Theoretical Analysis of AC Resistance of Coil Made by Copper Clad Aluminum Wires

Size: px
Start display at page:

Download "Theoretical Analysis of AC Resistance of Coil Made by Copper Clad Aluminum Wires"

Transcription

1 730 PIERS Proceedings, Stockholm, Sweden, Aug. 2 5, 203 Theoretical Analysis of AC Resistance of Coil Made by Copper Clad Aluminum Wires C. Kamidaki and N. Guan Power and Telecommunication Cable System R&D Department, Fujikura Ltd., Japan Abstract In this paper, we propose coils made by copper clad aluminum (CCA) in wireless power transfer (WPT) systems, which show lower AC resistance than Cu ones in a certain range of frequencies. Resistance of CCA or Cu coil is formulated by analysis of the skin effect, proximity effect and a shape factor of the coil which describes intensity of magnetic fields created by applied current in the coil itself. Boundary frequencies of the range where CCA coils are superior to Cu ones and corresponding resistances are quantitatively analyzed. The condition where CCA coils show lower resistance compared to Cu ones is clarified as configuration of coils and operation frequency.. INTRODUCTION In a wireless power transfer system using inductive coupling through magnetic fields, power transfer efficiency is significantly influenced by the quality factor Q = ωl/r ac of its coil, where ω, L and R ac are the angular frequency, inductance and AC resistance, respectively ]. In order to obtain a higher Q, higher frequency and lower R ac are desirable, but R ac increases quickly with frequency due to the skin effect as well as the proximity effect which comes from the eddy current induced by current flowing in neighbor wires. We have proposed copper clad aluminum (CCA) wires which are aluminum (Al) wires coated with thin Cu layer via metallic bond, as shown in Fig. 2]. The CCA coils are not only costeffective, light-weight and solderable as Cu, but also show lower R ac than Cu under certain circumstance. In the study, both the skin and proximity effects for a round metallic wire with multiple layers are theoretically analyzed and the AC resistance is formulated as a summation of an AC resistance caused by the skin effect and a product of a loss caused by the proximity effect and a shape factor of the coil. Figure : Copper clad aluminum wire. Figure 2: Analysis model of CCA wire. In this paper, the shape factor of a coil, which was obtained by curve-fitting from measurement, is numerically formulated. Frequencies f and f 2 between which CCA coils have lower R ac than Cu ones and corresponding resistance R and R 2 are quantitatively analyzed. It is demonstrated that our theoretical analysis agrees with measurement very well. 2. FORMULATION OF AC RESISTANCE OF CCA COILS A CCA wire is modeled as a round wire uniformly distributed along z-direction with two-layers where the i-th layer has a radius of r i, conductivity of σ i and relative permeability of µ i, as shown in Fig. 2. Assuming a time factor of e jωt, the z-component of electric field E z at the i-th layer induced by a current in z-direction satisfies the following equation: 2 E z r 2 + r E z r jωµ iµ 0 σ i E z = 0 ()

2 Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 2-5, which has a solution of E z = { A J 0 (k r) (r r ) A 2 J 0 (k 2 r) + B 2 Y 0 (k 2 r) (r < r r 2 ) (2) where A i and B i are constants, J ν and Y ν are the Bessel and Neumann functions of the ν-th order, respectively, and ki 2 = jωµ iµ 0 σ i. The energy consumption in the wire is equal to the power flow entering the wire from surface and is expressed by surface integration of Poynting vector on the wire. Therefore, when AC current flows in the wire, resistance caused by the skin effect per unit length is given by jωµ2 µ 0 R s = R A2J ] 0 (ξ) + B 2 Y 0 (ξ) 2πξ A 2 J 0 (ξ) + B 2Y 0 (ξ) (3) where ξ = k 2 r 2 and R denotes real part. Assume that an AC magnetic field with intensity of H 0 is applied to the wire along x-direction as shown in Fig. 2, the z-component of magnetic potential A z satisfies the following equation: 2 A z r 2 + r A z r + r 2 2 A z θ 2 + k2 i A z = 0 (4) which has a solution of C J (k r) (r r ) A z = sin θ C 2 J (k 2 r) + D 2 Y (k 2 r) (r < r r 2 ) C 3 r + D 3 r (r2 < r) where C i and D i are constants. Then the loss due to eddy current in the wire per unit length is calculated by the power flow passing through the surface of the wire and is given by (5) P p = 2π ξ 2 H 0 2 σ 2 ξxy Z 2 (6) where X = C 2 J (ξ) + D 2 Y (ξ) Y = C 2 J (ξ) + D 2 Y (ξ) Z = (µ 2 )X + ξ C 2 J 0 (ξ) + D 2 Y 0 (ξ)] Noting that magnetic field is generated by current flowing in the wire for a coil, then the magnetic field is proportional to the magnitude of the current, i.e., H 0 = α I (7) Since eddy current loss is expressed as a product of the AC resistance due to the proximity effect and a square of the applied current, AC resistance of coils wound by litz wire with N wires and length of l is expressed by R ac = ( R s + α 2 ) l D p (8) N where D p is associated with the loss caused by the proximity effect per unit length and is given by 4π ξ 2 D p = R σ 2 (ξ XY Z 2 ). (9) Assume that a coil wound with T turns is N T concentric circle wires as shown in Fig. 3, the intensity of applied magnetic field to the i-th wire H i is obtained as a summation of magnetic fields from circular current flowing in all other wires in the case of air core coils, and can be expressed

3 732 PIERS Proceedings, Stockholm, Sweden, Aug. 2 5, 203 Figure 3: Analysis model of coil. Figure 4: Picture of measured coil. by 3] H 2 i = N T j i H rij 2 N T + j i H zij H rij = i j z i z j 2π r j (ri + r j ) 2 + (z i z j ) 2 H zij = i j 2π k c = 2 K(k c ) + r2 i + r2 j + (z ] i z j ) 2 (r i r j ) 2 + (z i z j ) 2 E(k c) K(k c ) r2 i r2 j + (z i z j ) 2 (ri + r j ) 2 + (z i z j ) 2 (r i r j ) 2 + (z i z j ) 2 E(k c) ] (0) () (2) 4r i r j (r i + r j ) 2 + (z i z j ) 2 (3) where i j is the current flowing in the j-th wire, K and E are complete elliptic integrals of the first and second kinds, respectively. Then α is calculated by N T i= 2πr i Hi 2 α = N T (4) i= 2πr i i 2 i 3. NUMERICAL RESULTS For a coil shown in Fig. 4, where cables are stranded with 4 wires of Φ0.40 mm for 8 layers of 0 turns on a bobbin of Φ20 mm, Fig. 5 shows the measured and calculated R ac of the coil wound by Cu or CCA wire which consists of 5% Cu and 95% Al in area ratio. In the measurement, R ac increases with frequency and R ac of CCA coil is lower than Cu one from 5 to 450 khz. In the calculation, the shape factor α is obtained as 3.6 mm by Eq. (4). This value makes the calculation agree with the measurement very well. Figure 5: Measured and calculated R ac for 4 Φ0.40 mm coils. Figure 6: Calculated R ac for different coils.

4 Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 2-5, Figure 6 shows the calculated R ac of coils which are wound by wires with the same sectional area and configuration but different number and thickness of wires. R ac for CCA or Cu coils wound by a litz wire with 56 wires of Φ0.20 mm and one with 6 wires of Φ0.6 mm are added to the calculated result in Fig. 5. Although f and f 2 shift to higher frequency as the wires get thinner, the corresponding R and R 2 are independent on the thickness of wires. This phenomenon is explained as follows. At a low frequency at which wire radius is smaller enough than the skin depth δ = 2/ωσµ, R s and D p are approximated by 4]: Then, f and R are easily obtained to R s πσ 2 (r2 2 r2 ) + πσ r 2, (5) D p π (ωµ 0) 2 ( σ2 r r 4 ) + πσ r 4 ]. (6) f = παr fcu f CCA (7) R = R Cu + r2 2 r 2 R CCA (8) where R CCA and R Cu are DC resistances of CCA and Cu coil, f Cu is defined as a frequency at which the radius of wire is equal to the skin depth of Cu, and f CCA a frequency at which the radius of wire is equal to the skin depth of an uniform material with the same DC resistance of CCA wire. They are expressed by f Cu = f CCA = πµ 0 σ 2 r 2, (9) r 2 2 πµ 0 σ2 (r2 2 r2 ) + σ ] r 2. (20) r 2 Equation (8) leads to an interesting result that R depends on DC resistance of these coils and sectional area ratio of Al in CCA. Furthermore, R approaches to the summation of DC resistances of wires as the outer layer gets thinner. In the measurement in Fig. 5, R CCA, R Cu and R are 20, 7 and 97 mω, respectively. According to Eq. (8), R is 97 mω and coincides with the measurement. Frequency f obtained by Eq. (7) is 6.8 khz which differs a little with the measurement of 5 khz as shown in Fig. 5. Since the proximity effect is prominent in R ac at high frequency, f 2 is obtained as the frequency at which D p s of CCA and Cu show a same value. 4. CONCLUSION We have proposed an analytical expression of AC resistance of CCA coil by developing an analysis formulation for the skin effect, proximity effect and a shape factor of a coil. The theoretical and experimental results agreed well with each other and both demonstrated the superiority of CCA coil over Cu one regarding on AC resistance in a certain condition. In real applications, it should be easily confirmed whether it is effective or not to make replacement of Cu by CCA for not only saving weight but also decreasing energy loss, by using estimated f and f 2. It will take advantage of these features by applying this phenomenon to WPT systems to save total energy consumption, especially in power charging for electrical vehicles. REFERENCES. Yamanaka, T., Y. Kaneko, S. Abe, and T. Yasuda, 0 kw contactless power transfer system for rapid charger of electric vehicle, Int. Battery, Hybrid and Fuel Cell Electric Vehicle Symp., 9, Los Angeles, USA, May Guan, N., C. Kamidaki, T. Shinmoto, and K. Yashiro, AC resistance of copper clad aluminum wires, Proc. of the 202 Int. Symp. on Antennas and Propagation, , Nagoya, Japan, Oct. 202.

5 734 PIERS Proceedings, Stockholm, Sweden, Aug. 2 5, Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, Sullivan, C. R., Aluminum windings and other strategies for high-frequency magnetics design in an era of high copper and energy costs, IEEE Applied Power Electronics Conf., 78 84, Anaheim, USA, Feb

Design of Composite Electromagnetic Wave Absorber Made of Fine Aluminum Particles Dispersed in Polystyrene Resin by Controlling Permeability

Design of Composite Electromagnetic Wave Absorber Made of Fine Aluminum Particles Dispersed in Polystyrene Resin by Controlling Permeability PIERS ONLINE, VOL. 5, NO. 7, 9 663 Design of Composite Electromagnetic Wave Absorber Made of Fine Aluminum Particles Dispersed in Polystyrene Resin by Controlling Permeability K. Sakai, Y. Wada, Y. Sato,

More information

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ =

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ = ECE 54/4 Spring 17 Assignment.4-7 First check to see if the loop is indeed electromagnetically small f 1 MHz c 1 8 m/s b.5 m λ = c f m b m Yup. (a) You are welcome to use equation (-5), but I don t like

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

CERN ACCELERATOR SCHOOL Power Converters. Passive components. Prof. Alfred Rufer

CERN ACCELERATOR SCHOOL Power Converters. Passive components. Prof. Alfred Rufer CERN ACCELERATOR SCHOOL Power Converters Passive components Prof. Alfred Rufer Overview Part 1: (to be designed) Part 2: Capacitors (to be selected) Part 3: A new component: The Supercapacitor, component

More information

Power Handling Capability of Self-Resonant Structures for Wireless Power Transfer

Power Handling Capability of Self-Resonant Structures for Wireless Power Transfer Power Handling Capability of Self-Resonant Structures for Wireless Power Transfer Phyo Aung Kyaw, Aaron L. F. Stein and Charles R. Sullivan Thayer School of Engineering at Dartmouth, Hanover, NH 03755,

More information

A NEW METHODOLOGY FOR MAGNETIC FORCE CALCULATIONS BETWEEN PLANAR SPIRAL COILS

A NEW METHODOLOGY FOR MAGNETIC FORCE CALCULATIONS BETWEEN PLANAR SPIRAL COILS Progress In Electromagnetics Research, PIER 95, 39 57, 2009 A NEW METHODOLOGY FOR MAGNETIC FORCE CALCULATIONS BETWEEN PLANAR SPIRAL COILS A. Shiri and A. Shoulaie Department of Electrical Engineering Iran

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS

ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS Progress In Electromagnetics Research M, Vol. 16, 171 184, 2011 ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS D. Lovrić Faculty of Electrical

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS Proceedings of ERL9, Ithaca, New York, USA JS5 EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS N. Nakamura # Institute for Solid State Physics(ISSP), University of Tokyo 5--5 Kashiwanoha,

More information

General Physics (PHYC 252) Exam 4

General Physics (PHYC 252) Exam 4 General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 1-3, consider a car battery with 1. V emf and internal resistance r of. Ω that is

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

The Steady Magnetic Fields

The Steady Magnetic Fields The Steady Magnetic Fields Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/8/017 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

Simplified Measuring Method of kq Product for Wireless Power Transfer via Magnetic Resonance Coupling

Simplified Measuring Method of kq Product for Wireless Power Transfer via Magnetic Resonance Coupling THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. kq, 277-8561 5-1-5 DC1 102-0083 5-3-1 E-mail: hata@hflab.k.u-tokyo.ac.jp, imura@hori.k.u-toyko.ac.jp, hori@k.u-tokyo.ac.jp

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 15.3.2 Example 2 Multiple-Output Full-Bridge Buck Converter Q 1 D 1 Q 3 D 3 + T 1 : : n 2 D 5 i

More information

Analysis of formulas to calculate the AC resistance of different conductors configurations

Analysis of formulas to calculate the AC resistance of different conductors configurations 1 Analysis of formulas to calculate the AC resistance of different conductors configurations Jordi-Roger Riba Escola d Enginyeria d Igualada, Universitat Politècnica de Catalunya, Pla de la Massa 8, 08700

More information

Section 8: Magnetic Components

Section 8: Magnetic Components Section 8: Magnetic omponents Inductors and transformers used in power electronic converters operate at quite high frequency. The operating frequency is in khz to MHz. Magnetic transformer steel which

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Arumugam, Puvaneswaran and Dusek, Jiri and Mezani, Smail and Hamiti, Tahar and Gerada, C. (2015) Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors.

More information

Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface

Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface Progress In Electromagnetics Research Letters, Vol. 6, 9 34, 16 Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface Mauro Parise * Abstract In this work,

More information

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field. 1 (a) Fig. 2.1 shows a horizontal current-carrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles

More information

Eddy Current Testing using the Bode 100

Eddy Current Testing using the Bode 100 Page 1 of 12 using the Bode 100 Lukas Heinzle Abstract: (ET) is a commonly used technique surface inspections of conducting materials. An eddy current sensor, namely a probe coil that produces an alternating

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

TRANSFORMERS B O O K P G

TRANSFORMERS B O O K P G TRANSFORMERS B O O K P G. 4 4 4-449 REVIEW The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R=

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

An Improved Calculation Method of High-frequency Winding Losses for Gapped Inductors

An Improved Calculation Method of High-frequency Winding Losses for Gapped Inductors Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 3, May 2018 An Improved Calculation Method of High-frequency Winding Losses

More information

Book Page cgrahamphysics.com Transformers

Book Page cgrahamphysics.com Transformers Book Page 444-449 Transformers Review The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R= V RMS

More information

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605 Name: NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD Sample Examination EA605 EDDY CURRENT TESTING AS3998 LEVEL 2 GENERAL EXAMINATION 6161C * * * * * * * Time allowed

More information

TM-TE DECOMPOSITION OF POWER LOSSES IN MULTI-STRANDED LITZ-WIRES USED IN ELECTRONIC DEVICES. Zaragoza, María de Luna, 1, Zaragoza, Spain

TM-TE DECOMPOSITION OF POWER LOSSES IN MULTI-STRANDED LITZ-WIRES USED IN ELECTRONIC DEVICES. Zaragoza, María de Luna, 1, Zaragoza, Spain Progress In Electromagnetics Research, Vol. 123, 83 13, 212 TM-TE DECOMPOSITION OF POWER LOSSES IN MULTI-STRANDED LITZ-WIRES USED IN ELECTRONIC DEVICES C. Carretero 1, *, J. Acero 1, and R. Alonso 2 1

More information

EDDY CURRENT TESTING

EDDY CURRENT TESTING EDDY CURRENT TESTING Introduction Eddy current inspection is a method that use the principal of electromagnetism as the basis for conducting examinations. Eddy Current NDT is a technique that can test

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

The Steady Magnetic Field

The Steady Magnetic Field The Steady Magnetic Field Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/13/016 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

More information

DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY

DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY VARYING LAYERS ON METALS USING EDDY CURRENTS Erol Uzal, John C. Moulder, Sreeparna Mitra and James H. Rose Center for NDE Iowa State University Ames,

More information

Computation and Experimental Measurements of the Magnetic Fields between Filamentary Circular Coils

Computation and Experimental Measurements of the Magnetic Fields between Filamentary Circular Coils Computation and Experimental Measurements of the Magnetic Fields between Filamentary Circular Coils Ao Anele, Y Hamam, L Chassagne, J Linares, Y Alayli, Karim Djouani To cite this version: Ao Anele, Y

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures 2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures Lale T. Ergene 1, Yasemin D. Ertuğrul 2 Istanbul Technical University, Istanbul,

More information

Department of Physics Preliminary Exam January 2 5, 2013

Department of Physics Preliminary Exam January 2 5, 2013 Department of Physics Preliminary Exam January 2 5, 2013 Day 2: Electricity, Magnetism and Optics Thursday, January 3, 2013 9:00 a.m. 12:00 p.m. Instructions: 1. Write the answer to each question on a

More information

Numerical Value Analysis of Eddy Current Probe Coil. of Placement Model Based on ANSYS

Numerical Value Analysis of Eddy Current Probe Coil. of Placement Model Based on ANSYS 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Numerical Value Analysis of Eddy Current Probe Coil of Placement Model Based on ANSYS Jia YU, Jilin REN, Jihong TANG, Haibo

More information

Design of a Non-uniform High Impedance Surface for a Low Profile Antenna

Design of a Non-uniform High Impedance Surface for a Low Profile Antenna 352 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 Design of a Non-uniform High Impedance Surface for a Low Profile Antenna M. Hosseini 2, A. Pirhadi 1,2, and M. Hakkak

More information

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design Chapter 5 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss Selection of operating flux density to optimize total loss Multiple winding

More information

Wireless charging using a separate third winding for reactive power supply

Wireless charging using a separate third winding for reactive power supply Wireless charging using a separate third winding for reactive power supply Master s thesis in Energy and Environment IAN ŠALKOIĆ Department of Energy and Environment Division of Electric Power Engineering

More information

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. Four charges are at the corners of a square, with B and C on opposite

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Faults Detection in Metallic Tubes Using Eddy Current

Faults Detection in Metallic Tubes Using Eddy Current Faults Detection in Metallic Tubes Using Eddy Current Prof. Dr. A.K.M.Al-Shaikhli Jabbar M.E. Al-Sudani Adil H.Mahmood Abstract Faults in metallic materials can be detected by using eddy current testing

More information

Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations

Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations 1 Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations Escola d Enginyeria d Igualada, Universitat Politècnica de Catalunya, Pla de la

More information

ESTIMATION OF THE PARAMETERS OF ELECTROMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTER SIMULATION

ESTIMATION OF THE PARAMETERS OF ELECTROMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTER SIMULATION The third SYMPOSIUM ON APPLIED ELECTOMAGNETICS May 30 une 2, 2010, Ptuj, Slovenia 1 of 9 ESTIMATION OF THE PAAMETES OF ELECTOMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTE SIMULATION Goce Stefanov

More information

Design and analysis of the ferrite air-gapped cores for a resonant inductor

Design and analysis of the ferrite air-gapped cores for a resonant inductor ARCHIVES OF ELECTRICAL ENGINEERING VOL. 67(3), pp. 579 589 (2018) DOI 10.24425/123664 Design and analysis of the ferrite air-gapped cores for a resonant inductor JIANFEN ZHENG, CHUNFANG WANG, DONGWEI XIA

More information

Physics 202 Midterm Exam 2 Nov 2, 2011

Physics 202 Midterm Exam 2 Nov 2, 2011 Physics 202 Midterm Exam 2 Nov 2, 2011 Name: Student ID: Section: TA (please circle): Daniel Crow Scott Douglas Yutao Gong Taylor Klaus Aaron Levine Andrew Loveridge Jason Milhone Hojin Yoo Instructions:

More information

Chapter 5. Electromagnetic Induction

Chapter 5. Electromagnetic Induction Chapter 5 Electromagnetic Induction Overview In the last chapter, we studied how a current produces a magnetic field. Here we will study the reverse effect: A magnetic field can produce an electric field

More information

INDUCTION heating is the use of the principle of electromagnetic

INDUCTION heating is the use of the principle of electromagnetic IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 4, DECEMBER 2010 1021 Micro-T Circuit Model for the Analysis of Cylindrical Induction Heating Systems Layth Jameel Buni Qaseer Abstract A method is

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS Progress In Electromagnetics Research, PIER 1, 329 341, 2 AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS A-K. Hamid Department of Electrical/Electronics and Computer

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

a) (4 pts) What is the magnitude and direction of the acceleration of the electron?

a) (4 pts) What is the magnitude and direction of the acceleration of the electron? PHYSCS 22 Fall 2010 - MDTERM #3 SHOW ALL WORK & REASONNG FOR FULL PONTS Question 1. (5 pts): Accurately show or state the direction of the force that is felt by the following charges or currents. +q -q

More information

Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element Modeling

Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element Modeling 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, China Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element

More information

Lecture 30: WED 04 NOV

Lecture 30: WED 04 NOV Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,

More information

Chapter 2 Effective Internal Impedance

Chapter 2 Effective Internal Impedance Chapter 2 Effective Internal Impedance The impedance boundary condition (IBC) is widely used in scattering problems, eddy current problems, lossy transmission line problems, etc. The IBC is adopted to

More information

Visual prosthesis wireless energy transfer system optimal modeling

Visual prosthesis wireless energy transfer system optimal modeling Li et al. BioMedical Engineering OnLine 204, 3:3 RESEARCH Open Access Visual prosthesis wireless energy transfer system optimal modeling Xueping Li, Yuan Yang * and Yong Gao * Correspondence: yangyuan@xaut.edu.cn

More information

Inductance Calculations For Helical Magnetocumulative Generators

Inductance Calculations For Helical Magnetocumulative Generators PACS : 41.20.Gz G.R. Turner South African Nuclear Energy Corporation, P. O. Box 582, Pretoria, 0001 South Africa Inductance Calculations For Helical Magnetocumulative Generators Contents 1. Introduction

More information

Question 6.1: Predict the direction of induced current in the situations described by the following Figs. 6.18(a) to (f ). (a) (b) (c) (d) (e) (f) The direction of the induced current in a closed loop

More information

MIDSUMMER EXAMINATIONS 2001

MIDSUMMER EXAMINATIONS 2001 No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE

More information

Inductances of coaxial helical conductors

Inductances of coaxial helical conductors Computer Applications in Electrical Engineering Inductances of coaxial helical conductors Krzysztof Budnik, Wojciech Machczyński Poznań University of Technology 60-965 Poznań, ul. Piotrowo 3a, e-mail:

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

THE UPPER operating frequency of every inductor is

THE UPPER operating frequency of every inductor is IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 12, NO. 4, JULY 1997 671 Self-Capacitance of Inductors Antonio Massarini and Marian K. Kazimierczuk, Senior Member, IEEE Abstract A new method for predicting

More information

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : 1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

MAGNETIC FORCE CALCULATION BETWEEN CIRCU- LAR COILS OF RECTANGULAR CROSS SECTION WITH PARALLEL AXES FOR SUPERCONDUCTING MAGNET

MAGNETIC FORCE CALCULATION BETWEEN CIRCU- LAR COILS OF RECTANGULAR CROSS SECTION WITH PARALLEL AXES FOR SUPERCONDUCTING MAGNET Progress In Electromagnetics Research B, Vol. 37, 75 88, 01 MAGNETIC FORCE CALCULATION BETWEEN CIRCU- LAR COILS OF RECTANGULAR CROSS SECTION WITH PARALLEL AXES FOR SUPERCONDUCTING MAGNET S. Babic 1, *,

More information

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2 Prof. Darin Acosta Prof. Greg Stewart April 8, 007 1. Which of the following statements is true? 1. In equilibrium all of any excess charge stored on a conductor is on the outer surface.. In equilibrium

More information

Energy Losses in the Electrical Circuits

Energy Losses in the Electrical Circuits Energy Losses in the Electrical Circuits Motors, lighting systems, wiring, mechanical terminations, distribution panels, protective devices, transformers, switchgear, and all end of circuit equipment experience

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

Poynting Theory & Wave Polarization

Poynting Theory & Wave Polarization Poynting Theory & Wave Polarization Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 10/31/2017 1 Agenda Poynting Theory o Poynting Vector o Time average

More information

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel JFE TECHNICAL REPORT No. 21 (Mar. 2016) Reactor Characteristic Evaluation and Analysis Technologies of HIRATANI Tatsuhiko *1 NAMIKAWA Misao *2 NISHINA Yoshiaki *3 Abstract: Reactor characteristic evaluation

More information

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully: Physics 208: Electricity and Magnetism Final Exam, Secs. 506 510 2 May 2003 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your full name: Sign your name: Please fill in your

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak. Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

1 (a) Define magnetic flux [1]

1 (a) Define magnetic flux [1] 1 (a) Define magnetic flux..... [1] (b) Fig. 4.1 shows a generator coil of 5 turns and cross-sectional area 2.5 1 3 m 2 placed in a magnetic field of magnetic flux density.35 T. The plane of the coil is

More information

MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS. Erol Uzal, John C. Moulder and James H. Rose

MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS. Erol Uzal, John C. Moulder and James H. Rose MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS Erol Uzal, John C. Moulder and James H. Rose Center for NDE Iowa State University Ames, Iowa 50011 INTRODUCTION Coated metals

More information

by M. Kaluza*, I. Papagiannopoulos**, G. De Mey **, V. Chatziathanasiou***, A. Hatzopoulos*** and B. Wiecek*

by M. Kaluza*, I. Papagiannopoulos**, G. De Mey **, V. Chatziathanasiou***, A. Hatzopoulos*** and B. Wiecek* 11 th International Conference on Quantitative InfraRed Thermography Thermographic Measurements of Integrated Spiral Inductors by M. Kaluza*, I. Papagiannopoulos**, G. De Mey **, V. Chatziathanasiou***,

More information

Physics Education Centre EXAMINATION. PHYS2016_Semester 2 Electromagnetism

Physics Education Centre EXAMINATION. PHYS2016_Semester 2 Electromagnetism Venue Student Number Physics Education Centre EXAMINATION This paper is for ANU students. Examination Duration: Reading Time: 180 minutes 15 minutes Exam Conditions: Central Examination Students must return

More information

Mutual Resistance in Spicelink

Mutual Resistance in Spicelink . Introduction Mutual Resistance in Spicelink J. Eric Bracken, Ph.D. Ansoft Corporation September 8, 000 In this note, we discuss the mutual resistance phenomenon and investigate why it occurs. In order

More information

Inductance and Current Distribution Analysis of a Prototype HTS Cable

Inductance and Current Distribution Analysis of a Prototype HTS Cable Journal of Physics: Conference Series OPEN ACCESS Inductance and Current Distribution Analysis of a Prototype HTS Cable To cite this article: Jiahui Zhu et al J. Phys.: Conf. Ser. 7 7 Recent citations

More information

Electromagnetic Testing (ET)

Electromagnetic Testing (ET) Electromagnetic Testing Electromagnetic testing is a general test category that includes Eddy Current testing (ECT), Alternating Current Field Measurement (ACFM) and Remote Field testing. All of these

More information

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles Student Name Date Manipulating Magnetization Electric dipole moment: Magnetic dipole moment: -magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles -physical separation

More information

Compact Equivalent Circuit Models for the Skin Effect

Compact Equivalent Circuit Models for the Skin Effect Microelectromagnetic Devices Group The University of Texas at Austin Compact Equivalent Circuit Models for the Skin Effect Sangwoo Kim, Beom-Taek Lee, and Dean P. Neikirk Department of Electrical and Computer

More information

Levitation by Using Electromagnetic Force

Levitation by Using Electromagnetic Force Levitation by Using Electromagnetic Force Mireia Colom Guerra (University of Barcelona), Marc Serra Peralta (Autonomous University of Barcelona), Dalibor Danilovic (Ivanjica Gymnasium). ABSTRACT: In the

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

Analytical Design for Resonant Inductively Coupled Wireless Power Transfer With Class-E 2 DC-DC Converter

Analytical Design for Resonant Inductively Coupled Wireless Power Transfer With Class-E 2 DC-DC Converter THE INTITUTE OF ELECTRONIC, INFORATION AND COUNICATION ENGINEER TECHNICAL REPORT OF IEICE. E DC-DC 63-85 1-33 814-18 19-1 E-mail: nagashima@chiba-u.jp E DC-DC E E E Ppice 5 Hz 5W, 3 cm 65.9 % DC-DC AC-AC

More information

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction

More information

Lightning Phenomenology Notes Note 23 8 Jan Lightning Responses on a Finite Cylindrical Enclosure

Lightning Phenomenology Notes Note 23 8 Jan Lightning Responses on a Finite Cylindrical Enclosure Lightning Phenomenology Notes Note 23 8 Jan 2014 Lightning Responses on a Finite Cylindrical Enclosure Kenneth C. Chen and Larry K. Warne Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185,

More information

0.2 F 0.4 F 0.8 F 4.0 F

0.2 F 0.4 F 0.8 F 4.0 F 1 When a β particle moves at right angles through a uniform magnetic field it experiences a force F. n α particle moves at right angles through a magnetic field of twice the magnetic flux density with

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information