EDDY CURRENT TESTING

Size: px
Start display at page:

Download "EDDY CURRENT TESTING"

Transcription

1 EDDY CURRENT TESTING

2 Introduction Eddy current inspection is a method that use the principal of electromagnetism as the basis for conducting examinations. Eddy Current NDT is a technique that can test metals for flaws either during the manufacturing process or as a consequence of age or environment. It is a highly sensitive technique and completely Non-Destructive. (No damage to test object) It is quick, safe and cost-effective to use.

3 Outline Electromagnetic induction Generation of eddy currents Inspection applications Equipment utilized in eddy current inspection Probes/Coils Instrumentation Reference standard Advantages and Limitations Glossary of Terms

4 Electromagnetic Induction Eddy currents are created through a process called electromagnetic induction. Theory Electromagnetic Induction Current passing through a coil creates a magnetic field A moving magnetic field would induce a voltage in an electrical conductor When alternating current is applied to the conductor, such as copper wire, a magnetic field develops in and around the conductor. This magnetic field expands as the alternating current rises to maximum and collapses as the current is reduced to zero.

5 Electromagnetic Induction (cont.) If another electrical conductor is brought into the proximity of this changing magnetic field, the reverse effect will occur. Magnetic field cutting through the second conductor will cause an induced current to flow in this second conductor. Eddy currents are a form of induced currents! Current Flow

6 Generation of Eddy Currents Eddy currents are induced electrical currents that flow in a circular path. They get their name from eddies that are formed when a liquid or gas flows in a circular path around obstacles when conditions are right. Test Probe Eddy Currents

7 Generation of Eddy Currents (cont.) In order to generate eddy currents for an inspection a probe is used. Inside the probe is a length of electrical conductor which is formed into a coil.

8 Generation of Eddy Currents (cont.) Alternating current is allowed to flow in the coil at a frequency chosen by the technician for the type of test involved.

9 Generation of Eddy Currents (cont.) A dynamic expanding and collapsing magnetic field forms in and around the coil as the alternating current flows through the coil.

10 Generation of Eddy Currents (cont.) When an electrically conductive material is placed in the coil s dynamic magnetic field electromagnetic, induction will occur and eddy currents will be induced in the material.

11 Generation of Eddy Currents (cont.) Eddy currents flowing in the material will generate their own secondary magnetic field which will oppose the coil s primary magnetic field.

12 Generation of Eddy Currents (cont.) This entire electromagnetic induction process to produce eddy currents may occur from several hundred to several million times each second depending upon inspection frequency.

13 Eddy Current Theory Testing When an AC current flows in a coil in close proximity to a conducting surface, the magnetic field of the coil will induce circulating(eddy) currents in that surface. The magnitude and phase of the eddy currents will affect the loading on the coil and thus its impedance

14 Eddy Current Testing-Basic Training Eddy Current Theory - Testing

15 Eddy Current Theory - testing

16 Eddy Current Testing-Basic Training A deep crack in the surface below the coil will interrupt or reduce the eddy current flow, thus decreasing the loading of the coil and increasing its effective impedence By monitoring the voltage across the coil we can detect changes in the test material

17 Eddy Current Theory Testing Cracks MUST interrupt the surface eddy current flow to be detected

18 Inspection Data Factors affecting Eddy Current response The electrical conductivity of the material The magnetic permeability of the material Frequency Geometry Proximity / Lift-off Depth of penetration

19 Factors affecting Eddy Current response Material conductivity - Greater the conductivity greater the eddy current flow - conductivity depends on material composition, heat treatment, work hardening etc

20 Factors affecting Eddy Current response Permeability Described as the ease with which a material can be magnetised For nfe metals and austenitic S.Steel, the permeability (m r )is 1 (as for free space) For Fe metals the value of m r may be several hundred, thus influencing the eddy current response Permeability may vary within a metal part due to localised stresses, heating effects etc

21 Factors affecting Eddy Current response Frequency Eddy current response is greatly affected by the test frequency, but this property can be controlled

22 Factors affecting Eddy Current response Geometry Curvature,edges,grooves etc will affect the eddy current response When the material thickness is less than the effective depth of penetration, this will also affect the eddy current response

23 Eddy Current Testing-Basic Training Factors affecting Eddy Current response Proximity / Lift-off The closer the probe coil to the surface, greater the effect on the coil. This has two main effects 1. Lift off signal as the probe is moved on and off the surface 2. A reduction in sensitivity as the coil to product spacing increases

24 Eddy Current Testing-Basic Training Factors affecting Eddy Current response Depth of Penetration The eddy current density is greatest on the surface of the metal and declines with depth Depth of penetration -decreases with an increase in frequency -decreases with an increase in conductivity -decreases with an increase in permeability

25 Eddy Current Testing-Basic Training Factors affecting Eddy Current response Depth of Penetration The eddy current density is greatest on the surface of the metal and declines with depth Depth of penetration -decreases with an increase in frequency -decreases with an increase in conductivity -decreases with an increase in permeability

26 Factors affecting Eddy Current response

27 Effective Depth of Penetration It is defined as three times the standard depth, where eddy current density has fallen to 3-5% of the surface value The depth at which eddy current density has decreased to 1/e, or about 37% of the surface density, is called the standard depth of penetration (d). The word 'standard' denotes plane wave electromagnetic field excitation within the test sample (conditions which are rarely achieved in practice). Although eddy currents penetrate deeper than one standard depth of penetration, they decrease rapidly with depth. At two standard depths of penetration (2d), eddy current density has decreased to 1/e squared or 13.5% of the surface density. At three depths (3d), the eddy current density is down to only 5% of the surface density.

28 Standard depth penetration, d d f 1 r Where: δ or d = Standard Depth of Penetration (mm) f = Test Frequency (Hz) μ r = Relative Permeability = Electrical Conductivity

29 Depth Depth Generation of Eddy Currents (cont.) Eddy currents are strongest at the surface of the material and decrease in strength below the surface. The depth that the eddy currents are only 37% as strong as they are on the surface is known as the standard depth of penetration or skin depth. This depth changes with probe frequency, material conductivity and permeability. Standard Depth of Penetration (Skin Depth) Eddy Current Density High Frequency High Conductivity High Permeability 1/e or 37 % of surface density Eddy Current Density Low Frequency Low Conductivity Low Permeability

30 Since the sensitivity of an eddy current inspection depends on the eddy current density at the defect location, it is important to know the strength of the eddy currents at this location. When attempting to locate flaws, a frequency is often selected which places the expected flaw depth within one standard depth of penetration. This helps to assure that the strength of the eddy currents will be sufficient to produce a flaw indication. Alternately, when using eddy currents to measure the electrical conductivity of a material, the frequency is often set so that it produces three standard depths of penetration within the material. This helps to assure that the eddy currents will be so weak at the back side of the material that changes in the material thickness will not affect the eddy current measurements.

31 Inspection Information about the strength of the eddy currents within the specimen is determined by monitoring changes in voltage and/or current that occur in the coil. The strength of the eddy currents changes the electrical impedance (Z) of the coil.

32 Inspection Data (cont.) Impedance (Z) in an eddy current coil is the total opposition to current flow. In a coil, Z is made up of resistance (R) and inductive reactance (X L ). ~ R X L Test Coil Definitions: Resistance - The opposition of current flow, resulting in a change of electrical energy into heat or another form of energy. Inductive Reactance (X L ) - Resistance to AC current flow resulting from electromagnetic induction in the coil. Impedance (Z) - The combined opposition to current flow resulting from inductive reactance and resistance. In an AC coil, induction from the magnetic field of one loop of the coil causes a secondary current in all other loops. The secondary current opposes the primary current.

33 Inspection Applications One of the major advantages of eddy current as an NDT tool is the variety of inspections that can be performed.

34 Material Thickness Measurement Thickness measurements are possible with eddy current inspection within certain limitations. Only a certain amount of eddy currents can form in a given volume of material. Therefore, thicker materials will support more eddy currents than thinner materials. The strength (amount) of eddy currents can be measured and related to the material thickness. Magnetic Field From Probe Test Material Eddy Currents

35 Material Thickness Measurement (cont.) Eddy current inspection is often used in the aviation industries to detect material loss due to corrosion and erosion.

36 Material Thickness Measurement (cont.) Eddy current inspection is used extensively to inspect tubing at power generation and petrochemical facilities for corrosion and erosion.

37 Crack Detection Crack detection is one of the primary uses of eddy current inspection. Cracks cause a disruption in the circular flow patterns of the eddy currents and weaken their strength. This change in strength at the crack location can be detected. Magnetic Field From Test Coil Magnetic Field From Eddy Currents Eddy Currents Crack

38 Crack Detection (cont.) Eddy current inspection is exceptionally well suited for the detection of cracks, with an especially high sensitivity to detection of surface breaking cracks.

39 Successful detection of surface breaking and near surface cracks requires: A knowledge of probable defect type, position, and orientation. Selection of the proper probe. The probe should fit the geometry of the part and the coil must produce eddy currents that will be disrupted by the flaw. Selection of a reasonable probe drive frequency. For surface flaws, the frequency should be as high as possible for maximum resolution and high sensitivity. For subsurface flaws, lower frequencies are necessary to get the required depth of penetration and this results in less sensitivity. Ferromagnetic or highly conductive materials require the use of an even lower frequency to arrive at some level of penetration. Setup or reference specimens of similar material to the component being inspected and with features that are representative of the defect or condition being inspected for.

40 The basic steps in performing an inspection with a surface probe are the following: Select and setup the instrument and probe. Select a frequency to produce the desired depth of penetration. Adjust the instrument to obtain an easily recognizable defect response using a calibration standard or setup specimen. Place the inspection probe (coil) on the component surface Scan the probe over part of the surface in a pattern that will provide complete coverage of the area being inspected. Care must be taken to maintain the same probe-to-surface orientation as probe wobble can affect interpretation of the signal. In some cases, fixtures to help maintain orientation or automated scanners may be required. Monitor the signal for a local change in impedance that will occur as the probe moves over a discontinuity.

41 A simple eddy current probe near the surface of a calibration specimen. The probe is scanned over the surface of the specimen and the signal responses from surface breaking crack with the signals from the calibration notches (A, B, C) will be displayed.

42 50 KHz 300 KHz For surface flaws, the frequency should be as high as possible for maximum resolution and high sensitivity.

43 Nonconductive Coating Measurement Nonconductive coatings on electrically conductive substrates can be measured very accurately with eddy current inspection. (Accuracy of less that one mil is not uncommon.) The coating displaces the eddy current probe from the conductive base material and this weaken the strength of the eddy currents. This reduction in strength can be measured and related to coating thickness. Nonconductive Coating Conductive Base Metal Eddy Currents

44 Monitoring Conductivity and Permeability Variations Eddy current inspection is sensitive to changes in a material s electrical conductivity and magnetic permeability. This sensitivity allows the inspection method to be used for such inspection procedures as: Material Identification Material Sorting Determination of heat damage Cladding and plating thickness measurement Heat treatment monitoring

45 Conductivity Measurements Boeing employees in Philadelphia were given the privilege of evaluating the Liberty Bell for damage using NDT techniques. Eddy current methods were used to measure the electrical conductivity of the Bell's bronze casing at a various points to evaluate its uniformity.

46 Equipment Equipment for eddy current inspection is very diversified. Proper equipment selection is important if accurate inspection data is desired for a particular application. As a minimum, at least three basic pieces of equipment are needed for any eddy current examination: Instrumentation Probes Reference Standards

47 Instrumentation - Meters Meters are typically the simplest form of eddy current instrumentation. The two general categories of meters are digital and analog.

48 Digital Meters Digital meters are typically designed to examine one specific attribute of a test component such as conductivity or nonconductive coating thickness. These meters tend to have slightly higher accuracy than analog devices.

49 Analog meters can be used for many different inspection applications such as crack detection, material thickness measurements, nonconductive coating measurements or conductive coating measurements. Analog Meters

50 Portable Eddy Scopes

51 Eddy Current Probes

52 Eddy Current Probes (cont.) Probes selection is critical to acquiring adequate inspection data. Several factors to consider include: Material penetration requirements (surface vs. subsurface) Sensitivity requirements Type of probe connections on eddy current instrument (many variations) Probe and instrument impedance matching (will probe work with instrument) Probe size (smaller probes penetrate less)

53 Eddy Current Probes (cont.) Surface probes can be very small in size to allow accessibility to confined areas. Finger Probe

54 Reference Standards

55 Reference Standards (cont.) In order to give the eddy current inspector useful data while conducting an inspection, signals generated from the test specimen must be compared with known values. Reference standards are typically manufactured from the same or very similar material as the test specimen. Many different types of standards exist for due to the variety of eddy current inspections performed. The following slides provide examples of specific types of standards.

56 Reference Standards (cont.) Material thickness standards used to help determine such things as material thinning caused by corrosion or erosion.

57 Reference Standards (cont.) Crack Standards:

58 Reference Standards (cont.) ASME Tubing Pit Standard:

59 Reference Standards (cont.) Nonconductive coating (paint) standard with various thickness of paint on aluminum substrate.

60 Advantages of Eddy Current Inspection Sensitive to small cracks and other defects Detects surface and near surface defects Inspection gives immediate results Equipment is very portable Method can be used for much more than flaw detection Minimum part preparation is required Test probe does not need to contact the part Inspects complex shapes and sizes of conductive materials

61 Limitations of Eddy Current Inspection Only conductive materials can be inspected Surface must be accessible to the probe Skill and training required is more extensive than other techniques Surface finish and and roughness may interfere Reference standards needed for setup Depth of penetration is limited Flaws such as delaminations that lie parallel to the probe coil winding and probe scan direction are undetectable

62

63

64

65

66

Electromagnetic Testing (ET)

Electromagnetic Testing (ET) Electromagnetic Testing Electromagnetic testing is a general test category that includes Eddy Current testing (ECT), Alternating Current Field Measurement (ACFM) and Remote Field testing. All of these

More information

A STUDY OF FREQUENCY EFFECTS ON CONDUCTIVITY MEASUREMENTS. Nurul A in Ahmad Latif, Mahmood Dollah, Mohd Khidir Kamaron and Suaib Ibrahim

A STUDY OF FREQUENCY EFFECTS ON CONDUCTIVITY MEASUREMENTS. Nurul A in Ahmad Latif, Mahmood Dollah, Mohd Khidir Kamaron and Suaib Ibrahim A STUDY OF FREQUENCY EFFECTS ON CONDUCTIVITY MEASUREMENTS Nurul A in Ahmad Latif, Mahmood Dollah, Mohd Khidir Kamaron and Suaib Ibrahim Non Destructive Testing Group Industrial Technology Division Malaysian

More information

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605 Name: NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD Sample Examination EA605 EDDY CURRENT TESTING AS3998 LEVEL 2 GENERAL EXAMINATION 6161C * * * * * * * Time allowed

More information

DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY

DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY DETERMINING CONDUCTIVITY AND THICKNESS OF CONTINUOUSLY VARYING LAYERS ON METALS USING EDDY CURRENTS Erol Uzal, John C. Moulder, Sreeparna Mitra and James H. Rose Center for NDE Iowa State University Ames,

More information

MAGNETIC PARTICLE INSPECTION (MPI)

MAGNETIC PARTICLE INSPECTION (MPI) MAGNETIC PARTICLE INSPECTION (MPI) Magnetic particle inspection (MPI) is a method that can be used to detect surface and near surface defects or flaws in ferromagnetic materials such as steel and iron.

More information

SOUTHERN AFRICAN INSTITUTE OF WELDING. Non Destructive Testing (NDT) Course Syllabus & Programme

SOUTHERN AFRICAN INSTITUTE OF WELDING. Non Destructive Testing (NDT) Course Syllabus & Programme SOUTHERN AFRICAN INSTITUTE OF WELDING Non Destructive Testing (NDT) Course Syllabus & Programme Certification Body Please refer to our Website (www.saiw.co.za) for any information relating to the Training,

More information

Modeling of Magnetic Flux Leakage. Carbon Steel Plates

Modeling of Magnetic Flux Leakage. Carbon Steel Plates Presented at the COMSOL Conference 2010 India Three-Dimensional Finite Element Modeling of Magnetic Flux Leakage Technique e for Detection of Defects in Carbon Steel Plates W. Sharatchandra Singh, S. Thirunavukkarasu,

More information

Investigate of the Effect of Width Defect on Eddy Current Testing Signals under Different Materials

Investigate of the Effect of Width Defect on Eddy Current Testing Signals under Different Materials Indian Journal of Science and Technology, Vol 10 (2), DOI: 10.17485/ijst/2017/v10i2/110393, January 2017 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Investigate of the Effect of Width Defect on

More information

Numerical Value Analysis of Eddy Current Probe Coil. of Placement Model Based on ANSYS

Numerical Value Analysis of Eddy Current Probe Coil. of Placement Model Based on ANSYS 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Numerical Value Analysis of Eddy Current Probe Coil of Placement Model Based on ANSYS Jia YU, Jilin REN, Jihong TANG, Haibo

More information

J. P. Fulton, B. Wincheski, and S. Nath Analytical Services and Materials, Inc. 107 Research Drive Hampton, V A 23666

J. P. Fulton, B. Wincheski, and S. Nath Analytical Services and Materials, Inc. 107 Research Drive Hampton, V A 23666 A NEW ELECfROMAGNETIC INSTRUMENT FOR THICKNESS GAUGING OF CONDUCTIVE MATERIALS J. P. Fulton, B. Wincheski, and S. Nath Analytical Services and Materials, Inc. 107 Research Drive Hampton, V A 23666 J. Reilly,

More information

Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element Modeling

Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element Modeling 17th World Conference on Nondestructive Testing, 25-28 Oct 28, Shanghai, China Impedance Evaluation of a Probe-Coil s Lift-off and Tilt Effect in Eddy-Current Nondestructive Inspection by 3D Finite Element

More information

Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN :1999)

Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN :1999) Non-destructive testing of steel forgings- Part 1: Magnetic particle inspection (BS EN 10228-1:1999) 1 Scope This part of EN 10228 describes the method and acceptance criteria to be used for the magnetic

More information

Magnetic Field Mapping for Complex Geometry Defect - 3D Transient Problem

Magnetic Field Mapping for Complex Geometry Defect - 3D Transient Problem 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Magnetic Field Mapping for Complex Geometry Defect - 3D Transient Problem Ilham M. ZAINAL, Gui Y. TIAN, Yong LI School of

More information

Magnetic Particles Testing (MT) Technique

Magnetic Particles Testing (MT) Technique Research Group Magnetic Particles Testing (MT) Technique Professor Pedro Vilaça * * Contacts: Address: Puumiehenkuja 3 (room 202), 02150 Espoo, Finland pedro.vilaca@aalto.fi October 2017 Contents Historical

More information

Robotic Eddy Current Thermography: Simulations and experiments

Robotic Eddy Current Thermography: Simulations and experiments Robotic Eddy Current Thermography: Simulations and experiments By Y. Mokhtari*, C Ibarra-Castanedo*, P. Servais** and X Maldague* *Department of electrical and computer engineering, LAVAL University, Quebec

More information

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography 3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography Rajeev V.R* & Ramjith Krishnan R** *Assistant Professor, Archana College of Engineering Alappuzha, India

More information

Finite Element Simulation of Eddy-Current Flaw Detection Systems

Finite Element Simulation of Eddy-Current Flaw Detection Systems Konstanty Marek Gawrylczyk Politechnika Szczeciñska Katedra Elektrotechniki Teoretycznej i Informatyki Finite Element Simulation of Eddy-Current Flaw Detection Systems Introduction The eddy-current method

More information

COUPLING COEFFICIENT: A DETERMINANT OF EDDY CURRENT PROBE PERFORMANCE

COUPLING COEFFICIENT: A DETERMINANT OF EDDY CURRENT PROBE PERFORMANCE COUPLNG COEFFCENT: A DETERMNANT OF EDDY CURRENT PROBE PERFORMANCE Susan N. Vernon Materials Evaluation Branch Naval Surface \.Jarfare Center Silver Spring, MD 20903-5000 NTRODUCTON The accuracy of an eddy

More information

07/03/2017. Now, XJTU is a comprehensive university with 17 Academic Schools and 4 Teaching Hospitals. Xi an

07/03/2017. Now, XJTU is a comprehensive university with 17 Academic Schools and 4 Teaching Hospitals. Xi an 西安交通大学航天航空学院 School of Aerospace, Xi an Jiaotong University Advanced Electromagnetic Nondestructive Testing and Evaluation (NDT&E) Yong Li 3/7/2017 ENDE Mother city: Xi an Xi an 3/7/2017 2 Xi an Jiaotong

More information

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Luka Kufrin 1,2, A. Lopes Ribeiro 1,2, H. Geirinhas Ramos 1,2, O. Postolache 1 1 Instituto de Telecomunicações,

More information

Surface Magnetic Non-Destructive Testing

Surface Magnetic Non-Destructive Testing Surface Magnetic Non-Destructive Testing Evangelos Hristoforou 1,*, Konstantinos Kosmas 1 and Eleftherios Kayafas 2 1 School of Mining and Metallurgy Engineering, National Technical University of Athens,

More information

Automatic Differential Lift-Off Compensation (AD-LOC) Method In Pulsed Eddy Current Inspection

Automatic Differential Lift-Off Compensation (AD-LOC) Method In Pulsed Eddy Current Inspection 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Automatic Differential Lift-Off Compensation (AD-LOC) Method In Pulsed Eddy Current Inspection Joanna X. QIAO, John P. HANSEN,

More information

INVERSION OF TRANSIENT EDDY-CURRENT SIGNALS FOR THE DETERMINATION OF CONDUCTING PLATE PARAMETERS

INVERSION OF TRANSIENT EDDY-CURRENT SIGNALS FOR THE DETERMINATION OF CONDUCTING PLATE PARAMETERS INVERSION OF TRANSIENT EDDY-CURRENT SIGNALS FOR THE DETERMINATION OF CONDUCTING PLATE PARAMETERS M. J. Johnson and J. R. Bowler Department Of Physics University Of Surrey Guildford Surrey GU25XH United

More information

Computational Modeling of Alternating Current Potential Drop Measurement for Crack Detection of Multi-Functional Ceramic Coated Structures

Computational Modeling of Alternating Current Potential Drop Measurement for Crack Detection of Multi-Functional Ceramic Coated Structures Clemson University TigerPrints All Theses Theses 5-2015 Computational Modeling of Alternating Current Potential Drop Measurement for Crack Detection of Multi-Functional Ceramic Coated Structures Simha

More information

EDDY-CURRENT nondestructive testing is commonly

EDDY-CURRENT nondestructive testing is commonly IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 2, MARCH 1998 515 Evaluation of Probe Impedance Due to Thin-Skin Eddy-Current Interaction with Surface Cracks J. R. Bowler and N. Harfield Abstract Crack detection

More information

Simulation of Cracks Detection in Tubes by Eddy Current Testing

Simulation of Cracks Detection in Tubes by Eddy Current Testing Int. Jnl. of Multiphysics Volume 10 Number 4 2016 417 Simulation of Cracks Detection in Tubes by Eddy Current Testing S Bennoud 1 *, M Zergoug 2 1. Laboratory of Aircrafts, University of Saad Dahlab, Blida

More information

Modelling of Eddy Current inspections with CIVA

Modelling of Eddy Current inspections with CIVA Modelling of Eddy Current inspections with CIVA C. GILLES-PASCAUD, G. PICHENOT, D. PREMEL, C. REBOUD, A. SKARLATOS CEA, LIST 91191 Gif-sur-Yvette, France http://www-civa.cea.fr Abstract In the aim of fulfilling

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

MEASUREMENT OF THE MECHANICAL STATE OF SUBSURFACE LAYERS BY EDDY-CURRENT METHOD

MEASUREMENT OF THE MECHANICAL STATE OF SUBSURFACE LAYERS BY EDDY-CURRENT METHOD Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia TC XVII IMEKO World Congress Metrology in the rd Millennium June

More information

Estimating Probability of Detection Curves Related to Eddy Current Sender Receiver Probes

Estimating Probability of Detection Curves Related to Eddy Current Sender Receiver Probes 5 th European-American Workshop on Reliability of NDE Lecture 9 Estimating Probability of Detection Curves Related to Eddy Current Sender Receiver Probes Anders ROSELL 1, 2, Gert PERSSON 2, Håkan WIRDELIUS

More information

MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS. Erol Uzal, John C. Moulder and James H. Rose

MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS. Erol Uzal, John C. Moulder and James H. Rose MEASURING THICKNESS AND CONDUCTIVITY OF METALLIC LAYERS WITH EDDY CURRENTS Erol Uzal, John C. Moulder and James H. Rose Center for NDE Iowa State University Ames, Iowa 50011 INTRODUCTION Coated metals

More information

Eddy Current Testing using the Bode 100

Eddy Current Testing using the Bode 100 Page 1 of 12 using the Bode 100 Lukas Heinzle Abstract: (ET) is a commonly used technique surface inspections of conducting materials. An eddy current sensor, namely a probe coil that produces an alternating

More information

A New Probe for Velocity Induced Eddy Current Inspection

A New Probe for Velocity Induced Eddy Current Inspection Electromagnetic Non-Destructive Evaluation (XXI) D. Lesselier and C. Reboud (Eds.) 2018 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the

More information

Eddy Current Testing in Height Measurement of Copper Cylinder

Eddy Current Testing in Height Measurement of Copper Cylinder Eddy Current Testing in Height Measurement of Copper Cylinder YANJIE WANG, QING LI, XIONG LI College of Electrical and Mechanical Engineering China Jiliang University China Jiliang University, Hangzhou,

More information

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel JFE TECHNICAL REPORT No. 21 (Mar. 2016) Reactor Characteristic Evaluation and Analysis Technologies of HIRATANI Tatsuhiko *1 NAMIKAWA Misao *2 NISHINA Yoshiaki *3 Abstract: Reactor characteristic evaluation

More information

Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced Plastic (CFRP) Based on Electromagnetic Field Analysis

Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced Plastic (CFRP) Based on Electromagnetic Field Analysis Journal of Mechanics Engineering and Automation 8 (2018) 127-131 doi: 10.17265/2159-5275/2018.03.004 D DAVID PUBLISHING Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced

More information

Numerical Simulation in Alternating Current Field Measurement

Numerical Simulation in Alternating Current Field Measurement 19 th World Conference on Non-Destructive Testing 2016 Numerical Simulation in Alternating Current Field Measurement Wenpei ZHENG 1 1 China University of Petroleum-Beijing, Beijing, China Contact e-mail:

More information

EddyMax Tube Inspection

EddyMax Tube Inspection EddyMax Tube Inspection Client: Client a Facility: site b Items Inspected: Inlet Heater Inspection Method: Eddy Current Tube Inspection Commencement Date: 28 th June 2016 Completion Date: 29 th June 2016

More information

Stress Test Based on Planar Flexible Eddy Current Sensor

Stress Test Based on Planar Flexible Eddy Current Sensor 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Stress Test Based on Planar Flexible Eddy Current Sensor TANG Ying 1, LI Ji 1, ZHAO Jianqiang 1, HE Yunze 1, TAN Xianglin

More information

Quantitative Analysis of Eddy Current NDE Data

Quantitative Analysis of Eddy Current NDE Data IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Abstract Quantitative Analysis of Eddy Current NDE Data Y. M. Kim, E. C. Johnson, O. Esquivel The Aerospace Corporation, M2-248 P. O. Box 92957

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

Interactions of an eddy current sensor and a multilayered structure

Interactions of an eddy current sensor and a multilayered structure Interactions of an eddy current sensor and a multilayered structure Thanh Long Cung, Pierre-Yves Joubert, Eric Vourc H, Pascal Larzabal To cite this version: Thanh Long Cung, Pierre-Yves Joubert, Eric

More information

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

More information

TEST METHOD FOR DETERMINING BREAKAWAY FORCE OF A MAGNET

TEST METHOD FOR DETERMINING BREAKAWAY FORCE OF A MAGNET STANDARD MDFA 101 95 TEST METHOD FOR DETERMINING BREAKAWAY FORCE OF A MAGNET DISCLAIMER: This test method was developed by representative members of the Magnet Distributor and Fabricators Association (MDFA)

More information

Evaluation of Material Plate Proprieties Using Inverse Problem NDT Techniques

Evaluation of Material Plate Proprieties Using Inverse Problem NDT Techniques Evaluation of Material Plate Proprieties Using Inverse Problem NDT Techniques M. CHEBOUT, A.SADOU, L. AOMAR, M.R.MEKIDECHE E-mail chebout_med@yahoo.fr Laboratoire d Etudes et de Modélisation en Electrotechnique,

More information

Magnetism & Electromagnetism

Magnetism & Electromagnetism Magnetism & Electromagnetism By: Dr Rosemizi Abd Rahim Click here to watch the magnetism and electromagnetism animation video http://rmz4567.blogspot.my/2013/02/electrical-engineering.html 1 Learning Outcomes

More information

Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge

Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 7 ELECTRICITY AND MAGNETISM Electric forces can attract some objects and repel others Electric charge: the fundamental quantity that underlies

More information

Longitudinal and Circumferential Cracks in a Ferromagnetic Bar Detected Simultaneously

Longitudinal and Circumferential Cracks in a Ferromagnetic Bar Detected Simultaneously ECNDT 006 - Poster 0 Longitudinal and Circumferential Cracks in a Ferromagnetic Bar Detected Simultaneously Božidar BRUDAR, International Center for Sustainable Development, Ljubljana, Slovenia. Janez

More information

Construct Coil Probe Using GMR Sensor for Eddy Current Testing

Construct Coil Probe Using GMR Sensor for Eddy Current Testing Construct Coil Probe Using GMR Sensor for Eddy Current Testing Moneer A Faraj 1, Ahmed N Abdalla 2*, Fahmi Bin Samsuri 2, Damhuji Rifai 1,3, Kharudin Ali 1,3 1 Faculty of Engineering Technology, Universiti

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

3d magnetostatic analysis of magneto-inductive devices for ndt

3d magnetostatic analysis of magneto-inductive devices for ndt 3d magnetostatic analysis of magneto-inductive devices for ndt Aldo Canova (1)(2), Fabio Freschi (1) and Bruno Vusini (2) (1) Department of Electrical Engineering, Politecnico di Torino (2) AMC Instruments

More information

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE CHAPTER-8 DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE 8.1 Introduction The behavior of materials is different when they are subjected to dynamic loading [9]. The testing of materials under dynamic conditions

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

More information

Shielding Tutorial Gentex EME Lab

Shielding Tutorial Gentex EME Lab Shielding Tutorial Gentex EME Lab Shielding Course Outline: I. Why do we need shields? II. III. IV. Introduction to the Basic Shield Design Process A. Apertures B. Materials Corrosion Summations and Conclusions

More information

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other.

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other. CHAPTER OUTLINE Section 1 Magnets and Magnetic Fields Key Idea questions > What happens when the poles of two magnets are brought close together? > What causes a magnet to attract or repel another magnet?

More information

MIS 231, NASA LaRC Hampton, VA

MIS 231, NASA LaRC Hampton, VA COMBINED INVESTIGATION OF EDDY CURRENT AND ULTRASONIC TECHNIQUES FOR COMPOSITE MATERIALS NDE C. W. Davis US Anny ATCOM MIS 231, NASA LaRC Hampton, VA 23681-0001 S. Nath and J. P. Fulton Analytic Services

More information

Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors

Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors International Journal of Applied Electromagnetics and Mechanics 45 (2014) 519 526 519 DOI 10.3233/JAE-141872 IOS Press Application of Lorentz force eddy current testing and eddy current testing on moving

More information

Electromagnetism. Topics Covered in Chapter 14:

Electromagnetism. Topics Covered in Chapter 14: Chapter 14 Electromagnetism Topics Covered in Chapter 14: 14-1: Ampere-turns of Magnetomotive Force (mmf) 14-2: Field Intensity (H) 14-3: B-H Magnetization Curve 14-4: Magnetic Hysteresis 14-5: Magnetic

More information

Energy Losses in the Electrical Circuits

Energy Losses in the Electrical Circuits Energy Losses in the Electrical Circuits Motors, lighting systems, wiring, mechanical terminations, distribution panels, protective devices, transformers, switchgear, and all end of circuit equipment experience

More information

EXPERIMENTAL MEASUREMENTS OF THE EDDY CURRENT SIGNAL DUE TO A. Stuart A. Long, Sompongse Toomsawasdi, and Afroz J.M. Zaman

EXPERIMENTAL MEASUREMENTS OF THE EDDY CURRENT SIGNAL DUE TO A. Stuart A. Long, Sompongse Toomsawasdi, and Afroz J.M. Zaman EXPERIMENTAL MEASUREMENTS OF THE EDDY CURRENT SIGNAL DUE TO A FLAWED, CONDUCTING HALF SPACE Stuart A. Long, Sompongse Toomsawasdi, and Afroz J.M. Zaman Department of Electrical Engineering University of

More information

ESTIMATION OF THE PARAMETERS OF ELECTROMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTER SIMULATION

ESTIMATION OF THE PARAMETERS OF ELECTROMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTER SIMULATION The third SYMPOSIUM ON APPLIED ELECTOMAGNETICS May 30 une 2, 2010, Ptuj, Slovenia 1 of 9 ESTIMATION OF THE PAAMETES OF ELECTOMAGNETIC FIELD AT INDUCTION DEVICE BY THE AID OF COMPUTE SIMULATION Goce Stefanov

More information

MANUAL TT-220 TT-220

MANUAL TT-220 TT-220 MANUAL TT-220 TT-220 INDEX 1. GENERAL 2 1.1 Scope of applications 2 1.2 Basic working principle 2 1.3 Basic configuration TT220 2 1.4 Technical Parameters 3 1.5 Main functions 3 2. OPERATION OF GAUGE 4

More information

Numerical study of eddy current by Finite Element Method for cracks detection in structures

Numerical study of eddy current by Finite Element Method for cracks detection in structures S. Harzallah et alii, Frattura ed Integrità Strutturale, 39 (7) 8-9; DOI:.3/IGF-ESIS.39.6 Numerical study of eddy current by Finite Element Method for cracs detection in structures S. Harzallah, M. Chabaat,

More information

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY J. Schlichting, G. N. Kervalishvili, Ch. Maierhofer, M. Kreutzbruck BAM Federal Institute for Materials Research and Testing, Berlin, Germany 1. Introduction

More information

Numerical simulation for cracks detection using the finite elements method

Numerical simulation for cracks detection using the finite elements method Int. Jnl. of Multiphysics Volume 8 Number 1 2014 1 Numerical simulation for cracks detection using the finite elements method Salim Bennoud 1, Mourad Zergoug 2, Abderrazak Allali 1 1 Laboratory of aircrafts,

More information

Sensitivity Analysis of Magneto-Optic Imaging In Nondestructive Evaluation of Pipelines

Sensitivity Analysis of Magneto-Optic Imaging In Nondestructive Evaluation of Pipelines ABSTRACT Sensitivity Analysis of Magneto-Optic Imaging In Nondestructive Evaluation of Pipelines Ibrahim Elshafiey* and Lalita Udpa** *Electrical Eng. Dept., King Saud University, Riyadh, SA **Electrical

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Control Engineering BDA30703

Control Engineering BDA30703 Control Engineering BDA30703 Lecture 4: Transducers Prepared by: Ramhuzaini bin Abd. Rahman Expected Outcomes At the end of this lecture, students should be able to; 1) Explain a basic measurement system.

More information

SURFACE BARKHAUSEN NOISE INVESTIGATIONS OF STRESS AND LEAKAGE FLUX

SURFACE BARKHAUSEN NOISE INVESTIGATIONS OF STRESS AND LEAKAGE FLUX SURFACE BARKHAUSEN NOISE INVESTIGATIONS OF STRESS AND LEAKAGE FLUX SIGNALS IN LINE PIPE INTRODUCTION C. Jagadish, L. Clapham, and D.L. Atherton Department of Physics Queen's University Kingston, Ontario,

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

EDDY CURRENT IMAGING FOR MATERIAL SURF ACE MAPPING. E. J. Chern1 and A. L. Thompson

EDDY CURRENT IMAGING FOR MATERIAL SURF ACE MAPPING. E. J. Chern1 and A. L. Thompson EDDY CURRENT IMAGING FOR MATERIAL SURF ACE MAPPING E. J. Chern1 and A. L. Thompson General Electric Company Aircraft Engine Business Group Cincinnati, Ohio 45215 INTRODUCTION For most nondestructive inspections,

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, 2012 June 18-21, Toronto, Ontario

4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, 2012 June 18-21, Toronto, Ontario 4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, 2012 June 18-21, Toronto, Ontario Methods for Evaluation of Accuracy with Multiple Essential Parameters for Eddy

More information

THREE-DIMENSIONAL RECONSTRUCTION OF CONDUCTIVE CRACKS FROM EDDY CURRENT TESTING SIGNALS

THREE-DIMENSIONAL RECONSTRUCTION OF CONDUCTIVE CRACKS FROM EDDY CURRENT TESTING SIGNALS THREE-DIMENSIONAL RECONSTRUCTION OF CONDUCTIVE CRACKS FROM EDDY CURRENT TESTING SIGNALS MIHAI IULIAN REBICAN Key words: Eddy current testing, Conductive crack, Numerical simulation, Crack reconstruction,

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

More information

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel

More information

Generic Bolt Hole Eddy Current Testing Probability of Detection Study

Generic Bolt Hole Eddy Current Testing Probability of Detection Study Generic Bolt Hole Eddy Current Testing Probability of Detection Study NRC-IAR, DND, TRI/Austin Catalin Mandache NDE Group, Structures and Materials Performance Laboratory Outline Background Project objectives

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism S8P5. Students will recognize the characteristics of gravity, electricity, and magnetism as major kinds of forces acting in nature. b. Demonstrate the advantages and disadvantages

More information

Faults Detection in Metallic Tubes Using Eddy Current

Faults Detection in Metallic Tubes Using Eddy Current Faults Detection in Metallic Tubes Using Eddy Current Prof. Dr. A.K.M.Al-Shaikhli Jabbar M.E. Al-Sudani Adil H.Mahmood Abstract Faults in metallic materials can be detected by using eddy current testing

More information

3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography

3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography 11 th International Conference on Quantitative InfraRed Thermography 3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography M.N. Libin*, Krishnan

More information

INDUSTRIAL RADIOGRAPHY

INDUSTRIAL RADIOGRAPHY 1 BASICS INDUSTRIAL RADIOGRAPHY -Dr.O.Prabhakar, OP-TECH INTRODUCTION From the time Roentgen discovered X-rays and used it to radiograph his rifle, X-rays are being used in the industry to reveal internal

More information

Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements

Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 11-20 Eddy Current Testing of Metallic Sheets with Defects Using Force Measurements Hartmut Brauer 1, Marek Ziolkowski 2 Abstract: The

More information

METHOD FOR CRACK CHARACTERIZATION WITH NOISE INVARIANCE FOR EDDY CURRENT INSPECTION OF FASTENER SITES

METHOD FOR CRACK CHARACTERIZATION WITH NOISE INVARIANCE FOR EDDY CURRENT INSPECTION OF FASTENER SITES METHOD FOR CRACK CHARACTERIZATION WITH NOISE INVARIANCE FOR EDDY CURRENT INSPECTION OF FASTENER SITES John C. Aldrin 1 and Jeremy S. Knopp 2 1 Computational Tools, Gurnee, IL 631, USA 2 Air Force Research

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

A SELF-CALIBRATING EDDY-CURRENT INSTRUMENT

A SELF-CALIBRATING EDDY-CURRENT INSTRUMENT A SELF-CALIBRATING EDDY-CURRENT INSTRUMENT M.W. Kubovich, J.C. Moulder, M.S. Hughes, and B. A. Auld* Center for NDE, Iowa State University, Ames, IA 50011 *Dept. of Applied Physics, Stanford University,

More information

MN-ISO-2000FN-E. ISO-2000FN COATING THICKNESS GAGE OPERATION MANUAL

MN-ISO-2000FN-E.   ISO-2000FN COATING THICKNESS GAGE OPERATION MANUAL MN-ISO-2000FN-E www.insize.com ISO-2000FN COATING THICKNESS GAGE OPERATION MANUAL V0 Place the probe on the zero plate and wait until beep. Lift the probe for minimal 5 cm off the zero plate and wait

More information

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection 7th World Conference on Nondestructive Testing, 5-8 Oct 8, Shanghai, China Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection Xiaoming JIAN, Steve DIXON, Karl QUIK Phoenix

More information

Improvement in Subsurface Fatigue Cracks under Airframes Fasteners Detection Using Improved Rotating Giant Magneto- Resistance Magnetometer Head

Improvement in Subsurface Fatigue Cracks under Airframes Fasteners Detection Using Improved Rotating Giant Magneto- Resistance Magnetometer Head ECNDT 2006 - Th.4.1.2 Improvement in Subsurface Fatigue Cracks under Airframes Fasteners Detection Using Improved Rotating Giant Magneto- Resistance Magnetometer Head C. DOLABDJIAN, L. PEREZ, ENSICAEN

More information

Pulse eddy currents using an integral-fem formulation for cracks detection

Pulse eddy currents using an integral-fem formulation for cracks detection International Journal of Applied Electromagnetics and Mechanics 33 (2010) 1225 1229 1225 DOI 10.3233/JAE-2010-1242 IOS Press Pulse eddy currents using an integral-fem formulation for cracks detection Gabriel

More information

WINTER 12 EXAMINATION Subject Code: (Section I) Model Answer Page No: 1/13 Que. Sub.

WINTER 12 EXAMINATION Subject Code: (Section I) Model Answer Page No: 1/13 Que. Sub. (ISO/IEC - 700-005 Certified) WINTER EXAMINATION Subject Code: 0 (Section I) Model Answer Page No: /3 Sub. No. ) a) Formula Ans. With unit u 0m/s s 98m t? s ut gt 98 0 (9.8)t 98x t 9.8 t 00.0 t =. sec.

More information

Eddy current testing of type-439 stainless steel tubing using magnetic saturation technique

Eddy current testing of type-439 stainless steel tubing using magnetic saturation technique Journal of Mechanical Science and Technology 26 (7) () 1~5 www.springerlink.com/content/173-494x DOI.07/s6-0-0519-z Eddy current testing of type-439 stainless steel tubing using magnetic saturation technique

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

(D) Blv/R Counterclockwise

(D) Blv/R Counterclockwise 1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information