Multi-Class Sediment Dynamics and Export in the Fraser River Estuary

Size: px
Start display at page:

Download "Multi-Class Sediment Dynamics and Export in the Fraser River Estuary"

Transcription

1 Multi-lass Sediment Dynamics and Export in the Fraser River Estuary Philip Orton, David Jay, Tom hisholm Department of Environmental and Biomolecular Systems Oregon Health & Science University Funded by the National Science Foundation Special thanks to Rocky Geyer and Dan Macdonald Ray McQuin and Nikki Hix of the R/V Barnes Influential in research: Gail Kineke and Annika Fain

2 1-D Inverse Modeling of SPM: Paper submitted to Marine Geology Three-step inverse analysis calibration procedure Bulk calibrations for one or more backscatter sensors SPM decomposition: using a 1-D model, partition total concentration into discrete settling velocity (Ws)-classes Bias correction: corrects sie-dependence of sensor response Sensitivity and properties of inversion tested using synthetic data and Monte arlo methods Near-bed results compare favorably with laser in situ particle sie data (LISST-100) Paper relied on a diffusion-settling model limited!

3 Presentation Timeline Dynamics of Fraser SPM export ADS: 1-D model with advection Preliminary results for two export regimes You are here SPM decomposition using DS model FADS: 1-D model with advection & flocculation Enlightenment?

4 Dynamics of Fraser SPM export

5 Fraser Estuary Bed Sediments sand fine sand clay/silt Sampling during freshet, Salt wedge estuary Wide range of particle sies in suspension Ebb salt washout transects (x,y,,t) Salt wedge erosion transects (x,,t)

6 Washout Dynamics at Fraser Mouth freshwater

7 Ws(d/d) (d/d)[ks(d/d)] u(d/dx) (d/dt) Discrepancy ( ) + + = + + k k s F K Ws w x u t,, Temporal Advective terms Particle settling Vertical diffusion Aggregation Mass continuity of suspended sediment

8 Ebb-Tide Salt Wedge Erosion 08:25 hrs 08:00 hrs

9 Upper Layer Dilution (entrainment) Horiontal advection Vertical advection Discrepancy (Agg.?) g g Lower Layer Settling Diffusion Discrepancy (Agg.?)

10 SPM Decomposition Using Diffusion-Settling (DS) Model

11 Simplest Model: Diffusion & Settling (DS) = s a a K d Ws ) ( exp ) (,, ( ) + + = + + k k s F K Ws w x u t,, Temporal Advective terms Particle settling Vertical diffusion Aggregation : oncentration in = 1 n Ws-classes Ws : Particle settling velocity K s, : Eddy diffusivity parameteriation (using observations of velocity to estimate turbulence) a, : Reference concentration scales profiles

12 SPM Decomposition Procedure hoose a reasonable set of Ws-classes Basis function slopes depend on Ws a,1 a,2 a,3 Simulations with artificial data and noise show that # Wsclasses depends upon: (a) vertical number of measurements, (b) noise level in data, and (c) proximity of data to the bed

13 ADS: 1-D Model with Advection

14 Advection-Diffusion-Settling (ADS) Integrate from to surface (η) with Leibni s Rule B..: no SPM or water flux across free surface Pseudo-2D model with iterative procedure Start with D-S model estimate for (x,) Invert to find (new) estimates of (x,) Iterate to convergence, bringing (x,) into line with ADS dynamics () = function of a,, Ws, observations, (x,) K s, + x ( Ws ) w + A( ) = 0 where A( ) = η u' d

15 FADS: 1-D Model with Advection & Flocculation

16 FADS Vertical Profile Model for Ws-class #2 η 2 2 K s, 2 + ( Ws2 w) + A2( ) + F( ) = 0 where F( ) = N1 d Agg. term is N 12, where N is an agg. rate constant Aggregation is a one-way transfer from 1 to 2 Estimate N in surface layer using a two-layer salt / sediment conservation model 1 horiontal dynamics: aggregation, advection and dilution orrect for dilution via an entrainment velocity (W e ) into the upper layer from SAL insitu 1 is salinity-dependent in vertical

17 Preliminary Results for Two Export Regimes

18 Ebb Washout Transect Substantial difference between DS and ADS results ADS results are sensible along-channel gradient in 2 Results are sensitive to spatial averaging of d/dx To obtain convergence, needed to assume 1 was constant DS model ADS model 2 2

19 Ebb Salt Wedge Erosion Transect Mean entrainment velocity of 7 x 10-4 m s -1 is reasonable compared with MacDonald dissertation result for mouth lift-off one (20 x 10-4 ) Aggregation dynamic term, as modeled, averaged 2 x 10-3 mg L -1 s -1 in surface layer. Ws(d 2 /dz) is O(0.01) DS model 1 : Ws=0.01 mm s FADS model observed 3 : Ws=10 mm s -1 washload modeled 2 : Ws=2 mm s -1 4 : Ws=50 mm s -1 washload oncentration (mg L -1 ) 4 oncentration (mg L -1 )

20 Ebb Salt Wedge Erosion Transect 1 (washload) 2 (aggregates) 3 (fine sand) 4 (bed sand) shear velocity

21 onclusions Fraser sediment export is dominated by two regimes: (a) washouts, and (b) ebb-tide salt erosion periods These SPM regimes are dynamically relatively simple, and vertical profiles can be modeled using pseudo 2-D approaches Through inverse modeling, we can decompose our observations of SPM into multiple classes Our method has potential to provide routine estimates of in situ Ws-spectra at high spatial resolution difficult to measure directly

HIGH RESOLUTION SEDIMENT DYNAMICS IN SALT-WEDGE ESTUARIES

HIGH RESOLUTION SEDIMENT DYNAMICS IN SALT-WEDGE ESTUARIES HIGH RESOLUTION SEDIMENT DYNAMICS IN SALT-WEDGE ESTUARIES Philip Orton, Dept. of Environmental Science and Engineering, Oregon Graduate Institute Douglas Wilson, Dept. of Environmental Science and Engineering,

More information

Particle Trapping in Stratified Estuaries - Definition of a Parameter Space

Particle Trapping in Stratified Estuaries - Definition of a Parameter Space Portland State University PDXScholar Civil and Environmental Engineering Faculty Publications and Presentations Civil and Environmental Engineering 1-1-2003 Particle Trapping in Stratified Estuaries -

More information

Particle Trapping in Stratified Estuaries -- Definition of a Parameter Space

Particle Trapping in Stratified Estuaries -- Definition of a Parameter Space Particle Trapping in Stratified Estuaries -- Definition of a Parameter Space by David A. Jay Philip M. Orton Douglas J. Wilson Annika M. V. Fain John McGinity Department of Environmental Science and Engineering

More information

THE SETTLING OF MUD FLOCS IN THE DOLLARD ESTUARY, THE NETHERLANDS

THE SETTLING OF MUD FLOCS IN THE DOLLARD ESTUARY, THE NETHERLANDS THE SETTLING OF MUD FLOCS IN THE DOLLARD ESTUARY, THE NETHERLANDS SUMMARY Chapter 1 Introduction and literature review Morphological changes of estuarine channels and tidal flats depend on erosion, sediment

More information

Applying Gerris to Mixing and Sedimentation in Estuaries

Applying Gerris to Mixing and Sedimentation in Estuaries Applying Gerris to Mixing and Sedimentation in Estuaries Timothy R. Keen U.S. Naval Research Laboratory Stennis Space Center, Mississippi, U.S.A. 4 July 2011 Université Pierre et Marie Curie Paris, France

More information

Linking Sediment Transport in the Hudson from the Tidal River to the Estuary

Linking Sediment Transport in the Hudson from the Tidal River to the Estuary Linking Sediment Transport in the Hudson from the Tidal River to the Estuary Or, what happened to all the mud from Irene? David Ralston, Rocky Geyer, John Warner, Gary Wall Hudson River Foundation seminar

More information

6 THE SIZE AND SETTLING VELOCITY OF FINE-GRAINED SUSPENDED SEDIMENT IN THE DOLLARD ESTUARY. A SYNTHESIS

6 THE SIZE AND SETTLING VELOCITY OF FINE-GRAINED SUSPENDED SEDIMENT IN THE DOLLARD ESTUARY. A SYNTHESIS 6 THE SIZE AND SETTLING VELOCITY OF FINE-GRAINED SUSPENDED SEDIMENT IN THE DOLLARD ESTUARY. A SYNTHESIS 6.1 Introduction The general aim of this study was to assess the variations in the size and settling

More information

SUBJECT INDEX. ~ ~5 physico-chemical properties 254,255 Redox potential 254,255

SUBJECT INDEX. ~ ~5 physico-chemical properties 254,255 Redox potential 254,255 Aggregates: beds formed by deposition 81,82 breakup by fluid shear, introduction 85,86 deposition from flowing water 80 implications in cohesive sediment transport 102-105 needs for further research 83

More information

Dynamics of the Ems Estuary

Dynamics of the Ems Estuary Dynamics of the Ems Estuary Physics of coastal systems Jerker Menninga 0439738 Utrecht University Institute for Marine and Atmospheric research Utrecht Lecturer: Prof. dr. H.E. de Swart Abstract During

More information

Sediment Transport at Density Fronts in Shallow Water: a Continuation of N

Sediment Transport at Density Fronts in Shallow Water: a Continuation of N DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water: a Continuation of N00014-08-1-0846 David K. Ralston Applied Ocean

More information

Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from a Hudson River Estuary Turbidity Maximum

Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from a Hudson River Estuary Turbidity Maximum Estuarine, Coastal and Shelf Science (21) 2, 41 41 doi:1.16/ecss.2.747, available online at http://www.idealibrary.com on Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from

More information

Nepheloid Layer Measurements and Floc Model for OASIS

Nepheloid Layer Measurements and Floc Model for OASIS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Nepheloid Layer Measurements and Floc Model for OASIS Christopher R. Sherwood U.S. Geological Survey 384 Woods Hole Road

More information

Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ

Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ Berengere S. Dejeans 1, Julia C. Mullarney 2, Iain T. MacDonald 3 and Glen M.

More information

Combining SES and ADCP to measure mud transport processes in tide-controlled estuaries

Combining SES and ADCP to measure mud transport processes in tide-controlled estuaries 7 th Workshop Seabed Acoustics, Rostock, November 19/20, 2015 P06-1 Combining SES and ADCP to measure mud transport processes in tide-controlled estuaries Dr. Marius Becker Centre for Marine Sciences (MARUM),

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Comparing suspended sediment concentrations derived from a model and collected in a tidally dominated area

Comparing suspended sediment concentrations derived from a model and collected in a tidally dominated area Comparing suspended sediment concentrations derived from a model and collected in a tidally dominated area Maryam Rahbani, Department of oceanic and atmospheric science University of Hormozgan, maryamrahbani@yahoo.com

More information

Sediment resuspension, flocculation and settling in a macrotidal estuary

Sediment resuspension, flocculation and settling in a macrotidal estuary University of South Carolina From the SelectedWorks of George Voulgaris October, 2013 Sediment resuspension, flocculation and settling in a macrotidal estuary Ya Ping Wang George Voulgaris, University

More information

Temporal and spatial variability of vertical salt flux in a highly stratified estuary.

Temporal and spatial variability of vertical salt flux in a highly stratified estuary. Temporal and spatial variability of vertical salt flux in a highly stratified estuary. 5 Daniel G. MacDonald 1 and Alexander R. Horner-Devine 2 10 15 1 Department of Estuarine and Ocean Sciences School

More information

Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jc008124, 2012 Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping David K. Ralston,

More information

Monitoring of Suspended Sediment Plume Formed During Oyster Shell Dredging in the James River, Virginia, August 2001

Monitoring of Suspended Sediment Plume Formed During Oyster Shell Dredging in the James River, Virginia, August 2001 Monitoring of Suspended Sediment Plume ormed uring Oyster Shell redging in the James River, Virginia, ugust 21 inal Report Prepared for the Virginia Marine Resources ommission by arl T. riedrichs and Grace

More information

3.3 Classification Diagrams Estuarine Zone Coastal Lagoons References Physical Properties and Experiments in

3.3 Classification Diagrams Estuarine Zone Coastal Lagoons References Physical Properties and Experiments in Contents 1 Introduction to Estuary Studies... 1 1.1 Why to Study Estuaries?.... 1 1.2 Origin and Geological Age... 4 1.3 Definition and Terminology... 7 1.4 Policy and Actions to Estuary Preservation....

More information

Temporal and spatial variability of vertical salt flux in a highly stratified estuary

Temporal and spatial variability of vertical salt flux in a highly stratified estuary Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jc004620, 2008 Temporal and spatial variability of vertical salt flux in a highly stratified estuary Daniel G. MacDonald

More information

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY

SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY Katsuhide YOKOYAMA, Dr.Eng. dredge Assistant Professor Department of Civil Engineering Tokyo Metropolitan University 1-1 Minami-Osawa Osawa, Hachioji,, Tokyo,

More information

Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model

Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model Earl Hayter Environmental Lab October 25, 2012 LTFATE Multi-Block Hydrodynamic, Water Quality and

More information

Chapter 3 Sedimentation of clay minerals

Chapter 3 Sedimentation of clay minerals Chapter 3 Sedimentation of clay minerals 3.1 Clay sedimentation on land 3.2 From land to sea 3.3 Clay sedimentation in the sea 1 3.1 Clay sedimentation on land Deserts Glaciers Rivers Lacustrine 2 University

More information

Turbulent Mixing During an Admiralty Inlet Bottom Water Intrusion. Coastal and Estuarine Fluid Dynamics class project, August 2006

Turbulent Mixing During an Admiralty Inlet Bottom Water Intrusion. Coastal and Estuarine Fluid Dynamics class project, August 2006 Turbulent Mixing During an Admiralty Inlet Bottom Water Intrusion Coastal and Estuarine Fluid Dynamics class project, August 2006 by Philip Orton Summary Vertical turbulent mixing is a primary determinant

More information

PENOBSCOT RIVER MERCURY STUDY. Chapter 7. Field Investigations of Hydrodynamics and Particle Transport in Penobscot River and Bay

PENOBSCOT RIVER MERCURY STUDY. Chapter 7. Field Investigations of Hydrodynamics and Particle Transport in Penobscot River and Bay PENOBSCOT RIVER MERCURY STUDY Chapter 7 Field Investigations of Hydrodynamics and Particle Transport in Penobscot River and Bay Submitted to Judge John Woodcock United States District Court (District of

More information

Robert J Chant IMCS Rutgers University Timothy P. Wilson US Geological Survey West Trenton NJ. Overview

Robert J Chant IMCS Rutgers University Timothy P. Wilson US Geological Survey West Trenton NJ. Overview Characterizing the circulation and dispersive nature of the Passaic River and its dependence on river discharge and tidal range: elucidation of major processes that determine the impact of the proposed

More information

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter

More information

Sediment transport and river bed evolution

Sediment transport and river bed evolution 1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety

More information

A Modeling Study of the Satilla River Estuary, Georgia. II: Suspended Sediment

A Modeling Study of the Satilla River Estuary, Georgia. II: Suspended Sediment Estuaries Vol. 26, No. 3, p. 670 679 June 2003 A Modeling Study of the Satilla River Estuary, Georgia. II: Suspended Sediment LIANYUAN ZHENG 1,CHANGSHENG CHEN 2, *, MERRYL ALBER 3, and HEDONG LIU 2 1 College

More information

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook Stony Brook University The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. Alll Rigghht tss

More information

Research Topic Updated on Oct. 9, 2014

Research Topic Updated on Oct. 9, 2014 Research Topic Updated on Oct. 9, 204 Mixed Cohesive/Non-cohesive Sediments Sedimentation in Estuary: Flocculation Deposition Erosion Transport Consolidation *: It has been recognized that when the fraction

More information

Lateral Circulation and Suspended Sediment Transport in a Curved Estuarine Channel: Winyah Bay, SC, USA

Lateral Circulation and Suspended Sediment Transport in a Curved Estuarine Channel: Winyah Bay, SC, USA University of South Carolina Scholar Commons Faculty Publications Earth and Ocean Sciences, Department of 9-4-2008 Lateral Circulation and Suspended Sediment Transport in a Curved Estuarine Channel: Winyah

More information

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth O. Stoschek 1, A. Matheja 1 & C. Zimmermann 1 1 Franzius-Institute for Hydraulic, Waterways and Coastal Engineering,

More information

Main issues of Deltas

Main issues of Deltas Global sediment supply to coastal seas and oceans; location of major river deltas RIVER DELTAS Depositional processes - Course Coastal Morphodynamics GEO3-436; lecture 4 Nile Delta, Egypt Solo Delta, Java,

More information

Lateral entrapment of sediment in tidal estuaries: An idealized model study

Lateral entrapment of sediment in tidal estuaries: An idealized model study Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jc003615, 2006 Lateral entrapment of sediment in tidal estuaries: An idealized model study K. M. H. Huijts, 1 H.

More information

PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE

PART 2:! FLUVIAL HYDRAULICS HYDROEUROPE PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE 2009 1 HYDROEUROPE 2009 2 About shear stress!! Extremely complex concept, can not be measured directly!! Computation is based on very primitive hypotheses that

More information

Chapter 8 - pg. 1 CHAPTER 8 ESTUARIES. To paraphrase Pritchard, a pioneer in studies of estuarine circulation,

Chapter 8 - pg. 1 CHAPTER 8 ESTUARIES. To paraphrase Pritchard, a pioneer in studies of estuarine circulation, Chapter 8 - pg 1 CHAPTER 8 ESTUARIES Estuaries are semi-closed basins in which a rather complex interaction between river inputs, tidal currents and wind leads to the turbulent mixing of salt from the

More information

Storm Sewer Design [2]

Storm Sewer Design [2] Class 5 [1] Storm Sewer Design 9. Check Q < Qf and Vmax > vf > Vmin. Vmin is normally specified to avoid sedimentation. This will normally be 1.0 m/s at pipe full condition. (BS EN 752 suggests that for

More information

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material River Processes Learning Objective: Discover how a river erodes, transports and deposits material Learning Outcomes: Compare vertical and lateral erosion Describe how a river erodes, transports and deposits

More information

Hydrodynamics in Shallow Estuaries with Complex Bathymetry and Large Tidal Ranges

Hydrodynamics in Shallow Estuaries with Complex Bathymetry and Large Tidal Ranges DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Hydrodynamics in Shallow Estuaries with Complex Bathymetry and Large Tidal Ranges Stephen G. Monismith Dept of Civil and

More information

Effects of possible land reclamation projects on siltation in the Rotterdam harbour area. A model study.

Effects of possible land reclamation projects on siltation in the Rotterdam harbour area. A model study. Effects of possible land reclamation projects on siltation in the Rotterdam harbour area. A model study. J.M. de Kok

More information

Sediment Dispersal from the Apennine Rivers

Sediment Dispersal from the Apennine Rivers Sediment Dispersal from the Apennine Rivers Gail C. Kineke Dept of Geology and Geophysics Boston College Chestnut Hill, MA 02467 phone: 617-552-3655 fax: 617-552-2462 email:kinekeg@bc.edu Award # N00014-02-1-0234

More information

Processes Affecting Exchange of Mud Between Tidal Channels and Flats

Processes Affecting Exchange of Mud Between Tidal Channels and Flats DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Processes Affecting Exchange of Mud Between Tidal Channels and Flats Timothy G. Milligan and Brent A. Law Fisheries and

More information

WATER INJECTION DREDGING by L.C. van Rijn

WATER INJECTION DREDGING by L.C. van Rijn WATER INJECTION DREDGING by L.C. van Rijn (info@leovanrijn-sediment.com) Description of method Almost all harbour basins suffer from the problem of siltation of sediments. Usually, the deposited materials

More information

Fluid Mud in Energetic Systems: FLUMES II

Fluid Mud in Energetic Systems: FLUMES II Fluid Mud in Energetic Systems: FLUMES II Gail C. Kineke Dept of Geology and Geophysics Boston College 140 Commonwealth Ave. Chestnut Hill, MA 02467 Phone: (617) 552-3655 fax: (617) 552-2462 email: gail.kineke@bc.edu

More information

Processes Affecting Exchange of Mud between Tidal Channels and Flats

Processes Affecting Exchange of Mud between Tidal Channels and Flats DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Processes Affecting Exchange of Mud between Tidal Channels and Flats Paul S. Hill Department of Oceanography Dalhousie

More information

Processes Affecting Exchange of Mud Between Tidal Channels and Flats

Processes Affecting Exchange of Mud Between Tidal Channels and Flats DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Processes Affecting Exchange of Mud Between Tidal Channels and Flats Brent Law and Timothy G. Milligan Fisheries and Oceans

More information

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility

Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Appendix G.19 Hatch Report Pacific NorthWest LNG Lelu Island LNG Maintenance Dredging at the Materials Offloading Facility Project Memo H345670 To: Capt. David Kyle From: O. Sayao/L. Absalonsen December

More information

High-Resolution Dynamics of Stratified Inlets

High-Resolution Dynamics of Stratified Inlets DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Resolution Dynamics of Stratified Inlets W. Rockwell Geyer Woods Hole Oceanographic Institution Woods Hole, MA 02543

More information

Processes Controlling Transfer of Fine-Grained Sediment Within and Between Channels and Flats on Intertidal Flats

Processes Controlling Transfer of Fine-Grained Sediment Within and Between Channels and Flats on Intertidal Flats Processes Controlling Transfer of Fine-Grained Sediment Within and Between Channels and Flats on Intertidal Flats Andrea S. Ogston School of Oceanography Box 357940 Seattle, WA 98195 phone: (206) 543-0768

More information

Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers. UC Berkeley January 2004 Peter Wilcock

Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers. UC Berkeley January 2004 Peter Wilcock Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers UC Berkeley January 2004 Peter Wilcock Target: sediment rating curve Q s = ƒ(q) Approaches Predict from a flow & transport model

More information

Geomorphology 5. Stream Sediment Stream Sediment

Geomorphology 5. Stream Sediment Stream Sediment Geomorphology 5. Stream Sediment 1 Name 47 Points LEARNING OUTCOMES 5. Stream Sediment By the end of this assignment you should be able to: Describe the relationship between particle size and critical

More information

Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona

Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances (Proceedings of (he Oslo Workshop. June 2002). IAHS Publ. 283, 2003. 21 Testing laser-based sensors for continuous

More information

Sediment Flux and Trapping on the Skagit Tidal Flats

Sediment Flux and Trapping on the Skagit Tidal Flats Sediment Flux and Trapping on the Skagit Tidal Flats W. Rockwell Geyer Woods Hole Oceanographic Institution MS 11, Woods Hole, MA 02543 phone: 508-289-2868 fax: 508-457-2194 email: rgeyer@whoi.edu Peter

More information

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling D. P. Fulton August 15, 2007 Abstract The effects of the Columbia River plume on circulation on the Oregon shelf are analyzed

More information

Structure and composition of a strongly stratified, tidally pulsed river plume

Structure and composition of a strongly stratified, tidally pulsed river plume Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jc005036, 2009 Structure and composition of a strongly stratified, tidally pulsed river plume Jonathan D. Nash, 1

More information

arxiv: v1 [physics.flu-dyn] 4 Dec 2018

arxiv: v1 [physics.flu-dyn] 4 Dec 2018 Estimating the settling velocity of fine sediment particles at high concentrations Agustín Millares Andalusian Institute for Earth System Research, arxiv:1812.01365v1 [physics.flu-dyn] 4 Dec 2018 University

More information

A 3D unstructured numerical model of Ems-Dollart estuary Observations and 3-D modeling. Pein JU, Stanev EV, Zhang YJ.

A 3D unstructured numerical model of Ems-Dollart estuary Observations and 3-D modeling. Pein JU, Stanev EV, Zhang YJ. A 3D unstructured numerical model of Ems-Dollart estuary Observations and 3-D modeling Pein JU, Stanev EV, Zhang YJ. in the framework of Future-Ems project. Model area & general research issues - Ems river

More information

Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China

Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Salt intrusion response to changes in tidal amplitude during low river flow in the Modaomen Estuary, China To cite this article:

More information

Field and Numerical Study of the Columbia River Mouth

Field and Numerical Study of the Columbia River Mouth DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Field and Numerical Study of the Columbia River Mouth Guy Gelfenbaum 400 Natural Bridges Dr. Santa Cruz, CA 95060 Phone:

More information

OCCURRENCE, BEHAVIOUR AND PHYSICAL

OCCURRENCE, BEHAVIOUR AND PHYSICAL OCCURRENCE, BEHAVIOUR AND PHYSICAL PROPERTIES OF FLUID MUD Christine Habermann* and Andreas Wurpts** * Federal Institute of Hydrology /Dpt. Groundwater, Geology and River Morphology, Koblenz ** Franzius-Institute

More information

MONITORING SUSPENDED SEDIMENT PLUME FORMED DURING DREDGING USING ADCP, OBS, AND BOTTLE SAMPLES

MONITORING SUSPENDED SEDIMENT PLUME FORMED DURING DREDGING USING ADCP, OBS, AND BOTTLE SAMPLES MONITORING SUSPENDED SEDIMENT PLUME FORMED DURING DREDGING USING ADCP, OBS, AND BOTTLE SAMPLES Grace M. Battisto 1 and Carl T. Friedrichs 2 Abstract: In this study three independent measures of suspended

More information

Effect of turbulence on tidal suspended transport. B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK

Effect of turbulence on tidal suspended transport. B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK Effect of turbulence on tidal suspended transport B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK Abstract The effect of enhanced turbulence upon tidal suspended transport has

More information

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc. Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality

More information

Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments

Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments Paul Liu & David

More information

Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary

Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jc004644, 2008 Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary W. R. Geyer,

More information

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Germain Antoine 1,2,, Thomas Pretet 1,3,, Matthieu Secher 3,, and Anne Clutier 3, 1 Laboratoire

More information

The assessment of sediment bed properties within the York River estuary as a function of spring and neap tidal cycles

The assessment of sediment bed properties within the York River estuary as a function of spring and neap tidal cycles The assessment of sediment bed properties within the York River estuary as a function of spring and neap tidal cycles Lindsey Kraatz and Carl Friedrichs York River Research Symposium April 20, 2011 Motivation

More information

Seasonal Variability and Estuary-Shelf Interactions in Circulation Dynamics of a River-dominated Estuary

Seasonal Variability and Estuary-Shelf Interactions in Circulation Dynamics of a River-dominated Estuary Portland State University PDXScholar Civil and Environmental Engineering Faculty Publications and Presentations Civil and Environmental Engineering 1-1-2008 Seasonal Variability and Estuary-Shelf Interactions

More information

Monitoring Dredge Placement Operations through Fine-Scale Suspended Sediment Observations within a Shallow Coastal Embayment

Monitoring Dredge Placement Operations through Fine-Scale Suspended Sediment Observations within a Shallow Coastal Embayment Monitoring Dredge Placement Operations through Fine-Scale Suspended Sediment Observations within a Shallow Coastal Embayment ABSTRACT R. Beecroft 1, A. Grinham 1, C. Heatherington 1, Craig Wilson 2 and

More information

Floc Fraction in the Gulf of Lions

Floc Fraction in the Gulf of Lions Floc Fraction in the Gulf of Lions Paul S. Hill Department of Oceanography Dalhousie University Halifax, Nova Scotia, CANADA B3H 4J1 Phone: (902) 494-2266 fax: (902) 494-3877 email: paul.hill@dal.ca Timothy

More information

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I - Hydraulics of Two-Phase Flow: Water and Sediment - G R Basson

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I - Hydraulics of Two-Phase Flow: Water and Sediment - G R Basson HYDRAULICS OF TWO-PHASE FLOWS: WATER AND SEDIMENT G R Basson Dept. of Civil Engineering, University of Stellenbosch, South Africa. Keywords: sediment, sediment transport, turbulence, river regime, stream

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported 9/17/15 (3) Sediment Movement Classes of sediment transported Dissolved load Suspended load Important for scouring algae Bedload (5-10% total load) Moves along bed during floods Source of crushing for

More information

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces 5. Boundary Exchange: Air-Water and Sediment-Water Interfaces In the previous chapter we introduced transformation and described both homogeneous and heterogeneous reactions. Now, we would like to look

More information

Sediment load calculations from point measurements in sand-bed rivers

Sediment load calculations from point measurements in sand-bed rivers International Journal of Sediment Research 30 (2015) 1-12 Sediment load calculations from point measurements in sand-bed rivers Seema C. SHAH-FAIRBANK 1 and Pierre Y. JULIEN 2 Abstract Point velocity and

More information

Fine Sediment Trapping in the Penobscot River Estuary

Fine Sediment Trapping in the Penobscot River Estuary Fine Sediment Trapping in the Penobscot River Estuary Author: Christie A. Hegermiller Persistent link: http://hdl.handle.net/2345/2000 This work is posted on escholarship@bc, Boston College University

More information

J. Bio. & Env. Sci. 2014

J. Bio. & Env. Sci. 2014 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 5, No. 5, p. 75-81, 2014 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Investigation on the

More information

What do you need for a Marathon?

What do you need for a Marathon? What do you need for a Marathon? Water and a snack? What about just a normal day? 1 flush = 3.5 gallons 1 flush = 3.5 gallons 10 minute shower = 20 gal 1 flush = 3.5 gallons 10 minute shower = 20 gal Jeans

More information

Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications

Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications CEMRACS 2013 August 6 th Magali Jodeau EDF R&D LNHE magali.jodeau@edf.fr Overview of the presentation What

More information

Cohesive sediment erosion and the Vectrino II. Peter J. Rusello DeFrees Hydraulics Laboratory Cornell University (also with NortekUSA)

Cohesive sediment erosion and the Vectrino II. Peter J. Rusello DeFrees Hydraulics Laboratory Cornell University (also with NortekUSA) Cohesive sediment erosion and the Vectrino II Peter J. Rusello DeFrees Hydraulics Laboratory Cornell University (also with NortekUSA) http://www.flickr.com/photos/rabbit75/5191473522/ Images taken from

More information

Near-bottom shear stresses in a small, highly stratified estuary

Near-bottom shear stresses in a small, highly stratified estuary JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jc002563, 2005 Near-bottom shear stresses in a small, highly stratified estuary David C. Fugate and Robert J. Chant Institute of Marine and Coastal

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

Sediment Transport (in Estuaries)

Sediment Transport (in Estuaries) Sediment Transport (in Estuaries) Modes of Sediment Transport An incomplete introduction to: Bed Load Suspended Load Instrumentation and Challenges Rouse Parameter, P Suspended load: w s κu * < 0.8 Rouse

More information

Sediment transport and deposition on a river dominated tidal flat: An idealized model study

Sediment transport and deposition on a river dominated tidal flat: An idealized model study JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jc006248, 2010 Sediment transport and deposition on a river dominated tidal flat: An idealized model study Shih Nan Chen, 1 W. Rockwell Geyer,

More information

Sediment Transport at Density Fronts in Shallow Water

Sediment Transport at Density Fronts in Shallow Water DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water David K. Ralston Applied Ocean Physics and Engineering, MS #12 Woods

More information

Evaluating methods for 3D CFD Models in sediment transport computations

Evaluating methods for 3D CFD Models in sediment transport computations American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

More information

WOODS HOLE OCEANOGRAPHIC INSTITUTION. Applied Ocean Physics and Engineering Department

WOODS HOLE OCEANOGRAPHIC INSTITUTION. Applied Ocean Physics and Engineering Department WOODS HOLE OCEANOGRAPHIC INSTITUTION Applied Ocean Physics and Engineering Department July 16, 2014 Dr. Thomas Drake Office of Naval Research, Code 322 One Liberty Center 875 North Randolph Street Arlington,

More information

Sensitivity of the acoustic discharge measurement on silt content

Sensitivity of the acoustic discharge measurement on silt content Sensitivity of the acoustic discharge measurement on silt content Thomas Staubli, HTA Lucerne, Switzerland, tstaubli@hta.fhz.ch Bruno Lüscher, HTA Lucerne, Switzerland, bluescher@hta.fhz.ch Peter Gruber,

More information

Turbulent dissipation in a near field river plume: A comparison of control volume and microstructure observations with a numerical model.

Turbulent dissipation in a near field river plume: A comparison of control volume and microstructure observations with a numerical model. 5 Turbulent dissipation in a near field river plume: A comparison of control volume and microstructure observations with a numerical model. Daniel G. MacDonald 1, Louis Goodman 1 and Robert D. Hetland

More information

Predicting the Evolution of Tidal Channels in Muddy Coastlines

Predicting the Evolution of Tidal Channels in Muddy Coastlines Predicting the Evolution of Tidal Channels in Muddy Coastlines Sergio Fagherazzi Address Department of Earth Sciences and Center for Computational Science, Boston University, Boston MA 02215 Phone: 617-353-2092

More information

Shelf And Slope Sediment Transport In Strataform

Shelf And Slope Sediment Transport In Strataform Shelf And Slope Sediment Transport In Strataform David A. Cacchione Woods Hole Group 1167 Oddstad Drive Redwood City, MA 94063 phone: 650-298-0520 fax: 650-298-0523 email: dcacchione@whgrp.com Award #:

More information

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke 1 Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke with contributions from Norwegian and international project partners 2 Outline 1. Introduction 2. Basic ideas of flow

More information

Effect of hydrodynamics factors on flocculation processes in estuaries

Effect of hydrodynamics factors on flocculation processes in estuaries Effect of hydrodynamics factors on flocculation processes in estuaries A. Mhashhash; B. Bockelmann-Evans and S. Pan School of Engineering, Cardiff University, mhashhashaf1@cardiff.ac.uk ABSTRACT: Cohesive

More information

FINAL REPORT Fluid Mud in Energetic Systems: FLUMES II

FINAL REPORT Fluid Mud in Energetic Systems: FLUMES II DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. FINAL REPORT Fluid Mud in Energetic Systems: FLUMES II Gail C. Kineke Dept of Earth and Environmental Sciences Devlin Building

More information

Floc Fraction in the Gulf of Lions

Floc Fraction in the Gulf of Lions Floc Fraction in the Gulf of Lions Paul S. Hill Department of Oceanography Dalhousie University Halifax, Nova Scotia, CANADA B3H 4J1 Phone: (902) 494-2266 fax: (902) 494-3877 email: paul.hill@dal.ca Timothy

More information

Geomorphological Modelling in Coastal Waters

Geomorphological Modelling in Coastal Waters Abstract Geomorphological Modelling in Coastal Waters Morteza Kolahdoozan 1, Roger A. Falconer 2 (Fellow), Yiping Chen 3 Details are given herein of the development and application of a three dimensional

More information