Complex Analysis Homework 3

Size: px
Start display at page:

Download "Complex Analysis Homework 3"

Transcription

1 Complex Analysis Homework 3 Steve Clanton David Holz March 3, 009 Problem 3 Solution. Let z = re iθ. Then, we see the mapping leaves the modulus unchanged while multiplying the argument by -3: Ω z = z re iθ z = re iθ = re 3iθ In particular, we note Ω r e iθ + e iθ = Ω r + e iθ = r + e 3iθ = r e 3iθ + e 3iθ = Ω r e iθ + Ω e iθ Now, we consider the images of z + ε and z + iε where Arg z = Arg ε. We note in Figure that the angles between the image points triple while the modulus stays the same. z i i z 3 z i z z Figure : Ω is not a conformal mapping The mapping is not conformal since Ω z + ε = Ω z + Ω ε but Ω z + iε Ω z + i Ω ε. The image Ω z Ω z + iε has a different modulus than and is not perpendicular to Ω ε. The mapping is neither conformal nor anticonformal since the lines in the image of a perpendicular intersection are not perpendicular.

2 Problem 4 Problem. The picture shows the shaded interior of a curve being mapped by an analytic function to the exterior of the image curve. If z travels round the curve counter-clockwise, then which way does its image w travel round the image curve? We have two particularly important vectors we may draw on each curve:. The yellow vector, which is tangent to the curve at zome point z and points in the direction of circulation.. The blue vector, which is perpindicular to the yellow vector and points towards the shaded region. In order to preserve the angle between these two vectors as well as their respective properties the the yellow vector must lay be degrees clockwise from the blue vector. By this we see that the direction of circulation on the mapped curve is clockwise. Figure : By preserving the angles between tangent and perpindicular vectors we may deduce the circulation of the new curve.

3 Problem 5 Problem. Consider fx + iy = x + y + iy/x. Find and sketch the curves that are mapped by f into a horizontal lines, and b vertical lines. Notice from your answers that f appears to be conformal. Show that it is not in two ways: i by explicitly finding some curves whose angle of intersection isn t preserved; and ii by using the Cauchy-Riemann equations. a Horizontal lines have a constant imaginary component: y I[fx + iy] = = const x b This describes all lines with constant slope that go through the origin, otherwise known as radial lines. Veritcal lines have a constant real component: This describes all circles centered about the origin. R[fx + iy] = x + y = const Figure 3: Radial lines map to horizontal lines and origin centered circles map to vertical lines i Vertical line x = z = + t + it x = + t, y = t Horizontal line y = z = + t + i t x = + t, y = t Finding the intersection point: t = t t = ± x =, y = ± 3

4 We may check if they are conformal by looking at the derivatives of each line at the intersection. Intersection at: x = Horizontal line: y = x = 3/ Vertical line: y = x = The slopes of the tangent lines at the point of intersections are not perpindicular as they were before the mapping. Thus, this mapping is not conformal Figure 4: An intersection of two lines which are not conformal. ii u = x + y, v = y x x u = x x = yv The mapping fx + iy does not satisfy the Cauchy-Riemann equations, thus it is not conformal. We see that the Cauchy-Riemann equations are satisfied when x = ± / since the equations reduce to the condition x u = y v x = x x v = y u y x = y x = 4

5 Problem 6 Problem. Continuing from the previous exercise, show that no choice of v can make fx + iy = x + y + iv analytic. u = x + y, x u = y v, v = v x v = y u x = x v, y = y v v =xy + fx 0 v = xy + gy 0 v =xy xy We must have made an incorrect assumption, namely that there is a value of v which can make fx+iy analytic. Alternatively, we may also demonstrate this by: Problem 4 f = x iy = x iy = z Geometrically, we know that all the sides of the rectangle will be rotated and amplified by some amplitwist f. We can apply the rotation first, and we note that the rotation transforms our original rectangle onto a congruent rectangle. Next we scale each side by f. This change our area to A new = f l f w = f lw = f A old ds dv du dr Figure 5: We can also derive this fact by looking at the determinant of the Jacobian: A old = dr x dr y ds x ds y A new = du x du y dv x dv y = drx dr J y = J ds x ds y dr x dr y ds x ds y = J A old J = xu x v y u y v = xu y v y u x v = x u + x v = x u + i x v x u i x v = f f = f 5

6 Problem 5 i b b a b r a b e b b R a b e Figure 6: The transformation of a square under z e z ii Call the square S and the image of the square S. The area of S is 4b, since the length of one side is b. We see the area of the image S is θ π of the disc area of S = θ πr π = b e a+b e a b = be a sinh b π and iii area of Λ = S area of S = ea sinh b b From exercise 4, we know that the local magnification for the factor for the area of the square is the square of the amplification. We know the amplification is e a since we found e z = e z in exercise 3. Accordingly, we expect the area of S to be e a times the area of S as b shrinks to nothing. iv lim Λ = lim e a sinh b b 0 b 0 b LH = e a lim b 0 cosh b = e a lim b 0 cosh b = e a 6

7 Problem 6 Figure 7: Consider some arbitrarily short chord of the origin-centered circle passing through z. Because intersections are preserved in inversion, we know that the image of the chord is a chord through the corresponding points in the inversion of its arc. Because the mapping is conformal, we know the image of the chord is a straight line and that the direction stays the same. In Figure 7, we see that the triangle formed by points 0, z, and z + ε is similar to the one formed by 0, I z, and I z + ε, since they are both isosceles and share a vertex. This tells us that the modulus of the amplitwist a = /z solves r = R = ar. Thus, we have /z / = /R = z 7

8 Problem 7 i Needham gives the formula x+iy = ii The Jacobian is x x +y i u = y x +y x u J = y u = x v y v on page 7 of the text. Thus, x x + y and v = y x + y y x x +y xy x +y xy y x x +y x +y We note that x u = y v and that x v = y u for all points in their domain. Thus, the Cauchy-Riemann equations are satisfied except where x + y = 0, which only occurs when x = y = 0. iii Recall the polar coordinate relationships x = r cos θ, y = r sin θ, and x + y =. Now, we put the Jacobian from part ii into polar form: J = = y x xy x +y x +y xy y x x +y x +y sin θ cos θ sin θ cos θ = cos θ sin θ sin θ cos θ sin θ cos θ sin θ cos θ = r sin θ r cos θ r cos θr sin θ r 4 r 4 r cos θr sin θ r sin θ r cos θ r 4 r 4 = cosθ sinθ sinθ cosθ This transformation is scaling by the factor / followed by one rotation by π by the negative sign and another rotation of θ by the matrix. iv f = x u + i x v = y x +ixy x +y = x iy x+iy x iy = x+iy = z We know that z = e iθ = e iθ is the same transformation as in part iii, scaling by the factor / followed by one rotation by π by the negative sign and another rotation of θ. 8

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Complex Analysis Homework 1: Solutions

Complex Analysis Homework 1: Solutions Complex Analysis Fall 007 Homework 1: Solutions 1.1.. a) + i)4 + i) 8 ) + 1 + )i 5 + 14i b) 8 + 6i) 64 6) + 48 + 48)i 8 + 96i c) 1 + ) 1 + i 1 + 1 i) 1 + i)1 i) 1 + i ) 5 ) i 5 4 9 ) + 4 4 15 i ) 15 4

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Aero III/IV Conformal Mapping

Aero III/IV Conformal Mapping Aero III/IV Conformal Mapping View complex function as a mapping Unlike a real function, a complex function w = f(z) cannot be represented by a curve. Instead it is useful to view it as a mapping. Write

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

The Jacobian. v y u y v (see exercise 46). The total derivative is also known as the Jacobian Matrix of the transformation T (u; v) :

The Jacobian. v y u y v (see exercise 46). The total derivative is also known as the Jacobian Matrix of the transformation T (u; v) : The Jacobian The Jacobian of a Transformation In this section, we explore the concept of a "derivative" of a coordinate transformation, which is known as the Jacobian of the transformation. However, in

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

7.1 Projections and Components

7.1 Projections and Components 7. Projections and Components As we have seen, the dot product of two vectors tells us the cosine of the angle between them. So far, we have only used this to find the angle between two vectors, but cosines

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

Solutions to Exercises 6.1

Solutions to Exercises 6.1 34 Chapter 6 Conformal Mappings Solutions to Exercises 6.. An analytic function fz is conformal where f z. If fz = z + e z, then f z =e z z + z. We have f z = z z += z =. Thus f is conformal at all z.

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Complex Differentials and the Stokes, Goursat and Cauchy Theorems

Complex Differentials and the Stokes, Goursat and Cauchy Theorems Complex Differentials and the Stokes, Goursat and Cauchy Theorems Benjamin McKay June 21, 2001 1 Stokes theorem Theorem 1 (Stokes) f(x, y) dx + g(x, y) dy = U ( g y f ) dx dy x where U is a region of the

More information

Complex Analysis Homework 4

Complex Analysis Homework 4 Complex Analysis Homework 4 Isaac Defrain Steve Clanton David Holz April 9, 2009 Problem 1 Problem. Show that if f = u + iv is analytic then ( v) ( v) = 0. Explain this geometrically. Since f is analytic,

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

III.3. Analytic Functions as Mapping, Möbius Transformations

III.3. Analytic Functions as Mapping, Möbius Transformations III.3. Analytic Functions as Mapping, Möbius Transformations 1 III.3. Analytic Functions as Mapping, Möbius Transformations Note. To graph y = f(x) where x,y R, we can simply plot points (x,y) in R 2 (that

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill Lecture Notes omplex Analysis based on omplex Variables and Applications 7th Edition Brown and hurchhill Yvette Fajardo-Lim, Ph.D. Department of Mathematics De La Salle University - Manila 2 ontents THE

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Conformal Mappings. Chapter Schwarz Lemma

Conformal Mappings. Chapter Schwarz Lemma Chapter 5 Conformal Mappings In this chapter we study analytic isomorphisms. An analytic isomorphism is also called a conformal map. We say that f is an analytic isomorphism of U with V if f is an analytic

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

1 Complex Numbers. 1.1 Sums and Products

1 Complex Numbers. 1.1 Sums and Products 1 Complex Numbers 1.1 Sums Products Definition: The complex plane, denoted C is the set of all ordered pairs (x, y) with x, y R, where Re z = x is called the real part Imz = y is called the imaginary part.

More information

Complex Variables, Summer 2016 Homework Assignments

Complex Variables, Summer 2016 Homework Assignments Complex Variables, Summer 2016 Homework Assignments Homeworks 1-4, due Thursday July 14th Do twenty-four of the following problems. Question 1 Let a = 2 + i and b = 1 i. Sketch the complex numbers a, b,

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

Math Vector Calculus II

Math Vector Calculus II Math 255 - Vector Calculus II Review Notes Vectors We assume the reader is familiar with all the basic concepts regarding vectors and vector arithmetic, such as addition/subtraction of vectors in R n,

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u =

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u = Homework -5 Solutions Problems (a) z = + 0i, (b) z = 7 + 24i 2 f(z) = u(x, y) + iv(x, y) with u(x, y) = e 2y cos(2x) and v(x, y) = e 2y sin(2x) u (a) To show f(z) is analytic, explicitly evaluate partials,,

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

SPRING 2008: POLYNOMIAL IMAGES OF CIRCLES

SPRING 2008: POLYNOMIAL IMAGES OF CIRCLES 18.821 SPRING 28: POLYNOMIAL IMAGES OF CIRCLES JUSTIN CURRY, MICHAEL FORBES, MATTHEW GORDON Abstract. This paper considers the effect of complex polynomial maps on circles of various radii. Several phenomena

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

= 9 4 = = = 8 2 = 4. Model Question paper-i SECTION-A 1.C 2.D 3.C 4. C 5. A 6.D 7.B 8.C 9.B B 12.B 13.B 14.D 15.

= 9 4 = = = 8 2 = 4. Model Question paper-i SECTION-A 1.C 2.D 3.C 4. C 5. A 6.D 7.B 8.C 9.B B 12.B 13.B 14.D 15. www.rktuitioncentre.blogspot.in Page 1 of 8 Model Question paper-i SECTION-A 1.C.D 3.C. C 5. A 6.D 7.B 8.C 9.B 10. 11.B 1.B 13.B 1.D 15.A SECTION-B 16. P a, b, c, Q g,, x, y, R {a, e, f, s} R\ P Q {a,

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos Solutions to Selected Exercises in Complex Analysis with Applications by N. Asmar and L. Grafakos Section. Complex Numbers Solutions to Exercises.. We have i + i. So a and b. 5. We have So a 3 and b 4.

More information

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U )

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U ) 3 Riemann surfaces 3.1 Definitions and examples From the definition of a surface, each point has a neighbourhood U and a homeomorphism ϕ U from U to an open set V in R 2. If two such neighbourhoods U,

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

= 2 x y 2. (1)

= 2 x y 2. (1) COMPLEX ANALYSIS PART 5: HARMONIC FUNCTIONS A Let me start by asking you a question. Suppose that f is an analytic function so that the CR-equation f/ z = 0 is satisfied. Let us write u and v for the real

More information

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48.

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48. Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 48 : Green's Theorem [Section 48.1] Objectives In this section you will learn the following : Green's theorem which

More information

Math 120: Precalculus Autumn 2017 A List of Topics for the Final

Math 120: Precalculus Autumn 2017 A List of Topics for the Final Math 120: Precalculus Autumn 2017 A List of Topics for the Final Here s a fairly comprehensive list of things you should be comfortable doing for the final. Really Old Stuff 1. Unit conversion and rates

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

MORE CONSEQUENCES OF CAUCHY S THEOREM

MORE CONSEQUENCES OF CAUCHY S THEOREM MOE CONSEQUENCES OF CAUCHY S THEOEM Contents. The Mean Value Property and the Maximum-Modulus Principle 2. Morera s Theorem and some applications 3 3. The Schwarz eflection Principle 6 We have stated Cauchy

More information

CIRCLES PART - II Theorem: The condition that the straight line lx + my + n = 0 may touch the circle x 2 + y 2 = a 2 is

CIRCLES PART - II Theorem: The condition that the straight line lx + my + n = 0 may touch the circle x 2 + y 2 = a 2 is CIRCLES PART - II Theorem: The equation of the tangent to the circle S = 0 at P(x 1, y 1 ) is S 1 = 0. Theorem: The equation of the normal to the circle S x + y + gx + fy + c = 0 at P(x 1, y 1 ) is (y

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved.

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved. 9.1 Circles and Parabolas Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize a conic as the intersection of a plane and a double-napped cone. Write equations of circles in

More information

Worked examples Conformal mappings and bilinear transformations

Worked examples Conformal mappings and bilinear transformations Worked examples Conformal mappings and bilinear transformations Example 1 Suppose we wish to find a bilinear transformation which maps the circle z i = 1 to the circle w =. Since w/ = 1, the linear transformation

More information

MTH4101 Calculus II. Carl Murray School of Mathematical Sciences Queen Mary University of London Spring Lecture Notes

MTH4101 Calculus II. Carl Murray School of Mathematical Sciences Queen Mary University of London Spring Lecture Notes MTH40 Calculus II Carl Murray School of Mathematical Sciences Queen Mary University of London Spring 20 Lecture Notes Complex Numbers. Introduction We have already met several types of numbers. Natural

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

AP PHYSICS SUMMER ASSIGNMENT

AP PHYSICS SUMMER ASSIGNMENT AP PHYSICS SUMMER ASSIGNMENT There are two parts of the summer assignment, both parts mirror the course. The first part is problem solving, where there are 14 math problems that you are given to solve

More information

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk Trigonometry - Part 1 (12 pages; 4/9/16) (1) Sin, cos & tan of 30, 60 & 45 sin30 = 1 2 ; sin60 = 3 2 cos30 = 3 2 ; cos60 = 1 2 cos45 = sin45 = 1 2 = 2 2 tan45 = 1 tan30 = 1 ; tan60 = 3 3 Graphs of y =

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

STEP Support Programme. STEP 2 Complex Numbers: Solutions

STEP Support Programme. STEP 2 Complex Numbers: Solutions STEP Support Programme STEP Complex Numbers: Solutions i Rewriting the given relationship gives arg = arg arg = α. We can then draw a picture as below: The loci is therefore a section of the circle between

More information

Higher Order Derivatives

Higher Order Derivatives Higher Order Derivatives A higher order derivative is the derivative of a derivative. For example, let f(x) = 3x x. Its derivative is f (x) = x + x. The derivative of f (x) is an example of a higher order

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

STEP III, cosh x sinh 2 x dx u 4 du. 16 (2x + 1)2 x 2 (x 4) f (x) = x 4

STEP III, cosh x sinh 2 x dx u 4 du. 16 (2x + 1)2 x 2 (x 4) f (x) = x 4 STEP III, 24 2 Section A: Pure Mathematics Show that and find a ( ) ( ) sinh x 2 cosh 2 x dx = 2 cosh a 2 2 ln + 2 + 2 cosh a + 2 2 ln 2 a cosh x + 2 sinh 2 x dx. Hence show that ( ) cosh x sinh x + 2

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

2. Complex Analytic Functions

2. Complex Analytic Functions 2. Complex Analytic Functions John Douglas Moore July 6, 2011 Recall that if A and B are sets, a function f : A B is a rule which assigns to each element a A a unique element f(a) B. In this course, we

More information

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE 1. Introduction Let D denote the unit disk and let D denote its boundary circle. Consider a piecewise continuous function on the boundary circle, {

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Lecture 6 - Introduction to Electricity

Lecture 6 - Introduction to Electricity Lecture 6 - Introduction to Electricity A Puzzle... We are all familiar with visualizing an integral as the area under a curve. For example, a b f[x] dx equals the sum of the areas of the rectangles of

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

Math 5 Trigonometry Final Exam Spring 2009

Math 5 Trigonometry Final Exam Spring 2009 Math 5 Trigonometry Final Exam Spring 009 NAME Show your work for credit. Write all responses on separate paper. There are 13 problems, all weighted equally. Your 3 lowest scoring answers problem will

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

1. Vectors and Matrices

1. Vectors and Matrices E. 8.02 Exercises. Vectors and Matrices A. Vectors Definition. A direction is just a unit vector. The direction of A is defined by dir A = A, (A 0); A it is the unit vector lying along A and pointed like

More information

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2.

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2. Solutions 00 53 rd AMC 1 A 1. (A) Factor to get (x+3)(x 10) = 0, so the two roots are 3/ and 5, which sum to 7/.. (A) Let x be the number she was given. Her calculations produce so x 9 3 = 43, x 9 = 19

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Math 461 Homework 8. Paul Hacking. November 27, 2018

Math 461 Homework 8. Paul Hacking. November 27, 2018 Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F :

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Mathematics Extension 2

Mathematics Extension 2 0 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let Math 461 Homework 8 Paul Hacking November 27, 2018 S 2 = {(x, y, z) x 2 +y 2 +z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F : S

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information