# Algebraic Geometry Spring 2009

Size: px
Start display at page:

Transcription

2 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) Cohomology of projective space (updated April 14) Using Čech cohomology, we now give Serre s computation of the cohomology of the twisting sheaves on projective space, and deduce from it Serre s finiteness theorem. See also Hartshorne III.5 (except that you can ignore the last paragraph at the bottom of page 227, which is irrelevant). 1 Finitely generated sheaves Let (X, O X ) be a locally ringed space. An O X -module F is finitely generated if for each point x X, there exist an open subset U of X containing x, a nonnegative integer n, and a surjection O n X U F U of O X -modules. (In other words, F is locally generated by finite collections of sections.) Lemma. Let A be a ring and let M be an A-module. Then M is finite as an A-module if and only if the quasicoherent sheaf M is finitely generated. Proof. It is clear that finiteness of M implies that M is finitely generated. Conversely, suppose M is finitely generated. We can then cover X with distinguished opens X i = D(f i ) on each of which M Xi = M f i is generated by finitely many sections m ij /f i h j. Since X is quasicompact, we need only finitely many i, and the resulting m ij generate M because they do so stalkwise. Beware that Hartshorne says a sheaf is coherent if it is quasicoherent and finitely generated. This is not the correct definition, but it does agree with the correct definition on a locally noetherian scheme, which is the only place he ever uses it. I ll give the proper definition of a coherent sheaf later. 2 Odds and ends We will make frequent use of the following fact. Lemma. Let f : Z X be a closed immersion of locally ringed spaces, and let F be a sheaf of abelian groups on Z. Then there are canonical isomorphisms H i (Z, F) H i (X, f F) (i 0). Proof. We already know that f preserves flasqueness (previous exercise). We can also see that f is exact by its behavior on stalks: { F x x Z (f F) x = 0 x / Z. 1

3 Finally, we note that we have a canonical isomorphism at the level of H 0. If we then start with a flasque resolution of F, we can either push forward (obtaining another flasque resolution) and then take global sections, or take global sections directly, to obtain the same complexes, and in particular the same cohomology. This will very often allow us to carry out induction arguments on dimension, by setting up a short exact sequence of sheaves on X in which one member is the direct image of a sheaf on Z. Lemma. Let X be a noetherian topological space, and let (F j ) be a direct system of abelian sheaves. Then the natural functoriality maps lim H (X, F j ) H (X, lim F j ) (coming from the maps F j lim F j ) are isomorphisms. Proof. Fix the index set for the direct system. Then both sides are cohomological functors on the category of direct systems of abelian sheaves for that index set, and the noetherian hypothesis forces the H 0 terms to match (earlier exercise), so it suffices to check that they are both effaceable. For that, it suffices to observe that there is a functorial way to embed any sheaf of abelian groups on X into a flasque sheaf; for instance, see Hartshorne exercise II.1.16(e). 3 The result Before stating the theorem, I need to make one general observation. Let F, G be sheaves of O X -modules on a scheme X, with F quasicoherent and flat. I claim there is a natural homomorphism H 0 (X, F) OX H r (X, G) H r (X, F OX G) of Γ(X, O X )-modules for any nonnegative integer r. It comes from the facts that: both sides are cohomological functors in G (using the fact that F is flat on the right side, and the fact that H 0 (X, F) is flat over O(X) on the left side); the left side is effaceable and hence universal; there is a natural map for r = 0. We can also compute this map using Čech complexes. Theorem (Serre). Let A be any ring, fix an integer r 1, and put X = P r and S = A A[x 0,...,x n ]. (a) The natural map n Z is an isomorphism of graded S-modules. S H 0 (X, O X (n)) 2

4 (b) For 0 < i < r and n Z, we have H i (X, O X (n)) = 0. (c) We have H r (X, O X ( r 1)) = A. (d) The natural A-bilinear map H 0 (X, O X (n)) H r (X, O X ( n r 1)) H r (X, O X ( r 1)) = A is a perfect pairing of finitely generated free A-modules, for each n Z. (That is, each side is isomorphic to Hom of the other side into A; in particular, they have the same rank.) (e) For i > r, we have H i (X, O X (n)) = 0. Proof of the theorem. It is enough to compute the cohomology of the sheaf F = n Z O X (n) and keep track of the grading by n. (This can be seen by applying the previous lemma, but this forces a noetherian hypothesis. But it is also clear without such a hypothesis, because the Čech cohomology computation we are about to do commutes with the direct sums.) For starters, recall that we checked part (a) earlier; see for instance Hartshorne Proposition II We use the obvious Cech ˇ resolution by the D + (x i ) for i = 0,...,r. Since the complex vanishes above degree r, we immediately get (e). (This also follows from a general theorem of Grothendieck; see Hartshorne Theorem III.2.7.) To compute H r (X, F), we need the cokernel of r d r 1 : S x0 x k 1 x k+1 x r S x0 x r. k=0 ± ± e 0 e View S r x0 x r = A[x 0,...,x r ] as the free A-module generated by the monomials x 0 x r with e 0,..., e r Z. The image under d r 1 of the k-th factor of the product is precisely the span of the monomials with e k 0. Hence H r (X, F) is the free A-module generated by the x e 0 0 x e r r with e 0,...,e r < 0, graded by degree. In particular, in degree r 1, we see 1 1 x r, proving (c). exactly one monomial x 0 To see (d), we must make the pairing explicit. First, note that there is nothing to check if n < 0, since then H 0 (X, O X (n)) = S n = 0 obviously, and H 0 (X, O X ( n r 1)) = 0 because there are no monomials of degree greater than r 1 with all exponents negative. So assume hereafter n 0. If we identify H 0 (X, O X (n)) with the A-span of the monomials in x 0,..., x r (with nonnegative powers) of degree n, then the pairing with H r (X, F) (the 1 1 A-span of the monomials of degree n r 1 in x 0,...,x r ) is to simply multiply together and throw away everything except the term x 0 1 x r 1. This implies (c). It remains to prove (b), which we do by induction on r. The base case is r = 1, for which there is nothing to check because 0 < i < r is impossible. Before running the induction, we note that if we localize the Cech ˇ complex by inverting x r, we get the corresponding Čech complex on the open set D + (x r ), which is affine. So the localized Čech complex must be acyclic since it computes the cohomology of a quasicoherent sheaf on an affine scheme. On the other hand, localizing in x r is exact, so it commutes with taking cohomology; that is, 3

5 the localization H i (X, F) xr = 0 for i > 0. In other words, every element of H i (X, F) is annihilated by some power of x r. It thus suffices to show that for 0 < i < r, multiplication by any power of x r is injective on H i (X, F); it also suffices to check multiplication by x r itself. Look at the exact sequence x r 0 S( 1) S S/(xr ) 0 of graded S-modules. Writing H r 1 = P A for the hyperplane x r = 0 and j : H X for the inclusion, this sheafifies to 0 F( 1) F n Z (j O H )(n) 0. Let s take the long exact sequence in homology. In degree 0 we get back our original sequence, so the connecting homomorphism into H 1 (X, F( 1)) is zero. That (which holds even in the base case) plus the induction hypothesis, which implies that H i (X, n (j O H )(n)) = H i (H, n O H (n)) = 0 for 0 < i < r 1, gives us the bijectivity of multiplication by x r on H i (X, F) for i = 0,...,r 2 and injectivity for i = r 1. This is enough to get H i (X, F) = 0 for 0 < i < r. 4 Finiteness of cohomology on projective schemes Using the previous calculation, Serre was able to derive a powerful finiteness and vanishing theorem for cohomology on projective schemes. First, we need another result of Serre (Hartshorne II.5.17 except without the noetherian hypothesis). Theorem. Let A be a ring, let X P r A be a closed immersion for some r 1, and let O X (1) be the pullback of the twisting sheaf. Let F be a finitely generated quasicoherent sheaf on X. Then there exists an integer n 0 such that for all n n 0, F(n) is generated by a finite number of global sections. r Proof. By replacing F by its direct image, we reduce to the case X = P A itself. For i = 0,..., r, we have F D+ (x i ) = M i for some finitely generated module M i over B i = A[x 0 /x i,...,x r /x i ]. For any s M i, for n n 0 for some n 0 depending on s, x n i s is a section of F(n). For n 0 large enough, we can lift a set of generators of each M i to sections of F(n) whenever n n 0 ; this proves the claim. Corollary. With notation as in the previous theorem, we obtain a surjection m i=1 O(n) F for some n Z. For this I need a noetherian hypothesis, but only until we define coherent sheaves. Theorem (Serre). Let A be a noetherian ring, let X P r be a closed immersion for some A r 1, and let O X (1) be the pullback of the twisting sheaf. Let F be a finitely generated quasicoherent sheaf on X. 4

6 (a) The A-modules H i (X, F) are finitely generated for i 0. (b) There exists an integer n 0 (depending on F) such that for each i > 0 and n n 0, H i (X, F(n)) = 0. Proof. We proceed by descending induction on i. For i > r, we have H i (X, F) = 0 because X admits a good over by at most r + 1 open affines. By the previous corollary, we can write F as a quotient of some sheaf E which is a direct sum of twisting sheaves. Let G be the kernel: 0 G E F 0 Thanks to the noetherian hypothesis, we may conclude that G is also finitely generated. The long exact sequence in cohomology gives: H i (X, E) H i (X, F) H i+1 (X, G) Given the claim for i + 1, we know that the right term is finitely generated as an A-module. The left term is a sum of things of the form H i (X, O X (n)) for various n Z, and we already computed those and saw that they were finitely generated as A-modules. Again since A is noetherian, we can conclude that the middle module is finitely generated. This proves (a). To get (b), twist by n and then again take the long exact sequence in cohomology: H i (X, E(n)) H i (X, F(n)) H i+1 (X, G(n)) For n large, the right module vanishes by the induction hypothesis, while the left module vanishes by the explicit calculation, so the middle group vanishes. 5

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Section Higher Direct Images of Sheaves

Section 3.8 - Higher Direct Images of Sheaves Daniel Murfet October 5, 2006 In this note we study the higher direct image functors R i f ( ) and the higher coinverse image functors R i f! ( ) which will

### Cohomology and Base Change

Cohomology and Base Change Let A and B be abelian categories and T : A B and additive functor. We say T is half-exact if whenever 0 M M M 0 is an exact sequence of A-modules, the sequence T (M ) T (M)

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25 RAVI VAKIL CONTENTS 1. Quasicoherent sheaves 1 2. Quasicoherent sheaves form an abelian category 5 We began by recalling the distinguished affine base. Definition.

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### Factorization of birational maps for qe schemes in characteristic 0

Factorization of birational maps for qe schemes in characteristic 0 AMS special session on Algebraic Geometry joint work with M. Temkin (Hebrew University) Dan Abramovich Brown University October 24, 2014

### Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

Synopsis of material from EGA Chapter II, 4 4.1. Definition of projective bundles. 4. Projective bundles. Ample sheaves Definition (4.1.1). Let S(E) be the symmetric algebra of a quasi-coherent O Y -module.

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### 18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Kiehl s finiteness theorems

18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Kiehl s finiteness theorems References: [FvdP, Chapter 4]. Again, Kiehl s original papers (in German) are: Der

### Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48 RAVI VAKIL CONTENTS 1. The local criterion for flatness 1 2. Base-point-free, ample, very ample 2 3. Every ample on a proper has a tensor power that

### Introduction and preliminaries Wouter Zomervrucht, Februari 26, 2014

Introduction and preliminaries Wouter Zomervrucht, Februari 26, 204. Introduction Theorem. Serre duality). Let k be a field, X a smooth projective scheme over k of relative dimension n, and F a locally

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset

### FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS. Let A be a ring, for simplicity assumed commutative. A filtering, or filtration, of an A module M means a descending sequence of submodules M = M 0

### Factorization of birational maps on steroids

Factorization of birational maps on steroids IAS, April 14, 2015 Dan Abramovich Brown University April 14, 2015 This is work with Michael Temkin (Jerusalem) Abramovich (Brown) Factorization of birational

### ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0. ANDREW SALCH During the last lecture, we found that it is natural (even just for doing undergraduatelevel complex analysis!)

### 12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

12. Linear systems Theorem 12.1. Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n A (1) is an invertible sheaf on X, which is generated by the global sections s 0, s

### Synopsis of material from EGA Chapter II, 5

Synopsis of material from EGA Chapter II, 5 5. Quasi-affine, quasi-projective, proper and projective morphisms 5.1. Quasi-affine morphisms. Definition (5.1.1). A scheme is quasi-affine if it is isomorphic

### Modules over a Scheme

Modules over a Scheme Daniel Murfet October 5, 2006 In these notes we collect various facts about quasi-coherent sheaves on a scheme. Nearly all of the material is trivial or can be found in [Gro60]. These

### ALGEBRAIC GEOMETRY: GLOSSARY AND EXAMPLES

ALGEBRAIC GEOMETRY: GLOSSARY AND EXAMPLES HONGHAO GAO FEBRUARY 7, 2014 Quasi-coherent and coherent sheaves Let X Spec k be a scheme. A presheaf over X is a contravariant functor from the category of open

### VERDIER DUALITY AKHIL MATHEW

VERDIER DUALITY AKHIL MATHEW 1. Introduction Let M be a smooth, compact oriented manifold of dimension n, and let k be a field. Recall that there is a natural pairing in singular cohomology H r (M; k)

### 1. Algebraic vector bundles. Affine Varieties

0. Brief overview Cycles and bundles are intrinsic invariants of algebraic varieties Close connections going back to Grothendieck Work with quasi-projective varieties over a field k Affine Varieties 1.

### NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY RUNE HAUGSENG The aim of these notes is to define flat and faithfully flat morphisms and review some of their important properties, and to define the fpqc

### Synopsis of material from EGA Chapter II, 3

Synopsis of material from EGA Chapter II, 3 3. Homogeneous spectrum of a sheaf of graded algebras 3.1. Homogeneous spectrum of a graded quasi-coherent O Y algebra. (3.1.1). Let Y be a prescheme. A sheaf

### Preliminary Exam Topics Sarah Mayes

Preliminary Exam Topics Sarah Mayes 1. Sheaves Definition of a sheaf Definition of stalks of a sheaf Definition and universal property of sheaf associated to a presheaf [Hartshorne, II.1.2] Definition

### FORMAL GLUEING OF MODULE CATEGORIES

FORMAL GLUEING OF MODULE CATEGORIES BHARGAV BHATT Fix a noetherian scheme X, and a closed subscheme Z with complement U. Our goal is to explain a result of Artin that describes how coherent sheaves on

### Notes on p-divisible Groups

Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

### Direct Limits. Mathematics 683, Fall 2013

Direct Limits Mathematics 683, Fall 2013 In this note we define direct limits and prove their basic properties. This notion is important in various places in algebra. In particular, in algebraic geometry

### DESCENT THEORY (JOE RABINOFF S EXPOSITION)

DESCENT THEORY (JOE RABINOFF S EXPOSITION) RAVI VAKIL 1. FEBRUARY 21 Background: EGA IV.2. Descent theory = notions that are local in the fpqc topology. (Remark: we aren t assuming finite presentation,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETR CLASS 24 RAVI VAKIL CONTENTS 1. Normalization, continued 1 2. Sheaf Spec 3 3. Sheaf Proj 4 Last day: Fibers of morphisms. Properties preserved by base change: open immersions,

### The Proj Construction

The Proj Construction Daniel Murfet May 16, 2006 Contents 1 Basic Properties 1 2 Functorial Properties 2 3 Products 6 4 Linear Morphisms 9 5 Projective Morphisms 9 6 Dimensions of Schemes 11 7 Points of

### TCC Homological Algebra: Assignment #3 (Solutions)

TCC Homological Algebra: Assignment #3 (Solutions) David Loeffler, d.a.loeffler@warwick.ac.uk 30th November 2016 This is the third of 4 problem sheets. Solutions should be submitted to me (via any appropriate

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

### MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA These are notes for our first unit on the algebraic side of homological algebra. While this is the last topic (Chap XX) in the book, it makes sense to

### 14 Lecture 14: Basic generallities on adic spaces

14 Lecture 14: Basic generallities on adic spaces 14.1 Introduction The aim of this lecture and the next two is to address general adic spaces and their connection to rigid geometry. 14.2 Two open questions

### LINE BUNDLES ON PROJECTIVE SPACE

LINE BUNDLES ON PROJECTIVE SPACE DANIEL LITT We wish to show that any line bundle over P n k is isomorphic to O(m) for some m; we give two proofs below, one following Hartshorne, and the other assuming

### Basic results on Grothendieck Duality

Basic results on Grothendieck Duality Joseph Lipman 1 Purdue University Department of Mathematics lipman@math.purdue.edu http://www.math.purdue.edu/ lipman November 2007 1 Supported in part by NSA Grant

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Application of cohomology: Hilbert polynomials and functions, Riemann- Roch, degrees, and arithmetic genus 1 1. APPLICATION OF COHOMOLOGY:

### Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

### Curves on P 1 P 1. Peter Bruin 16 November 2005

Curves on P 1 P 1 Peter Bruin 16 November 2005 1. Introduction One of the exercises in last semester s Algebraic Geometry course went as follows: Exercise. Let be a field and Z = P 1 P 1. Show that the

### Smooth morphisms. Peter Bruin 21 February 2007

Smooth morphisms Peter Bruin 21 February 2007 Introduction The goal of this talk is to define smooth morphisms of schemes, which are one of the main ingredients in Néron s fundamental theorem [BLR, 1.3,

### Chern classes à la Grothendieck

Chern classes à la Grothendieck Theo Raedschelders October 16, 2014 Abstract In this note we introduce Chern classes based on Grothendieck s 1958 paper [4]. His approach is completely formal and he deduces

### INTERSECTION THEORY CLASS 19

INTERSECTION THEORY CLASS 19 RAVI VAKIL CONTENTS 1. Recap of Last day 1 1.1. New facts 2 2. Statement of the theorem 3 2.1. GRR for a special case of closed immersions f : X Y = P(N 1) 4 2.2. GRR for closed

### Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo Alex Massarenti SISSA, VIA BONOMEA 265, 34136 TRIESTE, ITALY E-mail address: alex.massarenti@sissa.it These notes collect a series of

### HARTSHORNE EXERCISES

HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

### MATH 233B, FLATNESS AND SMOOTHNESS.

MATH 233B, FLATNESS AND SMOOTHNESS. The discussion of smooth morphisms is one place were Hartshorne doesn t do a very good job. Here s a summary of this week s material. I ll also insert some (optional)

### Coherent sheaves on elliptic curves.

Coherent sheaves on elliptic curves. Aleksei Pakharev April 5, 2017 Abstract We describe the abelian category of coherent sheaves on an elliptic curve, and construct an action of a central extension of

### Algebra Qualifying Exam Solutions January 18, 2008 Nick Gurski 0 A B C 0

1. Show that if B, C are flat and Algebra Qualifying Exam Solutions January 18, 2008 Nick Gurski 0 A B C 0 is exact, then A is flat as well. Show that the same holds for projectivity, but not for injectivity.

### THE SMOOTH BASE CHANGE THEOREM

THE SMOOTH BASE CHANGE THEOREM AARON LANDESMAN CONTENTS 1. Introduction 2 1.1. Statement of the smooth base change theorem 2 1.2. Topological smooth base change 4 1.3. A useful case of smooth base change

### CHEAT SHEET: PROPERTIES OF MORPHISMS OF SCHEMES

CHEAT SHEET: PROPERTIES OF MORPHISMS OF SCHEMES BRIAN OSSERMAN The purpose of this cheat sheet is to provide an easy reference for definitions of various properties of morphisms of schemes, and basic results

### A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor

A TALE OF TWO FUNCTORS Marc Culler 1. Hom and Tensor It was the best of times, it was the worst of times, it was the age of covariance, it was the age of contravariance, it was the epoch of homology, it

### PERVERSE SHEAVES. Contents

PERVERSE SHEAVES SIDDHARTH VENKATESH Abstract. These are notes for a talk given in the MIT Graduate Seminar on D-modules and Perverse Sheaves in Fall 2015. In this talk, I define perverse sheaves on a

### Generalized Alexander duality and applications. Osaka Journal of Mathematics. 38(2) P.469-P.485

Title Generalized Alexander duality and applications Author(s) Romer, Tim Citation Osaka Journal of Mathematics. 38(2) P.469-P.485 Issue Date 2001-06 Text Version publisher URL https://doi.org/10.18910/4757

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24 RAVI VAKIL CONTENTS 1. Vector bundles and locally free sheaves 1 2. Toward quasicoherent sheaves: the distinguished affine base 5 Quasicoherent and coherent sheaves

### Concentrated Schemes

Concentrated Schemes Daniel Murfet July 9, 2006 The original reference for quasi-compact and quasi-separated morphisms is EGA IV.1. Definition 1. A morphism of schemes f : X Y is quasi-compact if there

### ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF

ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF MATTHEW H. BAKER AND JÁNOS A. CSIRIK Abstract. We give a new proof of the isomorphism between the dualizing sheaf and the canonical

### Some remarks on Frobenius and Lefschetz in étale cohomology

Some remarks on obenius and Lefschetz in étale cohomology Gabriel Chênevert January 5, 2004 In this lecture I will discuss some more or less related issues revolving around the main idea relating (étale)

### Theta divisors and the Frobenius morphism

Theta divisors and the Frobenius morphism David A. Madore Abstract We introduce theta divisors for vector bundles and relate them to the ordinariness of curves in characteristic p > 0. We prove, following

### Injective Modules and Matlis Duality

Appendix A Injective Modules and Matlis Duality Notes on 24 Hours of Local Cohomology William D. Taylor We take R to be a commutative ring, and will discuss the theory of injective R-modules. The following

### Non characteristic finiteness theorems in crystalline cohomology

Non characteristic finiteness theorems in crystalline cohomology 1 Non characteristic finiteness theorems in crystalline cohomology Pierre Berthelot Université de Rennes 1 I.H.É.S., September 23, 2015

### Section Blowing Up

Section 2.7.1 - Blowing Up Daniel Murfet October 5, 2006 Now we come to the generalised notion of blowing up. In (I, 4) we defined the blowing up of a variety with respect to a point. Now we will define

### AN ALTERNATIVE APPROACH TO SERRE DUALITY FOR PROJECTIVE VARIETIES

AN ALTERNATIVE APPROACH TO SERRE DUALITY FOR PROJECTIVE VARIETIES MATTHEW H. BAKER AND JÁNOS A. CSIRIK This paper was written in conjunction with R. Hartshorne s Spring 1996 Algebraic Geometry course at

### REFLEXIVITY AND RIGIDITY FOR COMPLEXES, II: SCHEMES

REFLEXIVITY AND RIGIDITY FOR COMPLEXES, II: SCHEMES LUCHEZAR L. AVRAMOV, SRIKANTH B. IYENGAR, AND JOSEPH LIPMAN Abstract. We prove basic facts about reflexivity in derived categories over noetherian schemes;

### Lecture 9: Sheaves. February 11, 2018

Lecture 9: Sheaves February 11, 2018 Recall that a category X is a topos if there exists an equivalence X Shv(C), where C is a small category (which can be assumed to admit finite limits) equipped with

### DERIVED CATEGORIES OF COHERENT SHEAVES

DERIVED CATEGORIES OF COHERENT SHEAVES OLIVER E. ANDERSON Abstract. We give an overview of derived categories of coherent sheaves. [Huy06]. Our main reference is 1. For the participants without bacground

### arxiv: v1 [math.ra] 5 Feb 2015

Noncommutative ampleness from finite endomorphisms D. S. Keeler Dept. of Mathematics, Miami University, Oxford, OH 45056 arxiv:1502.01668v1 [math.ra] 5 Feb 2015 Abstract K. Retert Dept. of Mathematics,

### Lecture 3: Flat Morphisms

Lecture 3: Flat Morphisms September 29, 2014 1 A crash course on Properties of Schemes For more details on these properties, see [Hartshorne, II, 1-5]. 1.1 Open and Closed Subschemes If (X, O X ) is a

### INTRO TO TENSOR PRODUCTS MATH 250B

INTRO TO TENSOR PRODUCTS MATH 250B ADAM TOPAZ 1. Definition of the Tensor Product Throughout this note, A will denote a commutative ring. Let M, N be two A-modules. For a third A-module Z, consider the

### EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY

EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C and D be chain complexes. We define

### Math 210B. Profinite group cohomology

Math 210B. Profinite group cohomology 1. Motivation Let {Γ i } be an inverse system of finite groups with surjective transition maps, and define Γ = Γ i equipped with its inverse it topology (i.e., the

### De Rham Cohomology. Smooth singular cochains. (Hatcher, 2.1)

II. De Rham Cohomology There is an obvious similarity between the condition d o q 1 d q = 0 for the differentials in a singular chain complex and the condition d[q] o d[q 1] = 0 which is satisfied by the

### 0.1 Spec of a monoid

These notes were prepared to accompany the first lecture in a seminar on logarithmic geometry. As we shall see in later lectures, logarithmic geometry offers a natural approach to study semistable schemes.

### SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN

SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN Abstract. Suppose X is a smooth projective scheme of finite type over a field K, E is a locally free O X -bimodule of rank

### Math 210B. Artin Rees and completions

Math 210B. Artin Rees and completions 1. Definitions and an example Let A be a ring, I an ideal, and M an A-module. In class we defined the I-adic completion of M to be M = lim M/I n M. We will soon show

### Algebraic v.s. Analytic Point of View

Algebraic v.s. Analytic Point of View Ziwen Zhu September 19, 2015 In this talk, we will compare 3 different yet similar objects of interest in algebraic and complex geometry, namely algebraic variety,

### Derived Functors and Explicit Projective Resolutions

LECTURE 12 Derived Functors and Explicit Projective Resolutions A Let X and Y be complexes of A-modules. Recall that in the last lecture we defined Hom A (X, Y ), as well as Hom der A (X, Y ) := Hom A

### EXT, TOR AND THE UCT

EXT, TOR AND THE UCT CHRIS KOTTKE Contents 1. Left/right exact functors 1 2. Projective resolutions 2 3. Two useful lemmas 3 4. Ext 6 5. Ext as a covariant derived functor 8 6. Universal Coefficient Theorem

### Coherent Sheaves; Invertible Sheaves

CHAPTER 13 Coherent Sheaves; Invertible Sheaves In this chapter, k is an arbitrary field. a Coherent sheaves Let V D SpmA be an affine variety over k, and let M be a finitely generated A-module. There

### Zariski s Main Theorem and some applications

Zariski s Main Theorem and some applications Akhil Mathew January 18, 2011 Abstract We give an exposition of the various forms of Zariski s Main Theorem, following EGA. Most of the basic machinery (e.g.

### AFFINE PUSHFORWARD AND SMOOTH PULLBACK FOR PERVERSE SHEAVES

AFFINE PUSHFORWARD AND SMOOTH PULLBACK FOR PERVERSE SHEAVES YEHAO ZHOU Conventions In this lecture note, a variety means a separated algebraic variety over complex numbers, and sheaves are C-linear. 1.

### Locally G-ringed spaces and rigid spaces

18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Rigid analytic spaces (at last!) We are now ready to talk about rigid analytic spaces in earnest. I ll give the

### Lectures on Grothendieck Duality II: Derived Hom -Tensor adjointness. Local duality.

Lectures on Grothendieck Duality II: Derived Hom -Tensor adjointness. Local duality. Joseph Lipman Purdue University Department of Mathematics lipman@math.purdue.edu February 16, 2009 Joseph Lipman (Purdue

### 3. The Sheaf of Regular Functions

24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

### Lecture 9 - Faithfully Flat Descent

Lecture 9 - Faithfully Flat Descent October 15, 2014 1 Descent of morphisms In this lecture we study the concept of faithfully flat descent, which is the notion that to obtain an object on a scheme X,

### PICARD GROUPS OF MODULI PROBLEMS II

PICARD GROUPS OF MODULI PROBLEMS II DANIEL LI 1. Recap Let s briefly recall what we did last time. I discussed the stack BG m, as classifying line bundles by analyzing the sense in which line bundles may

### Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

### Introduction to Chiral Algebras

Introduction to Chiral Algebras Nick Rozenblyum Our goal will be to prove the fact that the algebra End(V ac) is commutative. The proof itself will be very easy - a version of the Eckmann Hilton argument

### Notes on the definitions of group cohomology and homology.

Notes on the definitions of group cohomology and homology. Kevin Buzzard February 9, 2012 VERY sloppy notes on homology and cohomology. Needs work in several places. Last updated 3/12/07. 1 Derived functors.

### Section Projective Morphisms

Section 2.7 - Projective Morphisms Daniel Murfet October 5, 2006 In this section we gather together several topics concerned with morphisms of a given scheme to projective space. We will show how a morphism

### UNIVERSAL DERIVED EQUIVALENCES OF POSETS

UNIVERSAL DERIVED EQUIVALENCES OF POSETS SEFI LADKANI Abstract. By using only combinatorial data on two posets X and Y, we construct a set of so-called formulas. A formula produces simultaneously, for

### COHEN-MACAULAY RINGS SELECTED EXERCISES. 1. Problem 1.1.9

COHEN-MACAULAY RINGS SELECTED EXERCISES KELLER VANDEBOGERT 1. Problem 1.1.9 Proceed by induction, and suppose x R is a U and N-regular element for the base case. Suppose now that xm = 0 for some m M. We

### The Relative Proj Construction

The Relative Proj Construction Daniel Murfet October 5, 2006 Earlier we defined the Proj of a graded ring. In these notes we introduce a relative version of this construction, which is the Proj of a sheaf

### Contents. Chapter 3. Local Rings and Varieties Rings of Germs of Holomorphic Functions Hilbert s Basis Theorem 39.

Preface xiii Chapter 1. Selected Problems in One Complex Variable 1 1.1. Preliminaries 2 1.2. A Simple Problem 2 1.3. Partitions of Unity 4 1.4. The Cauchy-Riemann Equations 7 1.5. The Proof of Proposition