Week 13: Language Modeling II Smoothing in Language Modeling. Irina Sergienya

Size: px
Start display at page:

Download "Week 13: Language Modeling II Smoothing in Language Modeling. Irina Sergienya"

Transcription

1 Week 13: Language Modeling II Smoothing in Language Modeling Irina Sergienya

2 Couple of words first... There are much more smoothing techniques, [e.g. Katz back-off, Jelinek-Mercer,...] and techniques to improve LM [e.g. cashing, skipping models, clustering, sentence mixture...] Concepts are the same, formulas are different so check several sources before implementation 2

3 Recall: Language Models Given a sentence, we would like to estimate how likely it is to see such a sentence in a language P (w 1 length(s = i Problems: P w 1 i 1 P (w k w 1 k 1 = C (w 1 k C (w 1 k 1 sparseness of training data (not enough to estimate probabilities zero probability of unseen events Solution: SMOOTHING! 3

4 Smoothing Take some probability mass from seen events and assign it to unseen events P(unseen P(seen=1 P(seen=

5 Recall: Laplace Smoothing P (w n w 1 n 1 = C (w 1 n C (w 1 n 1 P Laplace (w n w n 1 1 = C (w n 1+1 C (w n V 5

6 Recall: Good-Turing Smoothing Use the count of events we have seen once to help estimate the count of events we have never seen P(unseen P(seen once P(seen once P(seen > once P(seen > once 6

7 Recall: Good-Turing Smoothing Use the count of events we have seen once to help estimate the count of events we have never seen N c = the count of events we ve seen c times Estimate (C(w = c: P Good Turing (w= 1 N (c+1 N c+1 N c Here N is M from previous lecture 7

8 Slide from Dan Jurafsky, MOOC Natural Language Processing : Language Modeling. Advanced: Good Turing Smoothing 8

9 Today Interpolation Absolute discounting Kneser-Ney Smoothing: Back-off Kneser-Ney Interpolated Kneser-Ney Modified Kneser-Ney 9

10 Interpolation. Concept 1 Problem: No measuring is perfect Solution: combine several measurements (with different trust on them = INTERPOLATION 10

11 Interpolation. Concept 1 Problem: No measuring is perfect Solution: combine several measurements (with different trust on them = INTERPOLATION value 1 value 2 value 3 11

12 Interpolation. Concept 2 Problem: No measuring is perfect Solution: combine several measurements (with different trust on them value = α 1 *value 1 + α 2 *value 2 + α 3 *value 3, α i coefficients or weights Usually αi in [0, 1], and α i =1 i=2: α 1 =α, α 2 =1 α i=3 :α 1 =α, α 2 =β, α 3 =1 α β 12

13 Interpolation. Concept 3 value = α 1 *value 1 + α 2 *value 2 + α 3 *value 3 value 1 = 112 kg 90 kg = 22 kg value 2 = 20 kg value 3 = 25 kg α 1 =.3, α 2 =.2, α 3 =.5 value = 22* * *.5 = 23.1 > 23 kg 13

14 Examples of interpolation? Take the mean value (split a bill equally (α i =1/n Assume elections result based on an opinion poll Basically, everywhere when you try to assess true value via several sources 14

15 Linear Interpolation in LM We ve never seen read a book, but we might have seen a book, and we ve certainly seen book, Linear Interpolation: P INT w i 1, w i 2 =α 3 P w i 1, w i 2 +α 2 P w i 1 +α 1 P P(read a book=.5*0 +.2* *1.74*10-3 = 6.42*

16 Absolute discounting Discount all non-zero n-gram count by a small constant amount D and interpolate with bigram model: Discounted n-gram P AD w i 1, w i 2 = max(c (w w w i 2 i 1 i D, 0 C 2 w i 1 +(1 λp AD w i 1 Interpolation weight lower-order n-gram 16

17 Absolute discounting. Interpolation weight P AD w i 1, w i 2 = max(c (w w w i 2 i 1 i D, 0 C 2 w i 1 +(1 λp AD w i 1 If Z seen word types occur after w i-2 w i-1 in the training data, this reserves the probability mass P(U = (Z D/C-2 w i-1 to be computed according to P w i-1. Set: (1 λ=p (U = Z D C 2 w i 1 N.B.: with N 1, N 2 the number of n-grams that occur once or twice, D = N 1 /(N 1 +2N 2 works well in practice 17

18 Kneser-Ney Smoothing Idea: the higher-order models work better, but when count is small or zero, the lower-order models can help a lot. But lower-order models should be used wisely: San Francisco is common, so absolute discounting will give Francisco high probability in future predictions, while actually Francisco accurs only after San => bigram model is better in this case; Another idea is to take into account context each word occurs in. 18

19 Kneser-Ney Smoothing. Contexts Number of different words wi-1 that w i follows: e.g. N 1+ (.read = 2 N 1+ (.a = 5 N 1+ (. w i = {w i 1 :C 1 w i >0} N 1+ (..= w i N 1+ (.w i N 1+ (.. = =17 19

20 Kneser-Ney Smoothing. Lower-order Replace raw counts with count of contexts: P KN = N 1+ (. w i N 1+ (.. e.g. P KN (read = 2/17 P KN (a = 5/17 P KN (to = 6/17 20

21 Back-off Kneser-Ney Smoothing KN Smoothing: Similar to absolute discounting, but use KN estimate for lower-order: C 1 w i D P BKN w i 1 C (w ={ i 1 α 1 P KN if C 1 w i >0 otherwise where P KN = N 1+ (. w i N 1+ (.. Back-off to lower-order model in case bigram count is 0 α normalization constant 21

22 Back-off Kneser-Ney Smoothing. Example C 1 w i D if C (w P BKN w i 1 C (w ={ i 1 i 1 w i >0 α 1 P KN otherwise D = 0.5, α = 0.01 Counts available: P KN (a want = (10-0.5/292 = Have never seen bigram before P KN (to want = 0.01*6/17 =

23 Interpolated Kneser-Ney Smoothing KN Smoothing: Similar to absolute discounting, but use KN estimate for lower-order: P IKN w i 1 = C 1 w i D C 1 Interpolation +α 1 P KN where P KN = N 1+ (. w i N 1+ (.. IKN for high-orders, Kneser-Ney for unigram α normalization constant 23

24 Modified Kneser-Ney Smoothing Chen&Goodman introduced modified Kneser- Ney: Interpolation is used instead of backoff. Uses a separate discount for one- and two-counts instead of a single discount for all counts: 1 if c=1 D(c={D D 2 if c=2 if c 3 D 3+ Estimates discounts on held-out data instead of using a formula based on training counts Modified Kneser-Ney consistently had best performance. 24

25 Questions We've just seen interpolation with lower-order models. What else could be interpolated? 25

26 Questions We've just seen interpolation with lower-order models. What else could be interpolated? Why don't just take high-order models and back-off or interpolate with lower-order models? 26

27 References Dan Jurafsky, Christopher Manning, MOOC Natural Language Processing, lecture Language Modeling. Advanced: Good Turing Smoothing Dan Jurafsky, Christopher Manning, MOOC Natural Language Processing, lecture Advanced: Kneser-Ney Smoothing Bill MacCartney, NLP Lunch Tutorial: Smoothing, 2005 Joshua T. Goodman, A Bit of Progress in Language Modeling, 2001 Philipp Koehn, "Statistical Machine Translation", chapter Language models, 2009 Daniel Jurafsky, James H. Martin, Speech and Language Processing,

Natural Language Processing. Statistical Inference: n-grams

Natural Language Processing. Statistical Inference: n-grams Natural Language Processing Statistical Inference: n-grams Updated 3/2009 Statistical Inference Statistical Inference consists of taking some data (generated in accordance with some unknown probability

More information

Kneser-Ney smoothing explained

Kneser-Ney smoothing explained foldl home blog contact feed Kneser-Ney smoothing explained 18 January 2014 Language models are an essential element of natural language processing, central to tasks ranging from spellchecking to machine

More information

CMPT-825 Natural Language Processing

CMPT-825 Natural Language Processing CMPT-825 Natural Language Processing Anoop Sarkar http://www.cs.sfu.ca/ anoop February 27, 2008 1 / 30 Cross-Entropy and Perplexity Smoothing n-gram Models Add-one Smoothing Additive Smoothing Good-Turing

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing N-grams and language models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 25 Introduction Goals: Estimate the probability that a

More information

Language Models. Philipp Koehn. 11 September 2018

Language Models. Philipp Koehn. 11 September 2018 Language Models Philipp Koehn 11 September 2018 Language models 1 Language models answer the question: How likely is a string of English words good English? Help with reordering p LM (the house is small)

More information

N-grams. Motivation. Simple n-grams. Smoothing. Backoff. N-grams L545. Dept. of Linguistics, Indiana University Spring / 24

N-grams. Motivation. Simple n-grams. Smoothing. Backoff. N-grams L545. Dept. of Linguistics, Indiana University Spring / 24 L545 Dept. of Linguistics, Indiana University Spring 2013 1 / 24 Morphosyntax We just finished talking about morphology (cf. words) And pretty soon we re going to discuss syntax (cf. sentences) In between,

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

Recap: Language models. Foundations of Natural Language Processing Lecture 4 Language Models: Evaluation and Smoothing. Two types of evaluation in NLP

Recap: Language models. Foundations of Natural Language Processing Lecture 4 Language Models: Evaluation and Smoothing. Two types of evaluation in NLP Recap: Language models Foundations of atural Language Processing Lecture 4 Language Models: Evaluation and Smoothing Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipp

More information

Language Modeling. Introduction to N-grams. Many Slides are adapted from slides by Dan Jurafsky

Language Modeling. Introduction to N-grams. Many Slides are adapted from slides by Dan Jurafsky Language Modeling Introduction to N-grams Many Slides are adapted from slides by Dan Jurafsky Probabilistic Language Models Today s goal: assign a probability to a sentence Why? Machine Translation: P(high

More information

ANLP Lecture 6 N-gram models and smoothing

ANLP Lecture 6 N-gram models and smoothing ANLP Lecture 6 N-gram models and smoothing Sharon Goldwater (some slides from Philipp Koehn) 27 September 2018 Sharon Goldwater ANLP Lecture 6 27 September 2018 Recap: N-gram models We can model sentence

More information

N-gram Language Modeling Tutorial

N-gram Language Modeling Tutorial N-gram Language Modeling Tutorial Dustin Hillard and Sarah Petersen Lecture notes courtesy of Prof. Mari Ostendorf Outline: Statistical Language Model (LM) Basics n-gram models Class LMs Cache LMs Mixtures

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Language Models, Graphical Models Sameer Maskey Week 13, April 13, 2010 Some slides provided by Stanley Chen and from Bishop Book Resources 1 Announcements Final Project Due,

More information

Microsoft Corporation.

Microsoft Corporation. A Bit of Progress in Language Modeling Extended Version Joshua T. Goodman Machine Learning and Applied Statistics Group Microsoft Research One Microsoft Way Redmond, WA 98052 joshuago@microsoft.com August

More information

N-gram Language Modeling

N-gram Language Modeling N-gram Language Modeling Outline: Statistical Language Model (LM) Intro General N-gram models Basic (non-parametric) n-grams Class LMs Mixtures Part I: Statistical Language Model (LM) Intro What is a statistical

More information

Language Model. Introduction to N-grams

Language Model. Introduction to N-grams Language Model Introduction to N-grams Probabilistic Language Model Goal: assign a probability to a sentence Application: Machine Translation P(high winds tonight) > P(large winds tonight) Spelling Correction

More information

{ Jurafsky & Martin Ch. 6:! 6.6 incl.

{ Jurafsky & Martin Ch. 6:! 6.6 incl. N-grams Now Simple (Unsmoothed) N-grams Smoothing { Add-one Smoothing { Backo { Deleted Interpolation Reading: { Jurafsky & Martin Ch. 6:! 6.6 incl. 1 Word-prediction Applications Augmentative Communication

More information

Natural Language Processing SoSe Language Modelling. (based on the slides of Dr. Saeedeh Momtazi)

Natural Language Processing SoSe Language Modelling. (based on the slides of Dr. Saeedeh Momtazi) Natural Language Processing SoSe 2015 Language Modelling Dr. Mariana Neves April 20th, 2015 (based on the slides of Dr. Saeedeh Momtazi) Outline 2 Motivation Estimation Evaluation Smoothing Outline 3 Motivation

More information

CS 6120/CS4120: Natural Language Processing

CS 6120/CS4120: Natural Language Processing CS 6120/CS4120: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Outline Probabilistic language

More information

CSA4050: Advanced Topics Natural Language Processing. Lecture Statistics III. Statistical Approaches to NLP

CSA4050: Advanced Topics Natural Language Processing. Lecture Statistics III. Statistical Approaches to NLP University of Malta BSc IT (Hons)Year IV CSA4050: Advanced Topics Natural Language Processing Lecture Statistics III Statistical Approaches to NLP Witten-Bell Discounting Unigrams Bigrams Dept Computer

More information

Language Modeling. Introduction to N-grams. Many Slides are adapted from slides by Dan Jurafsky

Language Modeling. Introduction to N-grams. Many Slides are adapted from slides by Dan Jurafsky Language Modeling Introduction to N-grams Many Slides are adapted from slides by Dan Jurafsky Probabilistic Language Models Today s goal: assign a probability to a sentence Why? Machine Translation: P(high

More information

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri Speech Recognition Lecture 5: N-gram Language Models Eugene Weinstein Google, NYU Courant Institute eugenew@cs.nyu.edu Slide Credit: Mehryar Mohri Components Acoustic and pronunciation model: Pr(o w) =

More information

DT2118 Speech and Speaker Recognition

DT2118 Speech and Speaker Recognition DT2118 Speech and Speaker Recognition Language Modelling Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 56 Outline Introduction Formal Language Theory Stochastic Language Models (SLM) N-gram Language

More information

Natural Language Processing SoSe Words and Language Model

Natural Language Processing SoSe Words and Language Model Natural Language Processing SoSe 2016 Words and Language Model Dr. Mariana Neves May 2nd, 2016 Outline 2 Words Language Model Outline 3 Words Language Model Tokenization Separation of words in a sentence

More information

perplexity = 2 cross-entropy (5.1) cross-entropy = 1 N log 2 likelihood (5.2) likelihood = P(w 1 w N ) (5.3)

perplexity = 2 cross-entropy (5.1) cross-entropy = 1 N log 2 likelihood (5.2) likelihood = P(w 1 w N ) (5.3) Chapter 5 Language Modeling 5.1 Introduction A language model is simply a model of what strings (of words) are more or less likely to be generated by a speaker of English (or some other language). More

More information

Natural Language Processing (CSE 490U): Language Models

Natural Language Processing (CSE 490U): Language Models Natural Language Processing (CSE 490U): Language Models Noah Smith c 2017 University of Washington nasmith@cs.washington.edu January 6 9, 2017 1 / 67 Very Quick Review of Probability Event space (e.g.,

More information

Statistical Natural Language Processing

Statistical Natural Language Processing Statistical Natural Language Processing N-gram Language Models Çağrı Çöltekin University of Tübingen Seminar für Sprachwissenschaft Summer Semester 2017 N-gram language models A language model answers

More information

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk Language Modelling 2 A language model is a probability

More information

Language Modeling. Introduc*on to N- grams. Many Slides are adapted from slides by Dan Jurafsky

Language Modeling. Introduc*on to N- grams. Many Slides are adapted from slides by Dan Jurafsky Language Modeling Introduc*on to N- grams Many Slides are adapted from slides by Dan Jurafsky Probabilis1c Language Models Today s goal: assign a probability to a sentence Machine Transla*on: Why? P(high

More information

Language Models. Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN

Language Models. Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN Language Models Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN Data Science: Jordan Boyd-Graber UMD Language Models 1 / 8 Language models Language models answer

More information

Probabilistic Language Modeling

Probabilistic Language Modeling Predicting String Probabilities Probabilistic Language Modeling Which string is more likely? (Which string is more grammatical?) Grill doctoral candidates. Regina Barzilay EECS Department MIT November

More information

Lecture 4: Smoothing, Part-of-Speech Tagging. Ivan Titov Institute for Logic, Language and Computation Universiteit van Amsterdam

Lecture 4: Smoothing, Part-of-Speech Tagging. Ivan Titov Institute for Logic, Language and Computation Universiteit van Amsterdam Lecture 4: Smoothing, Part-of-Speech Tagging Ivan Titov Institute for Logic, Language and Computation Universiteit van Amsterdam Language Models from Corpora We want a model of sentence probability P(w

More information

Language Modeling. Introduc*on to N- grams. Many Slides are adapted from slides by Dan Jurafsky

Language Modeling. Introduc*on to N- grams. Many Slides are adapted from slides by Dan Jurafsky Language Modeling Introduc*on to N- grams Many Slides are adapted from slides by Dan Jurafsky Probabilis1c Language Models Today s goal: assign a probability to a sentence Machine Transla*on: Why? P(high

More information

CSEP 517 Natural Language Processing Autumn 2013

CSEP 517 Natural Language Processing Autumn 2013 CSEP 517 Natural Language Processing Autumn 2013 Language Models Luke Zettlemoyer Many slides from Dan Klein and Michael Collins Overview The language modeling problem N-gram language models Evaluation:

More information

The Language Modeling Problem (Fall 2007) Smoothed Estimation, and Language Modeling. The Language Modeling Problem (Continued) Overview

The Language Modeling Problem (Fall 2007) Smoothed Estimation, and Language Modeling. The Language Modeling Problem (Continued) Overview The Language Modeling Problem We have some (finite) vocabulary, say V = {the, a, man, telescope, Beckham, two, } 6.864 (Fall 2007) Smoothed Estimation, and Language Modeling We have an (infinite) set of

More information

An Algorithm for Fast Calculation of Back-off N-gram Probabilities with Unigram Rescaling

An Algorithm for Fast Calculation of Back-off N-gram Probabilities with Unigram Rescaling An Algorithm for Fast Calculation of Back-off N-gram Probabilities with Unigram Rescaling Masaharu Kato, Tetsuo Kosaka, Akinori Ito and Shozo Makino Abstract Topic-based stochastic models such as the probabilistic

More information

CS 6120/CS4120: Natural Language Processing

CS 6120/CS4120: Natural Language Processing CS 6120/CS4120: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Today s Outline Probabilistic

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University October 20, 2017 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Language Modeling. Introduction to N-grams. Klinton Bicknell. (borrowing from: Dan Jurafsky and Jim Martin)

Language Modeling. Introduction to N-grams. Klinton Bicknell. (borrowing from: Dan Jurafsky and Jim Martin) Language Modeling Introduction to N-grams Klinton Bicknell (borrowing from: Dan Jurafsky and Jim Martin) Probabilistic Language Models Today s goal: assign a probability to a sentence Why? Machine Translation:

More information

Language Modeling. Michael Collins, Columbia University

Language Modeling. Michael Collins, Columbia University Language Modeling Michael Collins, Columbia University Overview The language modeling problem Trigram models Evaluating language models: perplexity Estimation techniques: Linear interpolation Discounting

More information

Exploring Asymmetric Clustering for Statistical Language Modeling

Exploring Asymmetric Clustering for Statistical Language Modeling Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL, Philadelphia, July 2002, pp. 83-90. Exploring Asymmetric Clustering for Statistical Language Modeling Jianfeng

More information

(today we are assuming sentence segmentation) Wednesday, September 10, 14

(today we are assuming sentence segmentation) Wednesday, September 10, 14 (today we are assuming sentence segmentation) 1 Your TA: David Belanger http://people.cs.umass.edu/~belanger/ I am a third year PhD student advised by Professor Andrew McCallum. Before that, I was an Associate

More information

Language Modelling. Steve Renals. Automatic Speech Recognition ASR Lecture 11 6 March ASR Lecture 11 Language Modelling 1

Language Modelling. Steve Renals. Automatic Speech Recognition ASR Lecture 11 6 March ASR Lecture 11 Language Modelling 1 Language Modelling Steve Renals Automatic Speech Recognition ASR Lecture 11 6 March 2017 ASR Lecture 11 Language Modelling 1 HMM Speech Recognition Recorded Speech Decoded Text (Transcription) Acoustic

More information

Neural Networks Language Models

Neural Networks Language Models Neural Networks Language Models Philipp Koehn 10 October 2017 N-Gram Backoff Language Model 1 Previously, we approximated... by applying the chain rule p(w ) = p(w 1, w 2,..., w n ) p(w ) = i p(w i w 1,...,

More information

Chapter 3: Basics of Language Modelling

Chapter 3: Basics of Language Modelling Chapter 3: Basics of Language Modelling Motivation Language Models are used in Speech Recognition Machine Translation Natural Language Generation Query completion For research and development: need a simple

More information

Ranked Retrieval (2)

Ranked Retrieval (2) Text Technologies for Data Science INFR11145 Ranked Retrieval (2) Instructor: Walid Magdy 31-Oct-2017 Lecture Objectives Learn about Probabilistic models BM25 Learn about LM for IR 2 1 Recall: VSM & TFIDF

More information

Language Model Rest Costs and Space-Efficient Storage

Language Model Rest Costs and Space-Efficient Storage Language Model Rest Costs and Space-Efficient Storage Kenneth Heafield Philipp Koehn Alon Lavie Carnegie Mellon, University of Edinburgh July 14, 2012 Complaint About Language Models Make Search Expensive

More information

We have a sitting situation

We have a sitting situation We have a sitting situation 447 enrollment: 67 out of 64 547 enrollment: 10 out of 10 2 special approved cases for audits ---------------------------------------- 67 + 10 + 2 = 79 students in the class!

More information

Language Processing with Perl and Prolog

Language Processing with Perl and Prolog Language Processing with Perl and Prolog Chapter 5: Counting Words Pierre Nugues Lund University Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/ Pierre Nugues Language Processing with Perl and

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Phrasetable Smoothing for Statistical Machine Translation

Phrasetable Smoothing for Statistical Machine Translation Phrasetable Smoothing for Statistical Machine Translation George Foster and Roland Kuhn and Howard Johnson National Research Council Canada Ottawa, Ontario, Canada firstname.lastname@nrc.gc.ca Abstract

More information

language modeling: n-gram models

language modeling: n-gram models language modeling: n-gram models CS 585, Fall 2018 Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/ Mohit Iyyer College of Information and Computer Sciences University

More information

Language Models. Hongning Wang

Language Models. Hongning Wang Language Models Hongning Wang CS@UVa Notion of Relevance Relevance (Rep(q), Rep(d)) Similarity P(r1 q,d) r {0,1} Probability of Relevance P(d q) or P(q d) Probabilistic inference Different rep & similarity

More information

Deep Learning. Language Models and Word Embeddings. Christof Monz

Deep Learning. Language Models and Word Embeddings. Christof Monz Deep Learning Today s Class N-gram language modeling Feed-forward neural language model Architecture Final layer computations Word embeddings Continuous bag-of-words model Skip-gram Negative sampling 1

More information

Overview (Fall 2007) Machine Translation Part III. Roadmap for the Next Few Lectures. Phrase-Based Models. Learning phrases from alignments

Overview (Fall 2007) Machine Translation Part III. Roadmap for the Next Few Lectures. Phrase-Based Models. Learning phrases from alignments Overview Learning phrases from alignments 6.864 (Fall 2007) Machine Translation Part III A phrase-based model Decoding in phrase-based models (Thanks to Philipp Koehn for giving me slides from his EACL

More information

arxiv:cmp-lg/ v1 9 Jun 1997

arxiv:cmp-lg/ v1 9 Jun 1997 arxiv:cmp-lg/9706007 v1 9 Jun 1997 Aggregate and mixed-order Markov models for statistical language processing Abstract We consider the use of language models whose size and accuracy are intermediate between

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Naive Bayes Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Introduction Classification = supervised method for

More information

Neural Network Language Modeling

Neural Network Language Modeling Neural Network Language Modeling Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Marek Rei, Philipp Koehn and Noah Smith Course Project Sign up your course project In-class presentation

More information

NLP: N-Grams. Dan Garrette December 27, Predictive text (text messaging clients, search engines, etc)

NLP: N-Grams. Dan Garrette December 27, Predictive text (text messaging clients, search engines, etc) NLP: N-Grams Dan Garrette dhg@cs.utexas.edu December 27, 2013 1 Language Modeling Tasks Language idenfication / Authorship identification Machine Translation Speech recognition Optical character recognition

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

N-gram Language Model. Language Models. Outline. Language Model Evaluation. Given a text w = w 1...,w t,...,w w we can compute its probability by:

N-gram Language Model. Language Models. Outline. Language Model Evaluation. Given a text w = w 1...,w t,...,w w we can compute its probability by: N-gram Language Model 2 Given a text w = w 1...,w t,...,w w we can compute its probability by: Language Models Marcello Federico FBK-irst Trento, Italy 2016 w Y Pr(w) =Pr(w 1 ) Pr(w t h t ) (1) t=2 where

More information

Empirical Methods in Natural Language Processing Lecture 5 N-gram Language Models

Empirical Methods in Natural Language Processing Lecture 5 N-gram Language Models Empirical Methods in Natural Language Processing Lecture 5 N-gram Language Models (most slides from Sharon Goldwater; some adapted from Alex Lascarides) 29 January 2017 Nathan Schneider ENLP Lecture 5

More information

Graphical Models. Mark Gales. Lent Machine Learning for Language Processing: Lecture 3. MPhil in Advanced Computer Science

Graphical Models. Mark Gales. Lent Machine Learning for Language Processing: Lecture 3. MPhil in Advanced Computer Science Graphical Models Mark Gales Lent 2011 Machine Learning for Language Processing: Lecture 3 MPhil in Advanced Computer Science MPhil in Advanced Computer Science Graphical Models Graphical models have their

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Language models Based on slides from Michael Collins, Chris Manning and Richard Soccer Plan Problem definition Trigram models Evaluation Estimation Interpolation Discounting

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Language Models Tobias Scheffer Stochastic Language Models A stochastic language model is a probability distribution over words.

More information

A Bayesian Interpretation of Interpolated Kneser-Ney NUS School of Computing Technical Report TRA2/06

A Bayesian Interpretation of Interpolated Kneser-Ney NUS School of Computing Technical Report TRA2/06 A Bayesian Interpretation of Interpolated Kneser-Ney NUS School of Computing Technical Report TRA2/06 Yee Whye Teh tehyw@comp.nus.edu.sg School of Computing, National University of Singapore, 3 Science

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Language Modeling. Introduction to N- grams

Language Modeling. Introduction to N- grams Language Modeling Introduction to N- grams Probabilistic Language Models Today s goal: assign a probability to a sentence Machine Translation: P(high winds tonite) > P(large winds tonite) Why? Spell Correction

More information

Language Modeling. Introduction to N- grams

Language Modeling. Introduction to N- grams Language Modeling Introduction to N- grams Probabilistic Language Models Today s goal: assign a probability to a sentence Machine Translation: P(high winds tonite) > P(large winds tonite) Why? Spell Correction

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 14 Natural Language Processing Language Models Many slides from: Joshua Goodman, L. Kosseim, D. Klein, D. Jurafsky Outline Why we need

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machine Translation Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School University of Pisa Pisa, 7-19 May 2008 Part V: Language Modeling 1 Comparing ASR and statistical MT N-gram

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

Hierarchical Bayesian Nonparametrics

Hierarchical Bayesian Nonparametrics Hierarchical Bayesian Nonparametrics Micha Elsner April 11, 2013 2 For next time We ll tackle a paper: Green, de Marneffe, Bauer and Manning: Multiword Expression Identification with Tree Substitution

More information

Language Modelling. Marcello Federico FBK-irst Trento, Italy. MT Marathon, Edinburgh, M. Federico SLM MT Marathon, Edinburgh, 2012

Language Modelling. Marcello Federico FBK-irst Trento, Italy. MT Marathon, Edinburgh, M. Federico SLM MT Marathon, Edinburgh, 2012 Language Modelling Marcello Federico FBK-irst Trento, Italy MT Marathon, Edinburgh, 2012 Outline 1 Role of LM in ASR and MT N-gram Language Models Evaluation of Language Models Smoothing Schemes Discounting

More information

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 10: Neural Language Models Princeton University COS 495 Instructor: Yingyu Liang Natural language Processing (NLP) The processing of the human languages by computers One of

More information

Statistical methods in NLP, lecture 7 Tagging and parsing

Statistical methods in NLP, lecture 7 Tagging and parsing Statistical methods in NLP, lecture 7 Tagging and parsing Richard Johansson February 25, 2014 overview of today's lecture HMM tagging recap assignment 3 PCFG recap dependency parsing VG assignment 1 overview

More information

Language Technology. Unit 1: Sequence Models. CUNY Graduate Center Spring Lectures 5-6: Language Models and Smoothing. required hard optional

Language Technology. Unit 1: Sequence Models. CUNY Graduate Center Spring Lectures 5-6: Language Models and Smoothing. required hard optional Language Technology CUNY Graduate Center Spring 2013 Unit 1: Sequence Models Lectures 5-6: Language Models and Smoothing required hard optional Professor Liang Huang liang.huang.sh@gmail.com Python Review:

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Maxent Models and Discriminative Estimation

Maxent Models and Discriminative Estimation Maxent Models and Discriminative Estimation Generative vs. Discriminative models (Reading: J+M Ch6) Introduction So far we ve looked at generative models Language models, Naive Bayes But there is now much

More information

Class: Backoff (sections 4.6 and 4.7)

Class: Backoff (sections 4.6 and 4.7) Class: Backoff (sections 4.6 and 4.7) October 1, 2012 Admistrivia Next week Adi will talk on varaible length markov chains, and Jordan will talk on HMM s. I ll be setting up both of their talks this week.

More information

Classification, Linear Models, Naïve Bayes

Classification, Linear Models, Naïve Bayes Classification, Linear Models, Naïve Bayes CMSC 470 Marine Carpuat Slides credit: Dan Jurafsky & James Martin, Jacob Eisenstein Today Text classification problems and their evaluation Linear classifiers

More information

On Using Selectional Restriction in Language Models for Speech Recognition

On Using Selectional Restriction in Language Models for Speech Recognition On Using Selectional Restriction in Language Models for Speech Recognition arxiv:cmp-lg/9408010v1 19 Aug 1994 Joerg P. Ueberla CMPT TR 94-03 School of Computing Science, Simon Fraser University, Burnaby,

More information

Computer Science. Carnegie Mellon. DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited. DTICQUALBYlSFSPIiCTBDl

Computer Science. Carnegie Mellon. DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited. DTICQUALBYlSFSPIiCTBDl Computer Science Carnegie Mellon DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited DTICQUALBYlSFSPIiCTBDl Computer Science A Gaussian Prior for Smoothing Maximum Entropy Models

More information

Language Models. CS5740: Natural Language Processing Spring Instructor: Yoav Artzi

Language Models. CS5740: Natural Language Processing Spring Instructor: Yoav Artzi CS5740: Natural Language Processing Spring 2017 Language Models Instructor: Yoav Artzi Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, and Yejin Choi Overview

More information

COMS 4705, Fall Machine Translation Part III

COMS 4705, Fall Machine Translation Part III COMS 4705, Fall 2011 Machine Translation Part III 1 Roadmap for the Next Few Lectures Lecture 1 (last time): IBM Models 1 and 2 Lecture 2 (today): phrase-based models Lecture 3: Syntax in statistical machine

More information

Deep Learning. Ali Ghodsi. University of Waterloo

Deep Learning. Ali Ghodsi. University of Waterloo University of Waterloo Language Models A language model computes a probability for a sequence of words: P(w 1,..., w T ) Useful for machine translation Word ordering: p (the cat is small) > p (small the

More information

(COM4513/6513) Week 1. Nikolaos Aletras ( Department of Computer Science University of Sheffield

(COM4513/6513) Week 1. Nikolaos Aletras (  Department of Computer Science University of Sheffield Natural Language Processing (COM4513/6513) Week 1 Part II: Text classification with the perceptron Nikolaos Aletras (http://www.nikosaletras.com) n.aletras@sheffield.ac.uk Department of Computer Science

More information

Language Models. CS6200: Information Retrieval. Slides by: Jesse Anderton

Language Models. CS6200: Information Retrieval. Slides by: Jesse Anderton Language Models CS6200: Information Retrieval Slides by: Jesse Anderton What s wrong with VSMs? Vector Space Models work reasonably well, but have a few problems: They are based on bag-of-words, so they

More information

Chapter 3: Basics of Language Modeling

Chapter 3: Basics of Language Modeling Chapter 3: Basics of Language Modeling Section 3.1. Language Modeling in Automatic Speech Recognition (ASR) All graphs in this section are from the book by Schukat-Talamazzini unless indicated otherwise

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Smoothing. This dark art is why NLP is taught in the engineering school.

Smoothing. This dark art is why NLP is taught in the engineering school. Smoothing This dark art is why NLP is taught in the engineering school. There are more principled smoothing methods, too. We ll look next at log-linear models, which are a good and popular general technique.

More information

Administrivia. Lecture 5. Part I. Outline. The Big Picture IBM IBM IBM IBM

Administrivia. Lecture 5. Part I. Outline. The Big Picture IBM IBM IBM IBM Administrivia Lecture 5 The Big Picture/Language Modeling Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen T.J. Watson Research Center Yorktown Heights, New York, USA {bhuvana,picheny,stanchen}@us.ibm.com

More information

Lecture 5. The Big Picture/Language Modeling. Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

Lecture 5. The Big Picture/Language Modeling. Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen Lecture 5 The Big Picture/Language Modeling Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen T.J. Watson Research Center Yorktown Heights, New York, USA {bhuvana,picheny,stanchen}@us.ibm.com 06 October

More information

Introduction to N-grams

Introduction to N-grams Lecture Notes, Artificial Intelligence Course, University of Birzeit, Palestine Spring Semester, 2014 (Advanced/) Artificial Intelligence Probabilistic Language Modeling Introduction to N-grams Dr. Mustafa

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Hidden Markov Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 33 Introduction So far, we have classified texts/observations

More information

A Study of Smoothing Methods for Language Models Applied to Information Retrieval

A Study of Smoothing Methods for Language Models Applied to Information Retrieval A Study of Smoothing Methods for Language Models Applied to Information Retrieval CHENGXIANG ZHAI and JOHN LAFFERTY Carnegie Mellon University Language modeling approaches to information retrieval are

More information

N-gram N-gram Language Model for Large-Vocabulary Continuous Speech Recognition

N-gram N-gram Language Model for Large-Vocabulary Continuous Speech Recognition 2010 11 5 N-gram N-gram Language Model for Large-Vocabulary Continuous Speech Recognition 1 48-106413 Abstract Large-Vocabulary Continuous Speech Recognition(LVCSR) system has rapidly been growing today.

More information

IBM Research Report. Model M Lite: A Fast Class-Based Language Model

IBM Research Report. Model M Lite: A Fast Class-Based Language Model RC25631 (WAT1610-075) October 19, 2016 Computer Science IBM Research Report Model M Lite: A Fast Class-Based Language Model Stanley F. Chen IBM Research Division Thomas J. Watson Research Center P.O. Box

More information