MODIFIED CLASS OF RATIO AND REGRESSION TYPE ESTIMATORS FOR IMPUTING SCRAMBLING RESPONSE

Size: px
Start display at page:

Download "MODIFIED CLASS OF RATIO AND REGRESSION TYPE ESTIMATORS FOR IMPUTING SCRAMBLING RESPONSE"

Transcription

1 Pak. J. tatist. 07 Vol. 33(4), MODIFIED CLA OF RATIO AND REGREION TYPE ETIMATOR FOR IMPUTING CRAMBLING REPONE Muhammad Umai ohail, Javid habbi ad hakeel Ahmed Depatmet of tatistis, Quaid-i-Azam Uivesity, Islamabad, Pakista Coespodig autho ABTRACT I this study, we modify the lass of atio ad egessio type estimatos fo imputig samblig espose o the lies of Ahmed et al. (006) ad Mohamed et al. (06). We popose a ew lass of estimatos by usig the highe ode momets of auxiliay ifomatio. Ou poposed lass of estimatos ae moe effiiet as ompaed to existig estimatos. Two umeial studies by usig simulated ad eal life data set at vaious espose ate ae also aied out fo evaluatig the pefomae of poposed lass of estimatos. KEYWORD Mea squae eo, imputatio, vaiae, samblig espose, sesitive vaiable.. INTRODUCTION I most of suveys, the ommo poblem whih eoute was the missig values. Hase ad Huwitz (946) fist time deal with the missig data ad late may studies have bee oued to hadle this poblem. Rubi (976) suggested the vaious imputatio methods, whih make the data stutually omplete. Late igh ad Deo (003) ad Ahmed et al. (006) suggested may imputatio methods to deal with missig data. Usually the o-espose is oued i the soio-eoomi ad politial suveys, whee eseahes ae ofte iteested to ivestigate the sesitive issues of the soiety. Iitially, Wae (965) povide the idea of adomized espose tehique (RRT) to hadle the edued espose ate. The mai oept behid this idea was to seue the twi objetives: (i) to eate the feelig amog the espodets that thei idetity is seued beside thei tuthful espose, (ii) to podue the eliable data to daw the fuitful ifeee about the populatio. Late o may studies have bee oued to impove the effiiey of adomized devie. I this eseah, we oside the samblig model poposed by Gjestvag ad igh th (009), whee the j espodet has two hoies: he a epot Yj j o Yj j with pobability p = ad ( p) = espetively, whee ( ) ( ) Y j ad j be the sesitive ad samblig vaiables espetively, ad ad ae two positive eal umbes. A simple adom sample of size is seleted fom populatio of N uits. 07 Pakista Joual of tatistis 77

2 78 Modified Class of Ratio ad Regessio Type Estimatos.. Coside a dek of ads, whih has the p popotio of ads that beaig statemet: multiplied the samblig vaiable j with ad add the tue value of Y j, ad ( p) be the popotio of ads that beaig the statemet: multiplied the samblig vaiable j with ad subtated it fom the tue value of his espose as: Y j. The th j espodet a epot z = p Y ( p) Y. (.) j j j j j Let E 3 ad V 3 deoted the expeted value ad vaiae due to adom devie. We assume that E3 ( ) = s, 3 ( ) = V s ae kow. o V z j s s 3 ( ) =. Let be the umbe of espodets i subset A i a sample s who povide the espose by usig the above metioed adomize espose model ad ( ) ae those i subset A, who efuse to povide the espose, so, s = A A. Let the sample mea of the samblig espose is give as: z = j=zj. Now we have the Lemma as: Lemma : The vaiae of sample mea is give as: V ( z ) = y ( s s ) N (.) Poof: Let E ad E deote the expeted values fo the give ad, ad V ad V deoted the vaiae fo the give values of ad espetively. By the defiitio of vaiae, we have: V( z ) = E E V ( z ) E V E ( z ) V E E ( z ) = EE V3 z j EV E3 z j V EE3 z j j= j= j= = E E V 3( z j) E V E 3( z j) V E E 3( z j) j= j= j= = E E { ( s s )} E V y j V E y j j= j= j= = E ( s s ) E sy( ) V y j j= j=

3 ohail, habbi ad Ahmed 79 N = ( ) N j= N s s y y = ( s s ) y. N We pove the lemma, so we have the bette appoximatio fo esults.. OME EXITING METHOD OF IMPUTATION FOR CRAMBLING REPONE i) Mohamed et al. (06) z j if j A zˆ j = z x j if j A x The poit estimato is: x y R = z. x ii) Ahmed et al. (006) z j if j A ˆ z = xi x z j z if j A x ( ) x The poit estimato by this model is give as: zx ya. =, 8 x ( ) x (.3) (.) (.) whee is the ostat. iii) Ahmed et al. (006) z j if j A zˆ j = z X z if j A x ( ) X The poit estimato is defied as: zx ya. =, 9 x ( ) X (.3) whee is the ostat.

4 80 Modified Class of Ratio ad Regessio Type Estimatos.. iv) Ahmed et al. (006) z j if j A zˆ j = z X z if j A 3x ( 3) X The poit estimato is defied as: zx ya =, x ( ) X (.4) whee 3 is the ostat. v) Ahmed et al. (006) z j if j A ˆ j = z w ( X x ) z if j A The poit estimato by this model is give as: y A = z 5 w ( X x ), (.5) whee w is the ostat. vi) Ahmed et al. (006) z j if j A ˆ j = z w ( X x ) z if j A The poit estimato by this model is give as: y A = z 6 w ( X x ), (.6) whee w ae the ukow ostat. vii) Mohamed et al. (06) z j if j A zˆ j = ˆ ( ) z s x j x if j A The poit estimato of y Re. is give as: y = z ˆ ( x x ), (.7) Re. s whee ˆ = s j= j j= ( x x)( y j y) is the simple egessio oeffiiet. ( x x) j

5 ohail, habbi ad Ahmed 8 3. MODIFIED ETIMATOR I this setio, we modify the atio ad egessio type estimatos fo imputig samblig espose by usig the highe ode momets of the auxiliay vaiable. The use of the highe ode momets of a auxiliay vaiable play a impotat ole fo the estimatio of populatio paamete of the study vaiable i suvey samplig. The poposed imputatio methods ae give as: i) The fist poposed method of imputatio is z j if j A ( x j x ) ( x j x ) ja Ij = z x j x ( ) ( )( ) z if j A Ix ( I) x I sx( ) ( I ) sx( ) (3.) whee I ad I ae the ukow ostats whose values ae to be detemied. The poit estimato of populatio mea ude poposed method of imputatio, is give as: y = I j= Ij ( x j x ) ( x j x ) ( ) ja ja ja z x j x ( ) ( )( ) ja = ja z j Ix ( I) x I sx( ) ( I ) sx( ) ( ) z ( x j x) ( xj x ) ja ja z{ x x x} ( ) ( ) ( ) = z z Ix ( I) x I sx( ) ( I ) sx( )

6 8 Modified Class of Ratio ad Regessio Type Estimatos.. ( x j x ) ( xi x ) ja z ja x = z x x s s I ( I) I x( ) ( I ) x( ) zxsx( ) = x x s s I ( I) I x( ) ( I ) x( ) z y z xsx( ) I I I I x I x =. x ( ) x s ( ) ( ) s ( ) (3.) The poit estimato give i Equatio (3.) a be used, whe we utilized the sample ifomatio of the auxiliay vaiable to imputig the missig value. ii) The seod poposed method of imputatio is z j if j A = IIj zxx z if j A II x ( II ) X II sx( ) ( II ) x (3.3) whee II ad II ae the ukow ostats whose values ae to be detemied. The poit estimato y is give as: II = II j= IIj y = zxx jaz j j A II x ( II ) X II sx( ) ( II ) x ja z = zxx z z II x ( II ) XII sx( ) ( II ) x

7 ohail, habbi ad Ahmed 83 y zxx = z x X s II ( II ) II x( ) ( II ) x zxx II II II II x II x =. x ( ) X s ( ) ( ) z (3.4) The poit estimato i Equatio (3.4) a be used i situatio, whe populatio mea ad populatio vaiae of the auxiliay vaiable of the auxiliay vaiable ae kow. iii) The thid poposed method of imputatio z j if ja = IIIj zxx z if ja III 3x ( III 3) X III 3 sx( ) ( III 3) x (3.5) whee III 3 ad III 3 ae the ukow ostats, whose values ae to be detemied. The poit estimato of y is give as: III = III j= IIIj y y = zxx jaz j j A III 3x ( III 3) XIII 3 sx( ) ( III 3) x ja z = zxx z z III 3x ( III 3) XIII 3 sx( ) ( III 3) x = zxx z z III 3x ( III 3) X III 3 sx( ) ( III 3) x zxx III III III III x III x =. 3x ( 3) X 3 s ( ) ( 3) (3.6) The poit estimato i Equatio (3.6) a be used, whe the populatio mea ad populatio vaiae ae kow.

8 84 Modified Class of Ratio ad Regessio Type Estimatos.. iv) Fouth poposed method of imputatio IVj z j if j A N N j ( j ) ( j ) = x x X x x j= j= ja z IV 4 x j IV 4 if j A N( ) ja ( )( N ) ( ) (3.7) whee IV 4 ad IV 4 ae ostats, whose values ae to be detemied. The poit estimato of y is give as: IV = IV j= IVj y = N( ) N ja xj j = jaz j ja z IV 4 ja jax j N ( x X ) ( x x ) ja j= IV 4 ( )( N ) ( ) j j ja ja N ( ) ( ) x X x x j= = z ( ) z IV 4X x IV 4 ( N ) ( ) = z IV 4 X x IV 4 { x sx( ) } IV IV 4 IV 4 x x( ) j j js y = z X x s (3.8) The poit estimato i Equatio (3.8) is the egessio imputatio method, is used whe the populatio paametes ( X, ) ae kow. x

9 ohail, habbi ad Ahmed 85 v) Fifth poposed method of imputatio Vj z j if j A N N j j ( i ) ( i ) = x x x X x x j= ja j= ja z V 5 V 5 if j A N( ) ( ) ( )( N ) ( )( ) (3.9) whee V 5 ad V 5 ae the ostat values whose ae to be detemie. The poit estimato of populatio mea is give as: = V j= Vj y N x ja x j j= j A = ja jazj ja z V 5 N( ) ( ) N ( x X ) ( x x ) ja j= V 5 ( )( N ) ( )( ) j j ja ja N ( ) ( ) x X x x j= = z ( ) z V 5 X x V 5 ( N ) ( ) = z V 5 X x V 5 { x sx( ) } V V 5 V 5 x x( ) j j i ja y = z X x s. (3.0) Expessio give i Equatio (3.0), a be used whe populatio mea ad vaiae ae kow. 4. LARGE AMPLE APPROXIMATION Fo evaluatig the bias ad mea squae eo of the estimatos, we defie some useful esults as:

10 86 Modified Class of Ratio ad Regessio Type Estimatos.. Let whee z x x sx( ) sx( ) s xz( ) Y X X x x xy e =, e =, e =, e =, e =, e =, E( ei ) = 0 fo i = 0,,,3, 4,5 To fist ode of appoximatio, we have 0 s s, N y, N x, N x E e = ( ) C, E e = C, E e = C, Y E e =, E e =, E e e = C C, 3, N 04 4, N 04 0, N xy x y 0 =, Nxy x y, 0 3 =, N y, 0 4 = C, E e e = C, E e e C C E e e C E e e, N y, N x 3 =, N x03, 4 =, N x03, 3 = C, E e e = C, E e e C E e e C E e e, N x 03 4, N x , N 04 5, Nxy x 5, Nxy x E e e =, E e e = C, E e e = C, =, =, =, =, =, =, N N N Y j= j C R, N X N, N =,, =, = j=( j )( j ), N N ab N a b ab =, = / / ab j=( y j Y ) ( x j X ), a b N 0 0 whee = x, y ad = x, y. 5. PROPERTIE OF IMPUTATION METHOD I this setio, we defie the popeties of existig ad poposed imputatio methods ude samblig espose as: i) Fom Equatio (.), the bias ad mea squae eo of y. R is give by: Bias( y R ), Y Cx xycxc y (5.) ad ME( y ) ( ) ( R R ). (5.) R, N y s s, y x xy ii) Afte simplifyig the Equatio (.), The bias ad mea squae eo is give as:

11 ohail, habbi ad Ahmed 87 ad. 8, Bias( y) A N Y C x xy C x C y (5.3) A 8, N y, x, xy x y s s ME( y) Y C C C C ( ) whee = Cy xy, C x xy A 8( mi.), N y, s s x ME( y) ( ). (5.4) iii) By solvig the Equatio (.3), bias ad mea squae a be appoximated as: ad A 9, N x xy x y Bias( y) Y ( C C C ) (5.5) A 9, N y, N x, N xy x y s s ME( y) C C C C ( ) whee = Cy xy, so C x xy A 9( mi.), N y, N s s x ME( y) ( ). (5.6) iv) By solvig the Equatio (.4), bias ad mea squae a be appoximated as: ad A 0, N 3 x 3 x y Bias( y) Y ( C C C ) (5.7) A 0, N y, N 3 x, N 3 x y s s ME( y) C C C C ( ) whee 3 = Cy xy, so C x xy ME( y) A 0(.), Ny ( ). mi s s (5.8) x v) Fo Equatio (.5), the mea squae eo a be omputed as: A 5, N y, N x, N xy s s V( y) w w ( ) (5.9) whee w = xy, so x A 5( mi.), N y, N xy s s V ( y ) ( ). (5.0)

12 88 Modified Class of Ratio ad Regessio Type Estimatos.. vi) Fo Equatio (.6), the mea squae eo a be omputed as: A 6, N y x xy s s V( y) ( w w ) ( ) (5.) whee w = xy x, so V ( y ) ) ( ). (5.) A 6( mi.), N xy s s vii) The bias ad mea squae eo of y Re. ae give as by solvig Equatio (.7): Bias (5.3) ad ME( y Re. )( mi.), N y ( s s ), y xy. (5.4) 5. Modified Imputatio Methods The Equatio (3.) i tem of eo a be witte as: y Y ( e0 ) X ( e ) x ( e4 ) = I I I I x I x X ( e ) ( ) X ( e ) ( e3 ) ( ) ( e4 ) 0 4 I I I 3 I 4 = Y ( e )( e )( e ){ e ( ) e } ( e ( ) e ) = Y ( e )( e )( e ) ( e ( ) e ) ( e ( ) e ) 0 4 I I I I ( e ( ) e ) ( e ( ) e ) I 3 I 4 I 3 I 4 = Y ( e )( e )( e ) ( e ( ) e ) ( e ( ) e ) 0 4 I I I I ( e e ) ( e ( ) e ) I 3 I 4 I 3 I 4 Afte implifiatio, we have I 3 I 4 I 3 I 4 I I 3 4 I = Y e ( ) e e ( ) e ( ) e e e I I ee 3 I( I) e e4 ( I) e I( I) ee3 I I ee4 Ie ( I) e I( I) ee 4 Ie3e4 ( I) e4 Ie e4 ( I) ee4 e Iee3 I ee4 Ie e ( I) e ee4 e0 Ie0e3 ( I) e0e4 Ie0e ( I) e0e e0e4 ( )( ) e Afte simplifiatio ( )., I 0 Bias( y) N YE I e e e, NYE I Ie e3 Ie0e3 Ie3 Ie e0e

13 ohail, habbi ad Ahmed 89, NY ICx xycxcy ( ), NY I ICx 03 ICy I( 04 ) ICx xycxcy (5.5) Fo mea squae eo, it a be desibe as 0 I I I 4 3 ME( y) Y E e ( e e ) ( e e ) 0 I( ) I( 4 3) Y E e e e e e I Afte simplifiatio, we have e ( e e ) e ( e e ) ( e e )( e e ) 0 I I I 4 3 I, N y s s, y I x I 04 I xycxcy ICy I ICx 03 ME( y) ( ) Y C C ( ) (5.6) The optimum values of the ukow ostats ae detemied by miimizig the mea squaed eo. The optimum value fo I ad I is give as ( ) = ad =, ( ) ( ) xy 04 y x 03 y x xy 03 I I Rx xy (5.7) Afte substitutig the optimum value of II ad II i Equatio (5.5), we have ( mi.), N y I s s ME( y) ( ). xy ( 04 ) xy 03, y The Equatio (3.4) i tem of eo a be desibe as y Y ( e0 ) Xx = II II II II x II x X ( e ) ( ) X ( e4 ) ( ) 0 II II 4 = Y ( e )( e ) ( e ) ad to fist ode appoximatio ad = ( 0)( II II ) ( II 4 II 4 ) II ( ), N II x II ( 04 ) II II II Cx 03 II xycxcy II Cy y Y e e e e e Bias y Y C (5.8) (5.9)

14 90 Modified Class of Ratio ad Regessio Type Estimatos.. 0 II II II 4 ME( y) Y E( e e e ) 0 II II 4 II 0 II 0 4 II II 4 Y E e e e e e e e e e Afte simplifiatio, we have II s s, N y, N II x II 04 ME( y) ( ) Y C ( ) (5.0) II xycxcy II Cy II II Cx 03 ad the optimum values of II ad II ae give as ( ) = ad =, xy 04 y x 03 y x xy 03 II II Rx( 04 03) Yx( 04 03) (5.) Puttig he optimum values of II ad II fom Equatio (5.) put i (5.0), so we have ( ). ( mi.), N y II s s ME y xy ( 04 ) xy 03, N y The Equatio (3.6) i tem of eo a be defied as y Y ( e0 ) Xx = III III III III x III x 3X ( e ) ( 3) X 3 ( e3 ) ( 3). = ( 0)( 3 ) III ( III 3 3) III y Y e e e ad fo fist ode appoximatio ad y = Y ( e ) e e e e III 0 III 3 III 3 III 3 3 III 3 3 ( ), N III 3 x III 3( 04 ) III III 3III 3 x 03 III 3 xycxcy III 3Cy Bias y Y C C (5.) (5.3) 0 III III 3 III 3 3 ME( y) Y E( e e e ) 0 III 3 III 3 3 III 3 0 III III 3 III 3 3 Y E( e e e e e e e e e ) Afte simplifiatio, we have

15 ohail, habbi ad Ahmed 9 III s s, N y III 3 x III 3 04 III 3 xycxcy III 3Cy III 3 III Cx 03 ME( y) ( ) Y C C ( ) (5.4) ad the optimum values of II ad II ae give as ( ) = ad =, xy 04 y x 03 y x xy 03 III 3 III 3 Rx( 04 03) Yx( 04 03) substitutig the Equatio (5.5) i (5.4), so (5.5) xy ( 04 ) xy 03 ME( y) ( mi.) ( s s ), N y. III (5.6) The vaiae of ( y ). IV i tems of eo is defied as. 0 IV E Y e0 IV 4X e IV 4xe4 IV 4YXe 0e V ( y) E Y e IV Xe IV x e IV 4Y x e0e4 IV 4 IV 4Xx ee 3 Afte simplifiatio, we have 4 IV s s, N y, N IV 4 x IV 4 x 04 V ( y) ( ) ( ) 3 IV 4xy IV 4x y IV 4 IV 4x 03 (5.7) optimum values of IV 4 ad IV 4 ae give as ( ) = ad =, xy 04 y x 03 y x xy 03 IV 4 IV 4 3 x( 04 03) x( 04 03) Afte simplifiatio, we have ( xy 03) V y (.) s s, N y, N IV mi y xy (5.8) ( ) ( ). (5.9) The vaiae of y i tem of eo is defied as V V ( y) E Y e0 V 5 X X ( e ) V 5 x x ( e3 ) V E Y e0 V 5Xe V 5xe 3

16 9 Modified Class of Ratio ad Regessio Type Estimatos.. 4 Y e0 V 5X e V 5xe3 V 5YXe0e E V 5Yx e0e3 V 5V 5 Xx e e3 Afte simplifiatio, we have V s s, N y V 5 x x 04 V ( y) ( ) ( ) 3 V 5xy V 5x y V 5 V 5x 03 (5.30) optimum values of V 5 ad V 5 ae give as ( ) = ad =, xy 04 y x 03 y x xy 03 V5 V5 3 x( 04 03) x( 04 03) Afte simplifiatio, we have ( xy 03) V y (.) s s, N V mi y xy ( ) ( ). 5. Theoetial Compaiso (5.3) (5.3) I this setio, we osideed the theoetial ompaiso of the poposed method with the mea imputatio method is give as ( ) ( ) o ( ) > 0 i) V y ME y ME y I ( mi.) III ( mi.) xy 04 xy 03 ( ) > 0 (5.33) ii) V( y) ME( y). > 0 N N II ( mi.) xy ( 04 ) xy >0 (5.34) iv) V ( y) ME( y) o ME( y) (.) > 0 IV mi V ( mi.) ( xy03 ) xy >0 (5.35) Ou study pla is pefom bette as ompae to the mea imputatio method, if the above metiooditio ae satisfied. Futhe thei pefomae a be illustated umeially i the ext setio.

17 ohail, habbi ad Ahmed APPLICATION The umeially ompaiso of the poposed imputatio method is osideed by used the simulated ad eal life data set as: 6. Empiial tudy Fo the empiial study, we oside the followig steps as follow: tep : We geeate 000 adom umbes usig bivaiate omal distibutio. A simple adom sample of size 00 is seleted fom the populatio of 000 uits ad suppose that 70 out of 00 samples a povide the espose ad we wat to impute the values fo the emaiig uits who does ot povide the espose. Y =.6968, X = 9.939, = , y x = , xy =.93743, xy = , = 0.0,, IV 4 = V5 = 0.03 = 0.04, = = 3 = , = = 0.04, I = = = 0.890, = = 0.046, II III 3 IV 4 V 5 = = = I II III 3 tep : We epeat the poess of seletio of the sample times. Thus we obtai the values of the y k. tep 3: Fo bias ad mea squae eo, we used the follow expessio: g= ykg Bias( y ) = k Y (6.) ad fo mea squae eo, we have ME( y ) = k g = ( ykg Y ) (6.) Fo aessig the pefomae of existig ad poposed estimatos with espet to mea, we oside the followig expessio as: ME( y) M. P. R. E( i) = 00 (6.3) M. E( yk ) whee i =,,3,,3 ad k = R, Re, A,, A,, A,, A,, A,. 6 V 8 I 9 II 5 IV 0 III

18 94 Modified Class of Ratio ad Regessio Type Estimatos.. Table Bias, ME ad Peetage Relative Effiiey ( i ). Estimatos Bias ME Effiiey % Existig Imputatio Methods Mea Imputatio Method y M Ratio Imputatio Methods y R. y y y Regessio Imputatio Methods y y y Re Poposed Imputatio Methods Ratio Imputatio Methods y I y II y III Regessio Imputatio Methods y IV y V I Table, we easily udestad that, the bias, mea squae eo ad peetage elative effiieies of existig ad poposed estimatos. I olum, the value of bias of all the estimatos is expessed i fot of thei espetive estimato. The value of bias of the y M., is miimum as ompae to all othe estimatos. I olum ad 3, the mea squae eo ad peetage elative effiieies ae expessed. The mea squae eo of the atio estimato is 0.00 ( % ), fo y is (50.98 % ), fo y is ( % ), fo 9 0 fo the y. 6 A 5 8 y the value is ( % ) ad, the value of mea squae eo is ( % ), fo the estimato y (3.690 % ) ad fo egessio estimato the value is ( % ). The value of mea squae eo fo the poposed imputatio methods is, y is ( % ), fo y. is ( % ), fo y. fo. I II III

19 ohail, habbi ad Ahmed 95 the value is ( % ), fo y is (3.883 % ) ad fo y IV V is ( % ). The quatity iside the baes shows the amout of peetage elative effiiey elative to mea imputatio method. If oelatio betwee the both the study ad the auxiliay vaiable is high tha ou poposed lass of imputatio methods a pefom bette as ompae to othe existig estimato. The fifth method imputatio a pefom outstadig as ompae to othe methods, but othe methods of imputatio ae also pefom elatively bette as ompae to mea imputatio method. Fo the othe values of the paametes, aothe simulatio study is osideed ude the poedue whih was desibed above at the vayig espose. The values of the paamete ae give as Y =.6368, X = 9.93, = , y x xy xy = , =.9375, = , = 0.0, = 0.04, = = 3 = 0.0, = = 0.0, = = = 0.836, = = , I II III 3 IV 4 V 5 = = = 0.045, = = I II III 3 IV 4 V 5 Table Bias, ME ad Peetage Relative Effiiey( i ) fo Vaious Respose Rate Bias ME Effiiey% Existig Imputatio Method Mea Imputatio Method y M Ratio Imputatio Method y R y y y Regessio Imputatio Method y y y Re

20 96 Modified Class of Ratio ad Regessio Type Estimatos.. Bias ME Effiiey% Poposed Imputatio Method Ratio Imputatio Method y I y II y III Regessio Imputatio Method y IV y V. Existig Imputatio Method Mea Imputatio Method y M Ratio Imputatio Method y R y y y Regessio Imputatio Method y y y Re Poposed Imputatio Method Ratio Imputatio Method y I y II y III Regessio Imputatio Method y IV y V.

21 ohail, habbi ad Ahmed 97 Bias ME Effiiey% Existig Imputatio Method Mea Imputatio Method y M Ratio Imputatio Method y R y y y Regessio Imputatio Method y y y Re Poposed Imputatio Method Ratio Imputatio Method y I y II y III Regessio Imputatio Method y IV y V. I Table, we aied out the simulatio study ove the vaious espose ate to aess out the pefomae of the existee estimatos. It is otied that ou poposed lass of estimatos is pefom bette as ompae tha thei outepat. 6. Real Life Appliatio Fo the eal life appliatio, we use the data set of FEV.DAT whih was attah with the text Rose (05). Fo this eseah wok we oside the FEVstatus ad age of the hilde as the study ad auxiliay vaiable espetively. Fom the populatio of 654 hilde, we selet the sample of size 65 uits fo this study. The data desiptio is give i Table. Table 3 Disiptive tatitsis of Vaiables (FEV ad Age). Vaiable Co. Mii. st Qu. Media Mea st 3 Qu. Max. t.dev. FEV Age

22 98 Modified Class of Ratio ad Regessio Type Estimatos.. I Table 3, the oelatio value betwee betwee the study ad auxiliay vaiable is The miimum ad maximum values of the study ad the auxiliay vaiable is 0.79 ad 5.793, 3 ad 9 espetively. The mea ad stadad deviatio of the both vaiables is.637 ad 0.867, ad.964 espetively. Fo aessig the pefomae of existig ad poposed imputatio methods, we use the expessio whih is give i Equatio (6.3) with diffeet values of,,, ad. s s s s = 0.00, 0.00, 0.900, 0.090, = 0.00, 0.00, 0.400, 0.040, 0.5. = 0.090, 0.0, 0.50, 0.80, 0.0. = 0.00, 0.080, 0.060, 0.040ad0.00. I Table 4 (see Appedix): we shows the PRE() i ove the diffeet values of s s,, ad at vayig espose (3.08% 9.3%) by usig the eal life data set. The maximum P. R. E( i ) of the k estimato is 76.7%, 30.47%, %, 5.865%, 8.797%, 90.88%,3.839%, %,3.839%, 4.757%, % ad 5.865% espetively. I etie ombiatio of the s, s, ad with ou poposed estimato a pefom bette as ompae to the existig elated estimatos. 7. CONCLUION Based o the esults of Table, ad 4, we obseved that, ou poposed imputatio methods a pefom bette as ompae to all of the existig imputatio methods. Futhemoe, we otie that the estimatos, (amely y, y III ) have the highe V level of effiiey as ompae to othe poposed imputatio methods. Oveall by the use of highe ode momets of the auxiliay vaiable would lead to impove the effiiey of imputatio methods. I Table 4, we see that by the use of highe ode momets of the auxiliay vaiable ove the diffeet values of s, s, ad povide moe peise esults as ompae to the existig estimatos. Fom ou small sale study, we oluded that the poposed estimatos a pefom bette as ompae to the existig estimato. We see by ompaiso of Table ad Table 4, the behavio of poposed lass of estimatos i empiial study ad i eal life data set is quite simila but we see some of the flutuatio i esults of empiial study ad eal life data beause i simulatio study ou esults ae based o some kid of imagiatios but i eal life these imagiatios may o may ot be aeptable, so thei is slightly vaiability exists. As a whole, ou poposed lass of estimatos ude simulated ad empiial study a pefomed bette as ompae to existig estimatos. ACKNOWLEDGEMENT The authos ae thakful to the efeees fo thei suggestios, whih led to the impovemet of this atile.

23 ohail, habbi ad Ahmed 99 REFERENCE. Ahmed, M., Al-Titi, O., Al-Rawi, Z. ad Abu-Dayyeh, W. (006). Estimatio of a populatio mea usig diffeet imputatio methods. tatistis i Tasitio, 7, 6: 47, 64.. Gjestvag, C.R. ad igh, (009). A impoved adomized espose model: estimatio of mea. Joual of Applied tatistis, 36(), Hase, M.H. ad Huwitz, W.N. (946). The poblem of o-espose i sample suveys. Joual of the Ameia tatistial Assoiatio, 4(36), Mohamed, C., edoy, ad igh, (06). Compaiso of Diffeet Imputig Methods fo ambled Resposes. Hadbook of tatistis, 34, Rose, B. (05). Fudametals of Biostatistis, Nelso Eduatio. 6. Rubi, D.B. (976). Ifeee ad missig data. Biometika, 63(3), igh, ad Deo, B. (003). Imputatio by powe tasfomatio. tatistial Papes, 44(4), Wae, L. (965). Radomized espose: A suvey tehique fo elimiatig evasive aswe bias. Joual of the Ameia tatistial Assoiatio, 60(309),

24 300 Modified Class of Ratio ad Regessio Type Estimatos.. RR μ s APPENDIX Table 4: P.R.E(i) Values ude Diffeet ituatios η γ s P.R.E () P.R.E () P.R.E (3) P.R.E (4) P.R.E (5) P.R.E (6) P.R.E (7) P.R.E (8) P.R.E (9) P.R.E(0) P.R.E() P.R.E()

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Chapter 2 Sampling distribution

Chapter 2 Sampling distribution [ 05 STAT] Chapte Samplig distibutio. The Paamete ad the Statistic Whe we have collected the data, we have a whole set of umbes o desciptios witte dow o a pape o stoed o a compute file. We ty to summaize

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

This web appendix outlines sketch of proofs in Sections 3 5 of the paper. In this appendix we will use the following notations: c i. j=1.

This web appendix outlines sketch of proofs in Sections 3 5 of the paper. In this appendix we will use the following notations: c i. j=1. Web Appedix: Supplemetay Mateials fo Two-fold Nested Desigs: Thei Aalysis ad oectio with Nopaametic ANOVA by Shu-Mi Liao ad Michael G. Akitas This web appedix outlies sketch of poofs i Sectios 3 5 of the

More information

Latticed pentamode acoustic cloak (supplementary Info)

Latticed pentamode acoustic cloak (supplementary Info) Lattied petamode aousti loak (supplemetay Ifo) Yi Che, Xiaoig Liu ad Gegkai Hu Key Laboatoy of yamis ad Cotol of Flight Vehile, Miisty of Eduatio, Shool of Aeospae Egieeig, Beiig Istitute of Tehology,

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u Natioal Jio College Mathematics Depatmet 00 Natioal Jio College 00 H Mathematics (Seio High ) Seqeces ad Seies (Lecte Notes) Topic : Seqeces ad Seies Objectives: At the ed of this topic, stdets shold be

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Math 166 Week-in-Review - S. Nite 11/10/2012 Page 1 of 5 WIR #9 = 1+ r eff. , where r. is the effective interest rate, r is the annual

Math 166 Week-in-Review - S. Nite 11/10/2012 Page 1 of 5 WIR #9 = 1+ r eff. , where r. is the effective interest rate, r is the annual Math 66 Week-i-Review - S. Nite // Page of Week i Review #9 (F-F.4, 4.-4.4,.-.) Simple Iteest I = Pt, whee I is the iteest, P is the picipal, is the iteest ate, ad t is the time i yeas. P( + t), whee A

More information

Introduction to the Theory of Inference

Introduction to the Theory of Inference CSSM Statistics Leadeship Istitute otes Itoductio to the Theoy of Ifeece Jo Cye, Uivesity of Iowa Jeff Witme, Obeli College Statistics is the systematic study of vaiatio i data: how to display it, measue

More information

Fitting the Generalized Logistic Distribution. by LQ-Moments

Fitting the Generalized Logistic Distribution. by LQ-Moments Applied Mathematical Scieces, Vol. 5, 0, o. 54, 66-676 Fittig the Geealized Logistic Distibutio by LQ-Momets Ai Shabi Depatmet of Mathematic, Uivesiti Teologi Malaysia ai@utm.my Abdul Aziz Jemai Scieces

More information

Lecture 3 : Concentration and Correlation

Lecture 3 : Concentration and Correlation Lectue 3 : Cocetatio ad Coelatio 1. Talagad s iequality 2. Covegece i distibutio 3. Coelatio iequalities 1. Talagad s iequality Cetifiable fuctios Let g : R N be a fuctio. The a fuctio f : 1 2 Ω Ω L Ω

More information

ELEMENTARY AND COMPOUND EVENTS PROBABILITY

ELEMENTARY AND COMPOUND EVENTS PROBABILITY Euopea Joual of Basic ad Applied Scieces Vol. 5 No., 08 ELEMENTARY AND COMPOUND EVENTS PROBABILITY William W.S. Che Depatmet of Statistics The Geoge Washigto Uivesity Washigto D.C. 003 E-mail: williamwsche@gmail.com

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline OPTIMAL ESTIMATORS FOR THE FIITE POPULATIO PARAMETERS I A SIGLE STAGE SAMPLIG Detailed Outlie ITRODUCTIO Focu o implet poblem: We ae lookig fo a etimato fo the paamete of a fiite populatio i a igle adom

More information

is monotonically decreasing function of Ω, it is also called maximally flat at the

is monotonically decreasing function of Ω, it is also called maximally flat at the Le.8 Aalog Filte Desig 8. Itodtio: Let s eview aalog filte desig sig lowpass pototype tasfomatio. This method ovets the aalog lowpass filte with a toff feqey of adia pe seod, alled the lowpass pototype,

More information

Minimization of the quadratic test function

Minimization of the quadratic test function Miimizatio of the quadatic test fuctio A quadatic fom is a scala quadatic fuctio of a vecto with the fom f ( ) A b c with b R A R whee A is assumed to be SPD ad c is a scala costat Note: A symmetic mati

More information

Some Properties of the K-Jacobsthal Lucas Sequence

Some Properties of the K-Jacobsthal Lucas Sequence Deepia Jhala et. al. /Iteatioal Joual of Mode Scieces ad Egieeig Techology (IJMSET) ISSN 349-3755; Available at https://www.imset.com Volume Issue 3 04 pp.87-9; Some Popeties of the K-Jacobsthal Lucas

More information

Homologous Stars: Simple Scaling Relations

Homologous Stars: Simple Scaling Relations Homologous Stas: Simple Salig elatios Covetig the equatios of stella stutue fom diffeetial to diffeee equatios, effetively doig dimesioal aalysis ad assumig self-simila solutios, we a extat simple geeal

More information

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables The Multivaiate-t distibutio ad the Simes Iequality by Hey W. Block 1, Saat K. Saka 2, Thomas H. Savits 1 ad Jie Wag 3 Uivesity of ittsbugh 1,Temple Uivesity 2,Gad Valley State Uivesity 3 Abstact. Saka

More information

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8.

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8. Mathematics. Solved Eamples JEE Mai/Boads Eample : Fid the coefficiet of y i c y y Sol: By usig fomula of fidig geeal tem we ca easily get coefficiet of y. I the biomial epasio, ( ) th tem is c T ( y )

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

Department of Mathematics, IST Probability and Statistics Unit

Department of Mathematics, IST Probability and Statistics Unit Depatmet of Mathematics, IST Pobability ad Statistics Uit Reliability ad Quality Cotol d. Test ( Recuso) st. Semeste / Duatio: hm // 9:AM, Room V. Please justify you aswes. This test has two pages ad fou

More information

ZERO - ONE INFLATED POISSON SUSHILA DISTRIBUTION AND ITS APPLICATION

ZERO - ONE INFLATED POISSON SUSHILA DISTRIBUTION AND ITS APPLICATION ZERO - ONE INFLATED POISSON SUSHILA DISTRIBUTION AND ITS APPLICATION CHOOKAIT PUDPROMMARAT Depatmet of Sciece, Faculty of Sciece ad Techology, Sua Suadha Rajabhat Uivesity, Bagkok, Thailad E-mail: chookait.pu@ssu.ac.th

More information

The Application of a Maximum Likelihood Approach to an Accelerated Life Testing with an Underlying Three- Parameter Weibull Model

The Application of a Maximum Likelihood Approach to an Accelerated Life Testing with an Underlying Three- Parameter Weibull Model Iteatioal Joual of Pefomability Egieeig Vol. 4, No. 3, July 28, pp. 233-24. RAMS Cosultats Pited i Idia The Applicatio of a Maximum Likelihood Appoach to a Acceleated Life Testig with a Udelyig Thee- Paamete

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis Geeal Pape ARKIVOC 009 (xi 85-03 Supplemetay mateials Suzui eactio: mechaistic multiplicity vesus exclusive homogeeous o exclusive heteogeeous catalysis Aa A. Kuohtia, Alexade F. Schmidt* Depatmet of Chemisty

More information

16 Modeling a Language by a Markov Process

16 Modeling a Language by a Markov Process K. Pommeening, Language Statistics 80 16 Modeling a Language by a Makov Pocess Fo deiving theoetical esults a common model of language is the intepetation of texts as esults of Makov pocesses. This model

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

12.6 Sequential LMMSE Estimation

12.6 Sequential LMMSE Estimation 12.6 Sequetial LMMSE Estimatio Same kid if settig as fo Sequetial LS Fied umbe of paametes (but hee they ae modeled as adom) Iceasig umbe of data samples Data Model: [ H[ θ + w[ (+1) 1 p 1 [ [[0] [] ukow

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uivesity of Hawaii ICS141: Discete Mathematics fo Compute Sciece I Dept. Ifomatio & Compute Sci., Uivesity of Hawaii Ja Stelovsy based o slides by D. Bae ad D. Still Oigials by D. M. P. Fa ad D. J.L. Goss

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - PROGRESSIONS CONTENTS Be able to apply algebaic techiques Aithmetic pogessio (AP): fist

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

On the Poisson Approximation to the Negative Hypergeometric Distribution

On the Poisson Approximation to the Negative Hypergeometric Distribution BULLETIN of the Malaysian Mathematical Sciences Society http://mathusmmy/bulletin Bull Malays Math Sci Soc (2) 34(2) (2011), 331 336 On the Poisson Appoximation to the Negative Hypegeometic Distibution

More information

LET a random variable x follows the two - parameter

LET a random variable x follows the two - parameter INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING ISSN: 2231-5330, VOL. 5, NO. 1, 2015 19 Shinkage Bayesian Appoach in Item - Failue Gamma Data In Pesence of Pio Point Guess Value Gyan Pakash

More information

Generalized Near Rough Probability. in Topological Spaces

Generalized Near Rough Probability. in Topological Spaces It J Cotemp Math Scieces, Vol 6, 20, o 23, 099-0 Geealized Nea Rough Pobability i Topological Spaces M E Abd El-Mosef a, A M ozae a ad R A Abu-Gdaii b a Depatmet of Mathematics, Faculty of Sciece Tata

More information

SHIFTED HARMONIC SUMS OF ORDER TWO

SHIFTED HARMONIC SUMS OF ORDER TWO Commu Koea Math Soc 9 0, No, pp 39 55 http://dxdoiog/03/ckms0939 SHIFTED HARMONIC SUMS OF ORDER TWO Athoy Sofo Abstact We develop a set of idetities fo Eule type sums I paticula we ivestigate poducts of

More information

Bayesian Analysis of Topp-Leone Distribution under Different Loss Functions and Different Priors

Bayesian Analysis of Topp-Leone Distribution under Different Loss Functions and Different Priors J. tat. Appl. Po. Lett. 3, No. 3, 9-8 (6) 9 http://dx.doi.og/.8576/jsapl/33 Bayesian Analysis of Topp-Leone Distibution unde Diffeent Loss Functions and Diffeent Pios Hummaa ultan * and. P. Ahmad Depatment

More information

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

BINOMIAL THEOREM & ITS SIMPLE APPLICATION Etei lasses, Uit No. 0, 0, Vadhma Rig Road Plaza, Vikas Pui Et., Oute Rig Road New Delhi 0 08, Ph. : 9690, 87 MB Sllabus : BINOMIAL THEOREM & ITS SIMPLE APPLIATION Biomia Theoem fo a positive itegal ide;

More information

4. PERMUTATIONS AND COMBINATIONS

4. PERMUTATIONS AND COMBINATIONS 4. PERMUTATIONS AND COMBINATIONS PREVIOUS EAMCET BITS 1. The umbe of ways i which 13 gold cois ca be distibuted amog thee pesos such that each oe gets at least two gold cois is [EAMCET-000] 1) 3 ) 4 3)

More information

r, this equation is graphed in figure 1.

r, this equation is graphed in figure 1. Washigto Uivesity i St Louis Spig 8 Depatmet of Ecoomics Pof James Moley Ecoomics 4 Homewok # 3 Suggested Solutio Note: This is a suggested solutio i the sese that it outlies oe of the may possible aswes

More information

On Size-Biased Logarithmic Series Distribution and Its Applications

On Size-Biased Logarithmic Series Distribution and Its Applications 7 The Ope Statistics ad Pobability Joual, 9,, 7-7 O Size-Bied Logaithmic Seies Distibutio ad Its Applicatios Ope Access Khushid Ahmad Mi * Depatmet of Statistics, Govt. College (Boys, Baamulla, Khmi, Idia

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI avtei EXAMPLES Solutios of AVTE by AVTE (avtei) lass XI Leade i BSE oachig 1 avtei SHORT ANSWER TYPE 1 Fid the th tem i the epasio of 1 We have T 1 1 1 1 1 1 1 1 1 1 Epad the followig (1 + ) 4 Put 1 y

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

Lower Bounds for Cover-Free Families

Lower Bounds for Cover-Free Families Loe Bouds fo Cove-Fee Families Ali Z. Abdi Covet of Nazaeth High School Gade, Abas 7, Haifa Nade H. Bshouty Dept. of Compute Sciece Techio, Haifa, 3000 Apil, 05 Abstact Let F be a set of blocks of a t-set

More information

More Properties of Semi-Linear Uniform Spaces

More Properties of Semi-Linear Uniform Spaces pplied Mathematis 25 6 69-75 Published Olie Jue 25 i SiRes http://wwwsipog/oual/am http://dxdoiog/4236/am256697 Moe Popeties of Semi-Liea Uifom Spaes Depatmet of Mathematis l-balqa pplied Uivesity lsalt

More information

RELIABILITY ASSESSMENT OF SYSTEMS WITH PERIODIC MAINTENANCE UNDER RARE FAILURES OF ITS ELEMENTS

RELIABILITY ASSESSMENT OF SYSTEMS WITH PERIODIC MAINTENANCE UNDER RARE FAILURES OF ITS ELEMENTS Y Geis ELIABILITY ASSESSMENT OF SYSTEMS WITH PEIODIC MAINTENANCE UNDE AE FAILUES OF ITS ELEMENTS T&A # (6) (Vol) 2, Mach ELIABILITY ASSESSMENT OF SYSTEMS WITH PEIODIC MAINTENANCE UNDE AE FAILUES OF ITS

More information

EXTENDED POWER LINDLEY DISTRIBUTION: A NEW STATISTICAL MODEL FOR NON-MONOTONE SURVIVAL DATA

EXTENDED POWER LINDLEY DISTRIBUTION: A NEW STATISTICAL MODEL FOR NON-MONOTONE SURVIVAL DATA Euopea Joual of Statistics ad Pobability Vol.3, No.3, pp.9-34, Septembe 05 Published by Euopea Cete fo Reseach Taiig ad Developmet UK (www.eajouals.og) ETENDED POWER LINDLEY DISTRIBUTION: A NEW STATISTICAL

More information

Multiple Experts with Binary Features

Multiple Experts with Binary Features Multiple Expets with Binay Featues Ye Jin & Lingen Zhang Decembe 9, 2010 1 Intoduction Ou intuition fo the poect comes fom the pape Supevised Leaning fom Multiple Expets: Whom to tust when eveyone lies

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

Optimal Subsampling for Large Sample Logistic Regression

Optimal Subsampling for Large Sample Logistic Regression Optimal Subsamplig fo Lage Sample Logistic Regessio Abstact Fo massive data, the family of subsamplig algoithms is popula to dowsize the data volume ad educe computatioal bude. Existig studies focus o

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

I PUC MATHEMATICS CHAPTER - 08 Binomial Theorem. x 1. Expand x + using binomial theorem and hence find the coefficient of

I PUC MATHEMATICS CHAPTER - 08 Binomial Theorem. x 1. Expand x + using binomial theorem and hence find the coefficient of Two Maks Questios I PU MATHEMATIS HAPTER - 08 Biomial Theoem. Epad + usig biomial theoem ad hece fid the coefficiet of y y. Epad usig biomial theoem. Hece fid the costat tem of the epasio.. Simplify +

More information

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable.

This Technical Note describes how the program calculates the moment capacity of a noncomposite steel beam, including a cover plate, if applicable. COPUTERS AND STRUCTURES, INC., BERKEEY, CAIORNIA DECEBER 001 COPOSITE BEA DESIGN AISC-RD93 Techical te This Techical te descibes how the ogam calculates the momet caacit of a ocomosite steel beam, icludig

More information

Taylor Transformations into G 2

Taylor Transformations into G 2 Iteatioal Mathematical Foum, 5,, o. 43, - 3 Taylo Tasfomatios ito Mulatu Lemma Savaah State Uivesity Savaah, a 344, USA Lemmam@savstate.edu Abstact. Though out this pape, we assume that

More information

A New Method of Estimation of Size-Biased Generalized Logarithmic Series Distribution

A New Method of Estimation of Size-Biased Generalized Logarithmic Series Distribution The Open Statistics and Pobability Jounal, 9,, - A New Method of Estimation of Size-Bied Genealized Logaithmic Seies Distibution Open Access Khushid Ahmad Mi * Depatment of Statistics, Govt Degee College

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

APPLIED THERMODYNAMICS D201. SELF ASSESSMENT SOLUTIONS TUTORIAL 2 SELF ASSESSMENT EXERCISE No. 1

APPLIED THERMODYNAMICS D201. SELF ASSESSMENT SOLUTIONS TUTORIAL 2 SELF ASSESSMENT EXERCISE No. 1 APPIED ERMODYNAMICS D0 SEF ASSESSMEN SOUIONS UORIA SEF ASSESSMEN EXERCISE No. Show how the umeti effiiey of a ideal sigle stage eioatig ai omesso may be eeseted by the equatio ( / Whee is the leaae atio,

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

Estimation of the Correlation Coefficient for a Bivariate Normal Distribution with Missing Data

Estimation of the Correlation Coefficient for a Bivariate Normal Distribution with Missing Data Kasetsat J. (Nat. Sci. 45 : 736-74 ( Estimation of the Coelation Coefficient fo a Bivaiate Nomal Distibution with Missing Data Juthaphon Sinsomboonthong* ABSTRACT This study poposes an estimato of the

More information

On randomly generated non-trivially intersecting hypergraphs

On randomly generated non-trivially intersecting hypergraphs O adomly geeated o-tivially itesectig hypegaphs Balázs Patkós Submitted: May 5, 009; Accepted: Feb, 010; Published: Feb 8, 010 Mathematics Subject Classificatio: 05C65, 05D05, 05D40 Abstact We popose two

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Article Properties of Risk Measures of Generalized Entropy in Portfolio Selection

Article Properties of Risk Measures of Generalized Entropy in Portfolio Selection Atile Popeties of Risk Measues of Geealized Etopy i Potfolio Seletio Rogxi Zhou, Xiao Liu 2, *, Mei Yu ad Kyle Huag 3 Shool of Fiae ad Bakig, Uivesity of Iteatioal Busiess ad Eoomis, Beijig 29, Chia; zhoux@uibeedu

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem!

SVD ( ) Linear Algebra for. A bit of repetition. Lecture: 8. Let s try the factorization. Is there a generalization? = Q2Λ2Q (spectral theorem! Liea Algeba fo Wieless Commuicatios Lectue: 8 Sigula Value Decompositio SVD Ove Edfos Depatmet of Electical ad Ifomatio echology Lud Uivesity it 00-04-06 Ove Edfos A bit of epetitio A vey useful matix

More information

Received 17 August 2015; accepted 22 September 2015; published 25 September 2015

Received 17 August 2015; accepted 22 September 2015; published 25 September 2015 Ameica Joual of Computatioal Mathematics, 05, 5, 393 404 Published Olie Septembe 05 i SciRes. http://www.scip.og/joual/ajcm http://d.doi.og/0.436/ajcm.05.53034 A Compaative Stud o Numeical Solutios of

More information

COMPARING MORE THAN TWO POPULATION MEANS: AN ANALYSIS OF VARIANCE

COMPARING MORE THAN TWO POPULATION MEANS: AN ANALYSIS OF VARIANCE COMPARING MORE THAN TWO POPULATION MEANS: AN ANALYSIS OF VARIANCE To see how the piniple behind the analysis of vaiane method woks, let us onside the following simple expeiment. The means ( 1 and ) of

More information

Generalizations and analogues of the Nesbitt s inequality

Generalizations and analogues of the Nesbitt s inequality OCTOGON MATHEMATICAL MAGAZINE Vol 17, No1, Apil 2009, pp 215-220 ISSN 1222-5657, ISBN 978-973-88255-5-0, wwwhetfaluo/octogo 215 Geealiatios ad aalogues of the Nesbitt s iequalit Fuhua Wei ad Shahe Wu 19

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information