Halos"

Transcription

1 Von Schalen, Clustern und Halos - Neue Konzepte zur Lösung des nuklearen Vielteilchenproblems - Hans Feldmeier GSI Darmstadt Thomas Neff MSU East Lansing He Robert Roth TU Darmstadt ρ(r) [ρ ] total neutron proton Physik Kolloquium Dresden. Mai 6

2 Von der QCD zur Kernstruktur mehr Auflösung/fundamentaler Quantum Chromo Dynamics Kernstruktur Atomkerne Wenig-Nukleonen-Systeme Nukleon-Nukleon-Potential Hadronenstruktur Quarks & Gluonen Deconfinement Physik-Kolloquium Dresden -. Mai 6

3 Von der QCD zur Kernstruktur mehr Auflösung/fundamentaler Quantum Chromo Dynamics Kernstruktur löse das wechselwirkende nukleare Vielteilchenproblem konstruiere realistische Nukleon-Nukleon Wechselwirkung aus der QCD Physik-Kolloquium Dresden -. Mai 6

4 Potential und Größe des Protons Proton Ladungsradius r e.86) fm Proton Ladungsverteilung und S=, T=1 Potential Proton Durchmesser nicht klein gegen Reichweite der Wechselwirkung V [MeV] 1 AV18 Halbdichte-Überlapp bei maximaler Anziehung, Ausläufer berühren sich noch bei mittlerem NN-Abstand in Kernmaterie V NN nicht elementar ähnlich wie Atom-Atom-Potential erwartet Dreikörperkräfte -1 v c (r) Physik-Kolloquium Dresden -. Mai 6

5 Realistic Nucleon-Nucleon Interaction Realistic NN Potential NN scattering data S+1 L J describes phase shifts and deuteron properties central, spin-orbit, tensor, momentum dependent V NN(r 1, p 1,σ 1,σ,τ 1,τ ) Phase Shift (deg) 7 1 S 1 3 Lab. Energy (MeV) Phase Shift (deg) 1 3 P Lab. Energy (MeV) e.g. different realistic NN interactions describe scattering data chiral effective field theory (pion exchange & contact terms) Bonn potential (pion & heavier meson exchange) Argonne potential (pion exchange & phenomenological short range terms) Phase Shift (deg) Phase Shift (deg) 1 P Lab. Energy (MeV) 3 S Lab. Energy (MeV) Phase Shift (deg) Phase Shift (deg) P Lab. Energy (MeV) 3 D Lab. Energy (MeV) Physik-Kolloquium Dresden -. Mai 6

6 Ab Initio Nuclear Structure Calculations describe basic properties of nuclear many-body system in terms of a realistic nucleon-nucleon interaction H and a many-body state ˆΨ r1,σ 1,τ 1 ; r,σ,τ ;...;r A,σ A,τ A ˆΨ Aim solve H ˆΨ n = En ˆΨ n by means of Green Function Monte Carlo Method (GFMC) Physik-Kolloquium Dresden -. Mai 6

7 GFMC calculations ( exact numerical solution) Energy (MeV) He 6 He Li Li / / 7/ 1/ 3/ / / 7/ 1/ 3/ 8 He Argonne v 18 With Illinois- GFMC Calculations June AV18 8 Be Be 9/ (/ ) 7/ (3/ ) 1/ / 3/ + ( + ) Be 1 B3 + genuine three-body forces (IL) needed for -1 description of real nuclei IL Exp 1 C + 1 C results are preliminary. Wiringa, Pieper, PRL 89 () 181 Physik-Kolloquium Dresden -. Mai 6

8 GFMC calculations ( exact numerical solution) Energy (MeV) He 6 He Li Li / / 7/ 1/ 3/ / / 7/ 1/ 3/ 8 He Argonne v 18 With Illinois- GFMC Calculations June Be Be 9/ (/ ) 7/ (3/ ) 1/ / 3/ + ( + ) Be 1 B3 + 7 CPU-hours -8 AV18 genuine three-body forces (IL) needed for -1 description of real nuclei IL Exp 1 C + 1 C results are preliminary. Wiringa, Pieper, PRL 89 () 181 Physik-Kolloquium Dresden -. Mai 6

9 Ab Initio Kernstruktur GFMC Ergebnis: r1,σ 1,τ 1 ; r,σ,τ ;...;r A,σ A,τ A ˆΨ n ist sehr kompliziert für realistische Nukleon-Nukleon-Potentiale. WARUM? Physik-Kolloquium Dresden -. Mai 6

10 Inhalt Wo liegt das Problem? Unitary Correlation Operator Method realistischer korrelierter Hamiltonian Anwendungen: No-Core Schalenmodell Fermionische Molekular Dynamik Zusammenfassung und Ausblick Physik-Kolloquium Dresden -. Mai 6

11 Realistic NN-potential VNN [MeV] V NN (r 1, p 1 =,σ 1,σ, T=) AV18 1 r 1-1 r 1 V NN repulsive at small distances strong short-range central correlations nucleons cannot get closer than.6 fm V NN depends strongly on orientation ofσ 1,σ with respect to r 1 tensor correlations protons and neutrons want to align their spins with r r 1 [fm] Argonne potential Problem: Slater determinants cannot describe these correlations Physik-Kolloquium Dresden -. Mai 6

12 Realistic NN-potential VNN [MeV] V NN (r 1, p 1 =,σ 1,σ, T=) AV18 1 r 1-1 r 1 V NN repulsive at small distances strong short-range central correlations nucleons cannot get closer than.6 fm V NN depends strongly on orientation ofσ 1,σ with respect to r 1 tensor correlations protons and neutrons want to align their spins with r r 1 [fm] Argonne potential Problem: Slater determinants cannot describe these correlations Solution: include short-range correlations by unitary transformation (UCOM) ˆΨ = C Ψ = C Ω C r Ψ C r central correlator shifts nucleons out of repulsive core C Ω tensor correlator aligns spins along r 1 Physik-Kolloquium Dresden -. Mai 6

13 Unitary Correlation Operator Method (UCOM) Correlation Operator introduce short-range correlations by means of a unitary transformation with respect to the relative coordinates of all pairs C = exp[ i G ]=exp [ ] i g i j i< j (1) G = G C C = 1 Correlated States ˆΨ = C Ψ Correlated Operators Ô = C 1 O C ˆΨ O ˆΨ = Ψ C 1 O C Ψ = Ψ Ô Ψ Physik-Kolloquium Dresden -. Mai 6

14 Central and Tensor Correlators C = C Ω C r Central Correlator C r radial distance-dependent shift in the relative coordinate of a nucleon pair g r = 1 [ s(r ) q r+ qr s(r ) ] q r = 1 [ r ] r q+ q r r Tensor Correlator C Ω angular shift depending on the orientation of spin and relative coordinate of a nucleon pair g Ω = 3 ϑ(r)[ (σ 1 q Ω)(σ r)+(r q Ω) ] q Ω = q r r q r s(r) andϑ(r) for given potential determined in the two-body system Physik-Kolloquium Dresden -. Mai 6

15 Correlated States: The Deuteron. r φ.1.1. L= 1 3 Physik-Kolloquium Dresden -. Mai 6

16 Correlated States: The Deuteron.1 L=. r C r φ r φ L= central correlations [fm] s(r) Physik-Kolloquium Dresden -. Mai 6

17 Correlated States: The Deuteron.1 L=. r C r φ r φ. r C ΩC r φ L= 1 3 L= L= 1 3 central correlations tensor correlations [fm] constraint on range of tensor correlator. s(r) 1 3 ϑ(r) 1 3 Physik-Kolloquium Dresden -. Mai 6

18 Correlations in Nuclei two-body densities z [fm] x [fm] x [fm] x [fm] ρ () C r ~ ~ S,T (r 1 r ) S= 1, M S = 1, T= C Ω radial correlator shifts density out of the repulsive core tensor correlator aligns density with spin orientation both radial and tensor correlations are essential for binding energies [A MeV] 6 He 16 O Ca C r C Ω T V H 6 Physik-Kolloquium Dresden -. Mai 6

19 Correlated Interaction V UCOM [] [] [3] [3] [3] Ĥ = Ĥ = T T + ( ˆT V UCOM + ˆV )+( + ˆT V + UCOM ˆV )+ + closed operator expression for the correlated interaction V UCOM in two-body approximation correlated interaction and original NN-potential are phase shift equivalent by construction unitary transformation results in a pre-diagonalisation of Hamiltonian Physik-Kolloquium Dresden -. Mai 6

20 Anwendung 1 No-Core Shell Model

21 Benchmarking V UCOM for 1 B: large-scale NCSM calculations troughout the p-shell in progress 7 6 V UCOM Exp + E E3+ [MeV] ω ω ω 6 ω 8 ω ω=18mev calculations by Petr Navrátil preliminary Physik-Kolloquium Dresden -. Mai 6

22 Benchmarking V UCOM for 1 B: large-scale NCSM calculations troughout the p-shell in progress E E3+ [MeV] 7 V UCOM Exp CDBonn Chiral V6 UCOM gives correct level ordering without any NNN interaction NN NN+NNN ω ω ω 6 ω 8 ω 8 ω -6.8 ω=18mev -6.3 calculations by Petr Navrátil preliminary 6 ω Physik-Kolloquium Dresden -. Mai 6

23 Anwendung Fermionic Molecular Dynamics

24 Hilbert Space: Fermionic Molecular Dynamics Fermionic Slater determinant Q ( =A q 1 ) q A Antisymmetrization antisymmetrized A-body state Molecular single-particle states x q = c i exp { (x b i) } χ i ξ a i i Gaussian wave-packets in phase-space, spin is free, isospin is fixed Hilbert space contains shell-model, clusters, halos Dynamics in Hilbert space spanned by one or several non-orthogonal Q (a) Ψ = ψ a Q (a) a variational principle Q (a) ={q (a) ν,ν=1 A},ψ a Physik-Kolloquium Dresden -. Mai 6

25 NN Interaction Effective Correction to the Interaction Effective two-body interaction correlated two-body interaction Ĥ = C H C is lacking three-body forces instead of three-body force use additional momentumdependent and spin-orbit two-body correction term fit correction term to binding energies and radii of closed-shell nuclei altogether a 1% correction to the ab-initio two-body potential 16 O Ca O 8 Ca ρ (1) (r) [ρ] 16 O and Ca are not closed shell nuclei! Physik-Kolloquium Dresden -. Mai 6

26 FMD - Projection, Variation after Proj., Multiconfiguration PAV VAP Radius and Quadrupole Moment as Generator Coordinates r charge [fm] Q [fm ] B(E) [e fm ] PAV VAP Multiconfig Multiconfig [MeV] Be 6 y [fm] 6 6 x [fm] y [fm] y [fm] 6 x [fm] y [fm] x [fm] 6 x [fm] x [fm] y [fm] Variation PAV VAP Multiconf Exp Physik-Kolloquium Dresden -. Mai 6

27 FMD - Variation, PAV π, Multiconfig. V/PAV PAV π Multiconfig() C 6 6 E MeV E [MeV] r charge [fm] B(E) [e fm ] V/PAV PAV π Multiconfig() Multiconfig(1) Exp ± C Multi-Config Multi-Config 1 Experiment 1 3 Physik-Kolloquium Dresden -. Mai 6

28 Structure of the Carbon Hoyle State E MeV C 1 3 z [fm] z [fm] z [fm] + = y [fm] + =.71 - y [fm] + =. - 9 Multi-Config Multi-Config 1 Experiment - y [fm] Physik-Kolloquium Dresden -. Mai 6

29 .1.1 Helium Isotopes He He He He z [fm] ρ(r) [ρ ] total neutron proton z [fm] ρ(r) [ρ ] total neutron proton - x [fm] x [fm] He He He He z [fm] ρ(r) [ρ ] total neutron proton z [fm] ρ(r) [ρ ] total neutron proton - x [fm] x [fm] z [fm] He ρ(r) [ρ ] total neutron proton 6 He soft-dipole mode neutrons are oscillating againstα-core - x [fm] Physik-Kolloquium Dresden -. Mai 6

30 Helium Isotopes MeV Binding energies 3 He He He6 He7 He8 Matter radii PAV Multiconf Exp fm He He He6 He7 He8 Exp: Ozawa,Suzuki,Tanihata, NPA693(1)3; Raman,Nestor,Tikkanen, Atomic Data and Nucl. Data Tables 78(1)1 Physik-Kolloquium Dresden -. Mai 6

31 Helium Isotopes MeV fm Binding energies zero-point oscillations of the He soft-dipole mode essential for He description ofhe6 binding energieshe7 He8 and radii Matter radii PAV Multiconf Exp 1. He He He6 He7 He8 Exp: Ozawa,Suzuki,Tanihata, NPA693(1)3; Raman,Nestor,Tikkanen, Atomic Data and Nucl. Data Tables 78(1)1 Physik-Kolloquium Dresden -. Mai 6

32 1.. Beryllium Isotopes 7 Be - p 7 Be - n x [fm] Be - p Physik-Kolloquium Dresden -. Mai z [fm] x [fm] Be - n.1.1 z [fm] x [fm] Be - p - 9 x [fm] Be - n z [fm] x [fm] Be - p - 1 x [fm] Be - n z [fm] x [fm] - x [fm] Be - p - 1 x [fm] Be - p - 13 x [fm] Be - p 11 Be - n - 1 x [fm] Be - n x [fm] Be - n x [fm] Be - p - 1 x [fm] Be - n x [fm] - x [fm] cluster structure changes with addition of neutrons z [fm] z [fm] z [fm] z [fm]

33 Beryllium Isotopes 3 Binding energies PAV Multiconf Exp MeV fm Be7 Be8 Be9 Be1 Be11 Be1 Be13 Be1 Matter radii Be7 Be8 Be9 Be1 Be11 Be1 Be13 Be Exp: Ozawa,Suzuki,Tanihata, NPA693(1)3; Raman,Nestor,Tikkanen, Atomic Data and Nucl. Data Tables 78(1)1 Physik-Kolloquium Dresden -. Mai 6

34 Mikroskopische Kern-Kern-Potentiale Vielteilchenzustände: Fermionische Molekulardynamik (FMD) Effektive NN-Wechselwirkung: abgeleitet von der realistischen Argonne-V18 NN-Wechselwirkung (UCOM) 16 O - 16 O O - O O O O ρ [fm -3 ] 1-3 O - O Massendichten Physik-Kolloquium Dresden -. Mai 6

35 Potentiale & Astrophysikalische S-Faktoren V eff (r) + V Coul (r) [MeV] O- 16 O O- O O- O Mikroskopisch berechnete Kern-Kern-Potentiale 1 1 Astrophysikalischer S-Faktor S (E)=σ fusion (E) E e πη η=sommerfeld-parameter S-factor [MeV barn] O- 16 O O- O O- O E cm [MeV] Physik-Kolloquium Dresden -. Mai 6

36 Outlook: Resonances & Scattering in FMD E [MeV] ev FMD Exp. Frozen Frozen PAV Π Exp. 7 collective coordinate representation as tool for the description of continuum states in FMD He α 3 He α 7 Be 7 Be 7 Be 1 3 δ(e) [deg] He-α 3/ + / + first steps towards fully microscopic and consistent description of structure and reactions -1 Frozen+PAV π 1/ E [MeV] Physik-Kolloquium Dresden -. Mai 6

37 Zusammenfassung und Ausblick Neue Ära der Kernstruktur Unitary Correlation Operator Method beschreibt kurzreichweitige radiale und tensorielle Korrelationen UCOM erzeugt ab-initio korrelierte Wechselwirkung Ĥ für Vielteilchenmethoden wie HF, Shalenmodell, FMD Observablen müssen und können auch korreliert werden no-core Schalenmodell Rechnungen für leichte Kerne FMD Rechnungen mit demselben Ĥ C +Ĥ corr für 3 A 6 Ein mikroskopisches Modell für: Bindungsenergien, Radien, Spektren, Übergänge, Kontinuum, Resonanzen, Reaktionen M S = M S = 1 16 O ab initio Idee weiter verfolgen Vorhersagekraft Vorhersagen für viele exotische leichte Kerne (vor Messung) Ausblick Korrelierte Übergänge: M1, β-zerfall, quenching Ab-initio korrelierte WW in HF, RPA oder ähnlichem für A>6 Langreichweitige Tensorkorr. 3-Teilchenkräfte Physik-Kolloquium Dresden -. Mai 6

38 Epilogue thanks to my group & my collaborators A. Cribeiro, K. Langanke Gesellschaft für Schwerionenforschung (GSI) T. Neff NSCL, Michigan State University R. Roth, H. Hergert, N. Paar, P. Papakonstantinou, A. Zapp Institut für Kernphysik, TU Darmstadt supported by the DFG through SFB 63 Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments... Physik-Kolloquium Dresden -. Mai 6

39 How to improve? Projection After Variation (PAV) mean-field may break symmetries of Hamiltonian restore reflection and rotational symmetry by parity and angular-momentum projection P J π MK K Q J H P π KK Q c K = EK Jπ Q J P π KK Q c K K Variation After Projection (VAP) effect of projection can be large perform VAP applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimize the energy in the projected energy surface Multiconfiguration Calculations diagonalize Hamiltonian in a set of projected intrinsic states { J P π KK Q (a) }, a=1,, N Physik-Kolloquium Dresden -. Mai 6

40 Unitary Correlation Operator Method, UCOM Two-Body Correlations two-body generator C = e ig, G = G = i< j g i j Correlator C should conserve translational, rotational and Galilei invariance short ranged Cluster Expansion correlated operators  = C A C are no longer operators with definite particle number decompose correlated operator into irreducible k-body operators  = C A C =  [1] +  [] +  [3] + Two-Body Approximation ˆT C = ˆT [1] + ˆT [], ˆV C [] = ˆV correlation range should be smaller than mean distance of nucleons (to avoid 3-body terms) Physik-Kolloquium Dresden -. Mai 6

41 Unitary Correlation Operator Method, UCOM Two-Body Correlations two-body generator C = e ig, G = G = Cluster Expansion i< j g i j correlated operators  = C A C are no longer operators with definite particle number decompose correlated operator into irreducible k-body operators  = C A C =  [1] +  [] +  [3] + Two-Body Approximation ˆT C = ˆT [1] + ˆT [], ˆV C [] = ˆV Correlator C should conserve translational, rotational and Galilei invariance short ranged Spin-Isospin Dependence nuclear interaction strongly depends on spin and isospin V = v S T Π S T S,T different correlations in the respective channels g = g S T Π S T S,T correlated interaction in two-body space ˆV = ( igs T e v S T e ig ) S T Π S T S,T correlation range should be smaller than mean distance of nucleons (to avoid 3-body terms) Physik-Kolloquium Dresden -. Mai 6

42 Radial and Tensor Correlations r p r p p Ω C = C Ω C r = e i G Ω e i G r p r = 1 { r r p=p r + p Ω ( r r p) + ( ) } p r r r r, pω = 1 r { l r r r r l} Radial Correlator G r= 1 } { p rs(r )+ s(r )pr probability density shifted out of the repulsive core S=, T=1 AV ρ () (r) V [MeV] 1 AV18 [fm 3 ] ˆρ () (r) -1 v c (r) Manfred Ristig Z.Physik 199 (1967) 3 Physik-Kolloquium Dresden -. Mai 6

43 Radial and Tensor Correlations r p r p p Ω C = C Ω C r = e i G Ω e i G r p r = 1 { r r p=p r + p Ω ( r r p) + ( ) } p r r r r, pω = 1 r { l r r r r l} Radial Correlator G r= 1 } { p rs(r )+ s(r )pr probability density shifted out of the repulsive core [fm 3 ] S=, T= ρ () (r) ˆρ () (r) V [MeV] AV Manfred Ristig Z.Physik 199 (1967) 3 v c (r) AV Tensor Correlations G Ω=ϑ(r ) 3 { (σ 1 p Ω)(σ r )+(σ 1 r )(σ p Ω) } tensor force admixes other angular momenta [fm 3 ] S=1, T= ρ () (r) ˆρ () (r) V [MeV] ˆρ () L= () (r)ˆρ L= (r) AV v c (r) v t (r) AV Physik-Kolloquium Dresden -. Mai 6

44 Radial and Tensor Correlations r p r p p Ω C = C Ω C r = e i G Ω e i G r p r = 1 { r r p=p r + p Ω ( r r p) + ( ) } p r r r r, pω = 1 r { l r r r r l} Radial Correlator G r= 1 } { p rs(r )+ s(r )pr probability density shifted out of the repulsive core [fm 3 ] S=, T= ρ () (r) ˆρ () (r) V [MeV] AV Manfred Ristig Z.Physik 199 (1967) 3 v c (r) AV Tensor Correlations G Ω=ϑ(r ) 3 { (σ 1 p Ω)(σ r )+(σ 1 r )(σ p Ω) } tensor force admixes other angular momenta [fm 3 ] S=1, T= ρ () (r) ˆρ () (r) V [MeV] ˆρ () L= () (r)ˆρ L= (r) AV v c (r) v t (r) AV Physik-Kolloquium Dresden -. Mai 6

45 AV8 Interaction No-Core Shell Model Calculations preliminary He - α Quasi-exact calculations for light nuclei possible -1 E [MeV] -1 - exact result from PRC6 (1) 1 use no-core shell model code from Petr Navratil (LLNL) experiment Ω [MeV] neglected 3-body correlated terms same order as genuine 3N interactions more investigations needed test of two-body approximation Physik-Kolloquium Dresden -. Mai 6

46 MTV Interaction No-Core Shell Model Calculations 3 He He correlated - correlated - -1 E [MeV] E [MeV] Ω [MeV] bare E [MeV] E [MeV] Ω [MeV] 1 18 bare Ω [MeV] Ω [MeV] exact results from PRC (199) 88 only radial correlations use no-core shell model code from Pétr Navratil (LLNL) Physik-Kolloquium Dresden -. Mai 6

47 Other Observables Nucleon Momentum Distributions Bonn-A Argonne V O O.1.1 ˆn(k)/A [fm 3 ] central+ tensor ˆn(k)/A [fm 3 ] k [fm 1 ] central.1 VMC LDA 1 3 k [fm 1 ] correlations induce high-momentum components contributions of tensor correlations very big different correlator ranges relevant especially at the fermi surface Physik-Kolloquium Dresden -. Mai 6

48 Interaction in Momentum Space klm Ĥ [] k l m = i l l M d 3 x Y lm (ˆx) j l(kx) x Ĥ [] x j l (k x)y l m (ˆx) 1 S channel 1 3 S 1 channel 1 k Ĥ [] k, k V k [fm] -1 - uncorrelated Bonn A -3 AV k [fm 1 ] correlated k Ĥ [] k, k V k [fm] α β γ Bonn A AV k [fm 1 ] unique effective potential identical to V lowk Kuo, Schwenk, nucl-th/181 V lowk CutoffΛ=1.. fm 1 Physik-Kolloquium Dresden -. Mai 6

49 AV18 Interaction in Momentum Space Off-diagonal Matrix Elements 1S ; k V 1 S ; k 3 k [fm 1 ] k [fm 1 ] 3S 1; k V 3 D 1; k 3 k [fm 1 ] k [fm 1 ] pre-diagonalization bare potential 1S ; k Ĥ [] 1 S ; k 3 k [fm 1 ] k [fm 1 ] 3S 1; k Ĥ [] 3 D 1; k 3 k [fm 1 ] k [fm 1 ] correlated interaction Physik-Kolloquium Dresden -. Mai 6

50 AV8 Interaction No-Core Shell Model Calculations preliminary 3 He Increasing range of tensor correlator E [MeV] Ω [MeV] Ω [MeV] Ω [MeV] Ω [MeV] He E [MeV] Ω [MeV] Ω [MeV] Ω [MeV] Ω [MeV] Physik-Kolloquium Dresden -. Mai 6

51 11 B ( 3 He, t) 11 C Gamov-Teller transitions 6 11 B 1..8 Experiment 6 11 C 6 transition: C 1 Ω στ + C Ω up to now only:στ + NCSM: Navrátil, Ormand no core shell model with 3-body force, PRC 68(3) third 3/ missing FMD with configuration mixing B(GT) B(GT) B(GT) / - 1/ - / - 3/ - 1 NCSM 1 E ex [MeV] 3/ - 1/ - / - 3/ - 1 FMD 1 E ex [MeV] 3/ - 1/ - / - 3/ - 3/ - / - / - preliminary E ex [MeV] 3/ - / - Exp.: Y. Fujita, P. von Brentano et al. Phys. Rev. C 7, 1136(R) () Physik-Kolloquium Dresden -. Mai 6

52 16 C PAV only Variation E b [MeV] r charge [fm] r matte C C PAV 1g PAV y [fm] ρ(r) [ρ ] total neutron proton Exp ±.3.76±.6 - x [fm] 6 8 E + [MeV] B(E) [e fm ] PAV y [fm] C - p y [fm] C - n.1 Exp ±.9 Global Best Fit ±1 1 Raman et al, Atomic Data and Nuclear Data Tables 78 (1) x [fm] - x [fm] calculated B(E) consistent with anomalously long lifetime of + state measured at RIKEN Imai et al, PRL in print Physik-Kolloquium Dresden -. Mai 6

53 FMD, Variation Nuclear Chart H H3 1 Gaussian per single-particle state He3 He He He6 He7 He8 Si O13 O1 O1 O16 O17 O18 O19 O O1 O O3 O N1 N13 N1 N1 N16 N17 N18 N19 N N1 N C9 C1 C11 C1 C13 C1 C1 C16 C17 C18 C19 C B8 B9 B1 B11 B1 B13 B1 B1 B16 B17 Be7 Be8 Be9 Be1 Be11 Be1 Be13 Be1 Li Li6 Li7 Li8 Li9 Li1 Li11 Al Al Al6 Al7 Al8 Al9 Al3 Al31 Al3 Al33 Al3 Al3 Al36 MgMg1MgMg3MgMgMg6Mg7Mg8Mg9Mg3Mg31Mg3Mg33Mg3 Na Na1 Na Na3 Na Na Na6 Na7 Na8 Na9 Na3 Na31 Ne17 Ne18 Ne19 Ne Ne1 Ne Ne3 Ne Ne Ne6 Ne7 Ne8 F16 F17 F18 F19 F F1 F F3 F F F6 Ni8 Ca36 Ca37 Ca38 Ca39 Ca Ca1 Ca Ca3 Ca Ca Ca6 Ca7 Ca8 Ca9 Ca Ca1 Ca K3 K36 K37 K38 K39 K K1 K K3 K K K6 K7 K8 K9 K Ar3 Ar33 Ar3 Ar3 Ar36 Ar37 Ar38 Ar39 Ar Ar1 Ar Ar3 Ar Ar Ar6 Ar7 Cl31 Cl3 Cl33 Cl3 Cl3 Cl36 Cl37 Cl38 Cl39 Cl Cl1 Cl Cl3 Cl Cl S9 S3 S31 S3 S33 S3 S3 S36 S37 S38 S39 S S1 S S3 S P7 P8 P9 P3 P31 P3 P33 P3 P3 P36 P37 P38 P39 P P1 Si Si Si6 Si7 Si8 Si9 Si3 Si31 Si3 Si33 Si3 Si3 Si36 Si37 Si38 Si39 Ni Ni Ni6 Ni7 Ni8 Ni9 Ni6 Ni61 Co3 Co Co Co6 Co7 Co8 Co9 Co6 Fe Fe1 Fe Fe3 Fe Fe Fe6 Fe7 Fe8 Fe9 Mn9MnMn1MnMn3MnMnMn6Mn7Mn8 Cr6 Cr7 Cr8 Cr9 Cr Cr1 Cr Cr3 Cr Cr Cr6 Cr7 V V6 V7 V8 V9 V V1 V V3 V V V6 Ti1 Ti Ti3 Ti Ti Ti6 Ti7 Ti8 Ti9 Ti Ti1 Ti Ti3 Ti Ti Sc39 Sc Sc1 Sc Sc3 Sc Sc Sc6 Sc7 Sc8 Sc9 Sc Sc1 Sc Sc Ca correlated AV18+ Ĥ corr (E E exp )/A [MeV] Physik-Kolloquium Dresden -. Mai 6

54 FMD, Variation Nuclear Chart H Li Li6 Li7 Li8 Li9 Li1 Li11 He3 He He He6 He7 He8 H3 1 Gaussian per single-particle state Si Ne17 Ne18 Ne19 Ne Ne1 Ne Ne3 Ne Ne Ne6 Ne7 Ne8 O13 O1 O1 O16 O17 O18 O19 O O1 O O3 O N1 N13 N1 N1 N16 N17 N18 N19 N N1 N C9 C1 C11 C1 C13 C1 C1 C16 C17 C18 C19 C B8 B9 B1 B11 B1 B13 B1 B1 B16 B17 Be7 Be8 Be9 Be1 Be11 Be1 Be13 Be1 P7 P8 P9 P3 P31 P3 P33 P3 P3 P36 P37 P38 P39 P P1 Si Si Si6 Si7 Si8 Si9 Si3 Si31 Si3 Si33 Si3 Si3 Si36 Si37 Si38 Si39 Al Al Al6 Al7 Al8 Al9 Al3 Al31 Al3 Al33 Al3 Al3 Al36 MgMg1MgMg3MgMgMg6Mg7Mg8Mg9Mg3Mg31Mg3Mg33Mg3 Na Na1 Na Na3 Na Na Na6 Na7 Na8 Na9 Na3 Na31 F16 F17 F18 F19 F F1 F F3 F F F6 Ni8 Cr6 Cr7 Cr8 Cr9 Cr Cr1 Cr Cr3 Cr Cr Cr6 Cr7 V V6 V7 V8 V9 V V1 V V3 V V V6 Ti1 Ti Ti3 Ti Ti Ti6 Ti7 Ti8 Ti9 Ti Ti1 Ti Ti3 Ti Ti Sc39 Sc Sc1 Sc Sc3 Sc Sc Sc6 Sc7 Sc8 Sc9 Sc Sc1 Sc Ca36 Ca37 Ca38 Ca39 Ca Ca1 Ca Ca3 Ca Ca Ca6 Ca7 Ca8 Ca9 Ca Ca1 Ca K3 K36 K37 K38 K39 K K1 K K3 K K K6 K7 K8 K9 K Ar3 Ar33 Ar3 Ar3 Ar36 Ar37 Ar38 Ar39 Ar Ar1 Ar Ar3 Ar Ar Ar6 Ar7 Cl31 Cl3 Cl33 Cl3 Cl3 Cl36 Cl37 Cl38 Cl39 Cl Cl1 Cl Cl3 Cl Cl S9 S3 S31 S3 S33 S3 S3 S36 S37 S38 S39 S S1 S S3 S Ni Ni Ni6 Ni7 Ni8 Ni9 Ni6 Ni61 Co3 Co Co Co6 Co7 Co8 Co9 Co6 Fe Fe1 Fe Fe3 Fe Fe Fe6 Fe7 Fe8 Fe9 Mn9MnMn1MnMn3MnMnMn6Mn7Mn H H3 Sc Ca Be7 Be8 Be9 Be1Be11Be1Be13Be1 Li Li6 Li7 Li8 Li9 Li1 Li11 He3 He He He6 He7 He8 correlated AV18+ Ĥ corr F16 F17 F18 F19 F F1 F F3 C9 C1 C11 C1 C13 C1 C1 C16 C17 C18 C19 C B8 B9 B1 B11 B1 B13 B1 B1 B16 B17 Si8 Si9 Si3 Al7 MgMg1MgMg3MgMgMg6Mg7Mg8Mg9Mg3Mg31Mg3Mg33Mg3 NaNa1NaNa3NaNaNa6Na7 Ne17Ne18Ne19NeNe1NeNe3NeNeNe6Ne7Ne8 O13 O1 O1 O16 O17 O18 O19 O O1 O O3 O N1 N13 N1 N1 N16 N17 N18 N19 N N1 N (E E exp )/A [MeV] Na31 Gaussians per single-particle state Physik-Kolloquium Dresden -. Mai 6

55 Nuclear Degrees of Freedom Physik-Kolloquium Dresden -. Mai 6

56 Nuclear Degrees of Freedom σ j σ i r j r i cm-coordinates and spins Physik-Kolloquium Dresden -. Mai 6

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

NUCLEAR STRUCTURE AB INITIO

NUCLEAR STRUCTURE AB INITIO December, 6:8 WSPC/Trim Size: 9in x 6in for Proceedings master NUCLEAR STRUCTURE AB INITIO H. FELDMEIER AND T. NEFF Gesellschaft für Schwerionenforschung mbh Planckstr., D-69 Darmstadt, Germany E-mail:

More information

Microscopic calculation of the. in the FMD approach. 3 He(α,γ) 7 Be capture reaction

Microscopic calculation of the. in the FMD approach. 3 He(α,γ) 7 Be capture reaction Microscopic calculation of the 3 He(α,γ) 7 Be capture reaction in the FMD approach S-factor [kev b].7.6.5.4.3 Weizmann 4 LUNA 6 LUNA 7 Seattle 7 ERNA 9 FMD Thomas Neff Interfaces between structure and

More information

Structure of light hypernuclei in the framework of Fermionic Molecular Dynamics

Structure of light hypernuclei in the framework of Fermionic Molecular Dynamics 1 Structure of light hypernuclei in the framework of Fermionic Molecular Dynamics Martin Schäfer, Jiří Mareš Nuclear Physics Institute, Řež, Czech Republic H. Feldmeier, T. Neff GSI Helmholtzzentrum für

More information

Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions

Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions Heiko Hergert Institut für Kernphysik, TU Darmstadt Overview Motivation Modern Effective Interactions Unitary Correlation Operator

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Light Nuclei from chiral EFT interactions

Light Nuclei from chiral EFT interactions Light Nuclei from chiral EFT interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Low-Energy Nuclear Physics Experiment new facilities and experiments to produce nuclei far-off stability and study a range of observables

More information

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona, The No Core Shell Model: Its Formulation, Application and Extensions Bruce R. Barrett University of Arizona, Tucson, INT Spring Program 2011 March 23, 2011 MICROSCOPIC NUCLEAR-STRUCTURE THEORY 1. Start

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Three-cluster dynamics within an ab initio framework

Three-cluster dynamics within an ab initio framework Three-cluster dynamics within an ab initio framework Universality in Few-Body Systems: Theoretical Challenges and New Directions INT 14-1, March 26, 2014 S. Quaglioni Collaborators: C. Romero-Redondo (TRIUMF)

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions Robert Roth From QCD to Nuclear Structure Nuclear Structure Low-Energy QCD From QCD to Nuclear Structure Nuclear Structure NN+3N Interaction

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

Matrix Elements and Few-Body Calculations within the Unitary Correlation Operator Method

Matrix Elements and Few-Body Calculations within the Unitary Correlation Operator Method Matrix Elements and Few-Body Calculations within the Unitary Correlation Operator Method R Roth, H Hergert, and P Papakonstantinou Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt,

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/ seminar at UTEF ČVUT,

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Nuclei as Bound States

Nuclei as Bound States Nuclei as Bound States Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Nuclear Hamiltonian Matrix Elements Two-Body Problem Correlations & Unitary Transformations Lecture 2:

More information

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Alexandros Gezerlis East Lansing, MI 3rd International Symposium on Nuclear Symmetry Energy July 25, 2013 Motivation for

More information

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei Daniel Gazda Nuclear Physics Institute Prague, Czech Republic Together with: A. Gal (HU Jerusalem) Outline Introduction Charge symmetry

More information

The shell model as an ab initio tool: effective interactions and operators from IM-SRG

The shell model as an ab initio tool: effective interactions and operators from IM-SRG Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules U = eη The shell model as an ab initio

More information

Nucleon-nucleon interaction

Nucleon-nucleon interaction Nucleon-nucleon interaction Shell structure in nuclei and lots more to be explained on the basis of how nucleons interact with each other in free space QCD Lattice calculations Effective field theory Exchange

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho CNS Summer School, Univ. of Tokyo, at Wako campus of RIKEN, Aug. 18-23, 2005 Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures - Lecture 1: History,

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

arxiv: v2 [nucl-th] 3 Apr 2014

arxiv: v2 [nucl-th] 3 Apr 2014 From nucleon-nucleon interaction matrix elements in momentum space to an operator representation D. Weber,, H. Feldmeier,, H. Hergert, and T. Neff ExtreMe Matter Institute EMMI and Research Division GSI

More information

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction Prog. Theor. Exp. Phys. 2015, 00000 (10 pages) DOI: 10.1093/ptep/0000000000 Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Ab initio effective interactions and operators from IM-SRG

Ab initio effective interactions and operators from IM-SRG Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules U = eη b initio effective interactions

More information

Spin-Orbit Interactions in Nuclei and Hypernuclei

Spin-Orbit Interactions in Nuclei and Hypernuclei Ab-Initio Nuclear Structure Bad Honnef July 29, 2008 Spin-Orbit Interactions in Nuclei and Hypernuclei Wolfram Weise Phenomenology Aspects of Chiral Dynamics and Spin-Orbit Forces Nuclei vs. -Hypernuclei:

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

arxiv:nucl-th/ v1 16 Jul 2002

arxiv:nucl-th/ v1 16 Jul 2002 Evolution of Nuclear Spectra with Nuclear Forces R. B. Wiringa[*] and Steven C. Pieper[ ] Physics Division, Argonne National Laboratory, Argonne, IL 60439 (Dated: February 8, 2008) We first define a series

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Can the shell model be truly ab initio? and other questions

Can the shell model be truly ab initio? and other questions Canada s national laboratory for particle and nuclear physics and accelerator-based science Can the shell model be truly ab initio? and other questions Ragnar Stroberg TRIUMF The tower of effective field

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations

Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations Angelo Calci Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic Introduction Hamilton Matrix pre-diagonalization(srg)

More information

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information

PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC

PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC Emer Effective Operators in Two-Nucleon Systems: Quenching and Enhancement Effects James P. Vary, Iowa State University in light nucl DOE Topical Collaboration Annual Meeting University of North Carolina,

More information

Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC

Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC TU DARMSTADT 2007 Nuclear Structure in Astrophysics Recent Examples from the S-DALINAC S-DALINAC and research program an overview Selected examples: Deuteron electrodisintegration under 180 and its importance

More information

Advances in Ab Initio Nuclear Structure Theory. Robert Roth

Advances in Ab Initio Nuclear Structure Theory. Robert Roth Advances in Ab Initio Nuclear Structure Theory Robert Roth Ab Initio Nuclear Structure Theory solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Unitary-model-operator approach to nuclear many-body problems

Unitary-model-operator approach to nuclear many-body problems Unitary-model-operator approach to nuclear many-body problems in collaboration with Structure calc. for many-nucleon systems Kenji Suzuki (Kyushu Inst. of Tech.) Ryoji kamoto (Kyushu Inst. of Tech.) V

More information

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth Frontiers in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations New Era

More information

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Washington DC 10-16-06 Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Other physical systems Status for stable

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Ab initio alpha-alpha scattering using adiabatic projection method

Ab initio alpha-alpha scattering using adiabatic projection method Ab initio alpha-alpha scattering using adiabatic projection method Serdar Elhatisari Advances in Diagrammatic Monte Carlo Methods for QFT Calculations in Nuclear-, Particle-, and Condensed Matter Physics

More information

arxiv: v1 [nucl-th] 1 Nov 2018

arxiv: v1 [nucl-th] 1 Nov 2018 Contact representation of short range correlation in light nuclei studied by the High-Momentum Antisymmetrized Molecular Dynamics arxiv:1811.00271v1 [nucl-th] 1 Nov 2018 Qing Zhao, 1, Mengjiao Lyu, 2,

More information

Recent developments in the nuclear shell model and their interest for astrophysics

Recent developments in the nuclear shell model and their interest for astrophysics Recent developments in the nuclear shell model and their interest for astrophysics Kamila Sieja Institut Pluridisciplinaire Hubert Curien, Strasbourg FUSTIPEN topical meeting "Recent Advances in the Nuclear

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 IPM? Atoms? Nuclei: more now Other questions about last class? Assignment for next week Wednesday ---> Comments? Nuclear shell structure Ground-state

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell PHY492: Nuclear & Particle Physics Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell Liquid drop model Five terms (+ means weaker binding) in a prediction of the B.E. r ~A 1/3, Binding is short

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

Ab Initio Theory Outside the Box. Robert Roth

Ab Initio Theory Outside the Box. Robert Roth Ab Initio Theory Outside the Box Robert Roth Inside the Box this workshop has provided an impressive snapshot of the progress and perspectives in ab initio nuclear theory and its links to experiment definition:

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Nucleon Nucleon Forces and Mesons

Nucleon Nucleon Forces and Mesons Canada s ational Laboratory for Particle and uclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules ucleon ucleon Forces and Mesons Sonia Bacca

More information

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Philipp Dijkstal 12.05.2016 1 Introduction The talk on Similarity Renormalization Groups (SRG) from

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

NN-Correlations in the spin symmetry energy of neutron matter

NN-Correlations in the spin symmetry energy of neutron matter NN-Correlations in the spin symmetry energy of neutron matter Symmetry energy of nuclear matter Spin symmetry energy of neutron matter. Kinetic and potential energy contributions. A. Rios, I. Vidaña, A.

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Outline Introduction Compton scattering (A=2) Δ degrees of freedom in 3He(e,e') (A=3) Role of 0+ resonance in 4He(e,e')

More information

Shell model calculation ー from basics to the latest methods ー

Shell model calculation ー from basics to the latest methods ー Shell model calculation ー from basics to the latest methods ー Takahiro Mizusaki Senshu university / CNS, the univ. of Tokyo Basics What we will learn? What is Shell Model? Shell model basis states M-scheme

More information

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Scott Bogner September 2005 Collaborators: Dick Furnstahl, Achim Schwenk, and Andreas Nogga The Conventional Nuclear Many-Body Problem

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

(Todays) Progress in coupled cluster compuations of atomic nuclei

(Todays) Progress in coupled cluster compuations of atomic nuclei (Todays) Progress in coupled cluster compuations of atomic nuclei Gaute Hagen Oak Ridge National Laboratory Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, February 26 th, 2019 Collaborators

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information