Lec 13 Review of Video Coding

Size: px
Start display at page:

Download "Lec 13 Review of Video Coding"

Transcription

1 Sprng 017 Multmeda Communcaton Lec 13 Revew of Vdeo Codng Zhu L Course Web: Z. L Multmeda Communcaton, Sprng 017 p.1

2 Outlne About the Quz Monday, 03/09, 309 Format: Close book, no cell phone, no computer, calculator allowed, One page summary sheet encouraged and wll be graded as extra credt. Revew of Part I: Vdeo Codng Info Theory & Entropy Huffman and Golomb Codng Arthmetc Codng Transforms Quantzaton Vdeo Sgnal Processng Vdeo Codng Systems Rate-Dstorton Optmzaton Z. L Multmeda Communcaton, Sprng 017 p.

3 Entropy, Condtonal Entropy, Mutual Info Self Info of an event X = x k = log Pr X = x k = log(p k ) Entropy of a source H X = k p k log( 1 p k ) Condtonal Entropy, Mutual Informaton H X 1 X = H X 1, X H(X ) I X 1, X = H X 1 + H X H X 1, X Relatve Entropy Total area: H(X, Y) Man applcaton: Context Modelng a b c b c a b c b a b c b a D(p q = k p k log p k q k H(X Y) I(X; Y) H(Y X) H(X) H(Y) Z. L Multmeda Communcaton, Sprng 017 p.3

4 Lossless Prefx Codng Prefx Codng Codes on leaves No code s prefx of other codes Smple encodng/decodng Root node 0 1 Internal node leaf node Kraft- McMllan Inequalty: For a codng scheme wth code length: l 1, l, l n, k l k 1 Gven a set of nteger length {l 1, l, l n } that satsfy above nequalty, we can always fnd a prefx code wth code length l 1, l, l n Proof: by countng the number of offsprng leaf nodes Z. L Multmeda Communcaton, Sprng 017 p.4

5 Hoffmann Codng Hoffman Codng: teratve sort and merge to create a bnary tree, assgnng the bt value along the way, reverse for code Example Source alphabet A = {a 1, a, a 3, a 4, a 5 }, Probablty dstrbuton: {0., 0.4, 0., 0.1, 0.1} Sort merge Sort merge Sort merge Sort merge 1 a (0.4) a1(0.) a3(0.) a4(0.1) a5(0.1) Assgn code Z. L Multmeda Communcaton, Sprng 017 p.5

6 Golomb Code q: Quotent, n used unary code q Codeword qm r n m m r r: remander, fxed-length code K bts f m = ^k m=8: 000, 001,, 111 If m ^k: (not desred) log m log m bts for smaller r bts for larger r m = 5: 00, 01, 10, 110, 111 Z. L Multmeda Communcaton, Sprng 017 p.6

7 JPEG Transform Codng Block (8x8 pel) based codng DCT transform to fnd sparse representaton Quantzaton reflects human vsual system Zg-Zag scan to convert D to 1D strng Run-Level pars to have even more compact representaton Hoffman Codng on Level Category Fxed on the Level wth n the category = * Quant Table: Z. L Multmeda Communcaton, Sprng 017 p.7

8 Codng of AC Coeffcents Zgzag scannng: Example Example: zgzag scannng result EOB (Run, level) representaton: (0, 4), (0, -31), (1, -4), (0, -), (1, 6), (0, -1), (3, -1), (0, -1), (3, ), (0, -), (5, -1), EOB Z. L Multmeda Communcaton, Sprng 017 p.8

9 Encodng: CDF: F x ()=[ ] T(X)=( )/=0.553 P(X)= 0.014; l(x)=6 bts Code: (0.553) = Essental of Arthmetc Codng LOW=0.0, HIGH=1.0; whle (not EOF) { n = ReadSymbol(); RANGE = HIGH - LOW; HIGH = LOW + RANGE * CDF(n); LOW = LOW + RANGE * CDF(n-1); } output LOW; T(X) Z. L Multmeda Communcaton, Sprng 017 p.9

10 Adaptve Bn Arthmetc Codng Bnary sequence: Intal counters for 0 s and 1 s: C(0)=C(1)=1. P(0)=P(1)=0.5 After encodng 0: C(0)=, C(1)= P(0)=/3, P(1)=1/ After encodng 01: C(0)=, C(1)=. P(0)=1/, P(1)=1/ After encodng 011: C(0)=, C(1)=3. P(0)=/5, P(1)=3/5 After encodng 0111: C(0)=, C(1)= P(0)=1/3, P(1)=/3. Encode Z. L Multmeda Communcaton, Sprng 017 p.10

11 Adaptve Bn Arthmetc Decodng Input Intal counters for 0 s and 1 s: C(0)=C(1)=1 P(0)=P(1)=0.5 Decode 0 After decodng 0: C(0)=, C(1)=1. P(0)=/3, P(1)=1/3 Decode 1 After decodng 01: C(0)=, C(1)=. P(0)=1/, P(1)=1/ Decode 1 After decodng 011: C(0)=, C(1)=3. P(0)=/5, P(1)=3/5 Decode 1 After decodng 0111: C(0)=, C(1)=4. P(0)=1/3, P(1)=/3. Decode 1 Z. L Multmeda Communcaton, Sprng 017 p.11

12 Untary Transforms y=ax, x,y n R d, A: dxd y = A= y = x [a 1T, a T,, a T d ] d k=1 a k T x Inner product<x, a k > Untary Transforms: A s untary f: A -1 =A T, AA T = I d The bass of A s orthogonal to each other Examples: < aj, ak > = 0 < a k, a k > = cos sn sn cos Z. L Multmeda Communcaton, Sprng 017 p.1

13 Untary Transform Propertes Preserve Energy: y = Ax A T A = I x = y y = Ax = Ax T Ax = x T A T Ax = x T Ix = x Preserve Angles: the angles between vectors are preserved untary transform: rotate a vector n R n,.e., rotate the bass coordnates DoF of Untary Transforms k-dmenson projectons n d-dmensonal space: kd k. Above example: 3x-x = ; normal ponts to the unt sphere n Z. L Multmeda Communcaton, Sprng 017 p.13

14 Energy Compacton and De-correlaton Energy Compacton Many common untary transforms tend to pack a large fracton of sgnal energy nto just a few transform coeffcents De-correlaton Hghly correlated nput elements qute uncorrelated output coeffcents Covarance matrx R yy = Cov y = E{ y E y y E{y} T } DCT Example: y=dct(x), Queston: Is there an optmal transform that do best n ths? x 1,x,, x 600 R xx y 1,y,, y 600 R yy lnear dsplay scale: g x: columns of mage pxels dsplay scale: log(1+abs(g)) Z. L Multmeda Communcaton, Sprng 017 p.14

15 Karhunen-Loève Transform (KLT)/PCA a untary transform wth the bass vectors n A beng the orthonormalzed egenvectors of R xx y = Ax, x = A T y A T = [a 1, a,, a d ] R xx a k = λ k a k, k = 1,,, d assume real nput, wrte A T nstead of A H denote the nverse transform matrx as A, AA T =I R x s symmetrc for real nput, Hermtan for complex nput.e. R xt =R x, R xh = R x R x nonnegatve defnte,.e. has real non-negatve egen values Attrbutons Kar Karhunen 1947, Mchel Loève 1948 a.k.a Hotellng transform (Harold Hotellng, dscrete formulaton 1933) a.k.a. Prncple Component Analyss (PCA, estmate R x from samples) Z. L Multmeda Communcaton, Sprng 017 p.15

16 Propertes of K-L Transform Decorrelaton by constructon: R y = E{yy T } = E Axx T A T = AR xx A T = λ 1 λ λ 3 a j T R xx a k = 0, f j! = k λ k, f j = k Mnmzng Error under lmted coeffcents reconstructon Bass restrcton: Keep only a subset of m transform coeffcents and then perform nverse transform (1 m N) Keep the coeffcents w.r.t. the egenvectors of the frst m largest egenvalues (ndcaton of energy) Z. L Multmeda Communcaton, Sprng 017 p.16

17 Scalar Quantzaton Unform Quantzer & Dstortons Dstorton Metrcs: MSE Unform Q MSE: d xˆ x f ( x) dx y x 0 M b 1 b 1 f ( x) dx d M x dx M / Z. L Multmeda Communcaton, Sprng 017 p.17

18 Scalar Quantzaton Non-Unform Scalar Quantzaton Intuton: denser samplng at hgher pdf regon Formulaton: mnmze d() over {b k, y k }, take Lagrangan and va KKT condton: Z. L Multmeda Communcaton, Sprng 017 p.18 x f(x) M k b b k k k k k dx x f x y dx x f x x y b d 1 1 ) ( ) ( ˆ }), ({ 0 ) ( ) ( y y b b f b y b f b y b d b b b b dx x f dx x f x I X X E y y d 1 1 ) ( ) ( 0 y s the centrod!

19 Vector Quantzer A more optmal soluton, better approx. R-D nfo theoretcal boundary kmeans() % desred rate R=8; [ndx, vq_codebook]=kmeans(x, ^R); kd-tree mplementaton [kdt.ndx, kdt.leafs, kdt.mbox]=buldvsualwordlst(x, ^R); [node, prefx_code]=searchvsualwordlst(q, kdt.ndx, kdt.leafs); Z. L Multmeda Communcaton, Sprng 017 p.19

20 Quantzaton Error Metrcs: MSE, SNR Varance of a random varable unformly dstrbuted n [- L/, L/]: Let M = R, each bn ndex can be represented by R bts. SNR( db) 10log 10log R db X X max x 10 max / M Sgnal Energy Nose Energy L/ L/ x 0 dx L 10log 1 L 10 M 10log log 1/1 X 1/1 10 R max (0 log 10 ) R PSNR = 10 log 10 x max nose energy = 10 log MSE Z. L Multmeda Communcaton, Sprng 017 p.0

21 Vdeo Sgnal Processng: Color Space Samplng RGB components of an mage have strong correlaton. Can be converted to YUV space for better compresson. HVS s more senstve to the detals of brghtness than color. Can down-sample color components to mprove compresson. Luma sample Chroma sample YUV 4:4:4 No downsamplng Of Chroma MPEG-1 MPEG- YUV 4:: YUV 4::0 :1 horzontal downsamplng :1 horzontal downsamplng of chroma components of chroma components chroma samples for 1 chroma sample for every every 4 luma samples 4 luma samples Z. L Multmeda Communcaton, Sprng 017 p.1

22 Vdeo Sgnal Processng: Moton Estmaton Implemented as nt pel resoluton exhaustve search n moton_estmaton.m Z. L Multmeda Communcaton, Sprng 017 p.

23 Vdeo Sgnal Codng Structure: I, P, and B Frames I P P P P P P GoP I B B P B B P I frames (Key frames): GoP Intra-coded frame, coded as a stll mage. Can be decoded drectly. Used at GOP head, or at scene changes. Allow random access, mproves error reslence. P frames: (Inter-coded frames) Predcated from the prevous frame. B frames: B-drectonal nterpolated predcton frames Predcted from both the prevous frame and the next frame: more flexbltes better predcton. Useful when new objects come nto the scene. Z. L Multmeda Communcaton, Sprng 017 p.3

24 Sub-pxel Moton Estmaton Sx-tap flter for half-pxel samples: h = [ (E 5F + 0G + 0H 5 I + J) + 16 ] / 3 Smlar operaton for v n vertcal drecton. x = [ (v1 5 v + 0 v3 + 0 v4 5 v5 + v6) + 16 ] / 3 E F G h H I J v1 v v3 x v4 v5 v6 B-lnear flter for 1/4-pxel samples: Matlab: blnearinterpoloaton.m Z. L Multmeda Communcaton, Sprng 017 p.4

25 Fast Search n Moton Estmaton Damond Patter Search Ref: [11] Renxang L, Bng Zeng, Mng L. Lou, A new three-step search algorthm for block moton estmaton, IEEE Trans. Crcuts Syst. Vdeo Tech vol.4(4): (1994). [top 10 cted T-CSVT paper] [1] S. Zhu, K.-K. Ma, A new damond search algorthm for fast block-matchng moton estmaton, IEEE Transactons on Image Processng vol.9(): (000). Z. L Multmeda Communcaton, Sprng 017 p.5

26 Vdeo Sgnal Processng: Intra Predcton Much more modes DC mode: copy DC values from neghbor Planar mode: top row or left col average Angular: pxels on certan lne Ref: Jan Lanema, Frank Bossen, Woojn Han, Junghye Mn, Kemal Ugur, Intra Lke a sparse transform bass! Codng of the HEVC Standard. IEEE Trans. Crcuts Syst. Vdeo Tech. (1): (01) Z. L Multmeda Communcaton, Sprng 017 p.6

27 Vdeo Sgnal Processng: Deblockng Flter Reduce blockng artfact n the reconstructed frames Can mprove both subjectve and objectve qualty Flter n H.61: [1/4, 1/, 1/4]: Appled to non-block-boundary pxels n each block. A low-pass smoothng flter. In H.64 (and H.63v), ths s used n the predcton loop to mprove moton estmaton accuracy. Decoder needs to do the same. Also called loop flter. H.64: 4x4 block level Before. and After H.65: 8x4 block level Z. L Multmeda Communcaton, Sprng 017 p.7

28 Vdeo Sgnal Processng: Sample Adaptve Offset (SAO) Classfy pxels on block edge as one of the four categores Offset ts pxel value accordngly Z. L Multmeda Communcaton, Sprng 017 p.8

29 HEVC Codng Structure Quad Tree Decomposton: Slde Credt: Vvenne Sze & Madhukar Budagav, ISCAS 014 Tutoral Ref: G. Schuster, PhD Thess, 1996: Optmal Allocaton of Bts Among Moton, Segmentaton and Resdual Z. L Multmeda Communcaton, Sprng 017 p.9

30 HEVC Codng Tools HEVC (H.65) vs AVC (H.64) Credt: Vvenne Sze & Madhukar Budagav, ISCAS 014 Tutoral Z. L Multmeda Communcaton, Sprng 017 p.30

31 Predcton Unt (PU) PU: Basc Unt for Transform & Quantzaton Z. L Multmeda Communcaton, Sprng 017 p.31

32 Transform Unt (TU) TU Square blocks for transform & quantzaton/codng, sze: 4x4, 8x8, 16x16, 3x3 MaxTU sze: 3 for luma, 16 for chroma Mn TU sze: 4x4 for both luma and chroma TU sze can be larger than PU for nter PU case (MV merge) Z. L Multmeda Communcaton, Sprng 017 p.3

33 Lagrangan Relaxaton Method Prmal Problem: Lagrangan: KKT Condton: Statonary: mn x Complementary Slackness: D(x) s. t. R x C L x, λ = D x + λ(r x C) L(x, λ ) x = 0, λ = D(x ) R(x ) Slope s D/R gradent λ D x = 0, λ = 0, R x < C Constrant not tght λ > 0, R x = C, λ = δd(x )/δr(x ) Constrant tght Z. L Multmeda Communcaton, Sprng 017 p.33

34 Operatonal Rate-Dstorton Theory Operatonal R-D optmzaton: D C RD functon ORD functon operatng ponts ORD convex hull Gves the operatonal R-D performance curve. {Q j }: operatng ponts assocated wth codng decsons and parameters Optmzaton: select operatng ponts that mnmzes dstorton for a gven rate, or mnmzng rate for a gven dstorton. Lagrangan method reduced the DoF to 1 mn x k D x k, s. t, R x k C mn x k R x k, s. t, D x k D max R Z. L Multmeda Communcaton, Sprng 017 p.34

35 Codng Model Decson H.63 Example Possble modes: 4 INTRA: code the MB as ntra block, no moton estmaton. SKIP: Use the co-located MB n the prevous frame as the reconstructon for the current MB. INTER 1MV: Use 1 moton vector for the MB, encode the MV and resdual. INTER 4MV: Use 4 moton vectors for the MB. One for each 8x8 block. Model decson objectve functon J D REC ( MB, MODE Q) R ( MB, MODE Q) k MODE REC k Lagrangan Estmaton from QP Rate Model R REC () Dstorton Model D REC () MODE Q) ( Q Z. L Multmeda Communcaton, Sprng 017 p.35

36 Dstorton Model Unform Quantzer Model: D( Q) 1 N N Q Dstorton from Encodng: MSE n mse = 1 n k x k x k PSNR psnr = 10log 10 x max mse Z. L Multmeda Communcaton, Sprng 017 p.36

37 ρ-doman Lnear Rate Model It has been observed that the bt rate of all typcal transform codng systems, such as JPEG, SPIHT, H.63 and MPEG- can be modeled as a lnear functon of ρ: R( ) (1 ) Ө s related to source content. R(ρ) 1 ρ Z. L Multmeda Communcaton, Sprng 017 p.37

38 Summary Entropy Measure of uncertanty of a source Condtonal reduces entropy foundaton for context modelng n lossless codng (HW-, Q.c) Golomb and Arthmetc Codng ExpGolomb Codng s a good approx. of Geometrc Dstrbuton source, whch s usually true for resdual error ExpGolomb s lke a bnarzaton soluton, x R d [ ] Arthmetc Codng wth Prob Adaptaton: Update the P.M.F on the fly Context Aware Arthmetc Codng: Condtonal Entropy Codng Transform & Quantzaton Transform de-correlate the source, becomes a collecton of scalar sgnals Quantzaton tes to the human vsual system Optmal energy compacton/de-correlatng transform: KLT Z. L Multmeda Communcaton, Sprng 017 p.38

39 Summary Vdeo Sgnal Processng Moton Estmaton: Block Based, Sub-Pel Accuracy ME Fast Moton Estmaton Intra Predcton: specal dctonary lke codng De-Blockng: remove Codng block boundary effects SAO: bas removal, not really flterng Vdeo Codng Systems HEVC: CTU, CU, PU, TU, how they together provdes codng effcency? R-D Optmzaton: how to avod exhaustve search of all operatng ponts? Lagrangan method: Convex-Hull Optmal Soluton Rate Model Lnear Transform Doman Stats Based Dstorton Model and Metrc Lagrangan Estmaton. Z. L Multmeda Communcaton, Sprng 017 p.39

40 Part II: Vdeo Streamng and Networkng Tentatve Topcs: QoE Metrcs: Referenced, Lght Reference, and Reference-less QoE metrcs Vdeo over Multple Access Networks : Resource Prcng Soluton, DP+Lagrangan Framework MPEG Systems: Fle Format (MP4Box), Streamng Soluton (DASH.js), MMT Meda Transport: RTP/RTSP, HTTP/WebSocket, WebRTC, and QUIC Congeston Measure and Modelng n Meda Networkng Error Correcton Codng PP Systems Content Identfcaton and Info Centrc Networkng Z. L Multmeda Communcaton, Sprng 017 p.40

Lec 13 Review of Video Coding

Lec 13 Review of Video Coding CS/EE 5590 / ENG 401 Specal Topcs (17804, 17815, 17803) Lec 13 Revew of Vdeo Codng Zhu L Course Web: http://l.web.umkc.edu/lzhu/teachng/016sp.vdeo-communcaton/man.html Z. L Multmeda Communcaton, 016 Sprng

More information

Lec 12 Rate-Distortion Optimization (RDO) in Video Coding-II

Lec 12 Rate-Distortion Optimization (RDO) in Video Coding-II Sprng 07: Multmeda Communcaton Lec ate-dstorton Optmzaton (DO) n Vdeo Codng-II Zhu L Course Web: http://l.web.umkc.edu/lzhu/ Z. L Multmeda Communcaton, Sprng 07 p. Outlne Lec ecap Lagrangan Method HW-3

More information

Lec 07 Transforms and Quantization II

Lec 07 Transforms and Quantization II Outlne CS/EE 559 / ENG 4 Specal Topcs (784, 785, 78) Lec 7 Transforms and Quantzaton II Lecture 6 Re-Cap Scalar Quantzaton Vector Quantzaton Zhu L Course We: http://l.we.umkc.edu/lzhu/teachng/6sp.vdeo-communcaton/man.html

More information

Transform Coding. Transform Coding Principle

Transform Coding. Transform Coding Principle Transform Codng Prncple of block-wse transform codng Propertes of orthonormal transforms Dscrete cosne transform (DCT) Bt allocaton for transform coeffcents Entropy codng of transform coeffcents Typcal

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Chapter 8 SCALAR QUANTIZATION

Chapter 8 SCALAR QUANTIZATION Outlne Chapter 8 SCALAR QUANTIZATION Yeuan-Kuen Lee [ CU, CSIE ] 8.1 Overvew 8. Introducton 8.4 Unform Quantzer 8.5 Adaptve Quantzaton 8.6 Nonunform Quantzaton 8.7 Entropy-Coded Quantzaton Ch 8 Scalar

More information

Lec 02 Entropy and Lossless Coding I

Lec 02 Entropy and Lossless Coding I Multmeda Communcaton, Fall 208 Lec 02 Entroy and Lossless Codng I Zhu L Z. L Multmeda Communcaton, Fall 208. Outlne Lecture 0 ReCa Info Theory on Entroy Lossless Entroy Codng Z. L Multmeda Communcaton,

More information

Entropy Coding. A complete entropy codec, which is an encoder/decoder. pair, consists of the process of encoding or

Entropy Coding. A complete entropy codec, which is an encoder/decoder. pair, consists of the process of encoding or Sgnal Compresson Sgnal Compresson Entropy Codng Entropy codng s also known as zero-error codng, data compresson or lossless compresson. Entropy codng s wdely used n vrtually all popular nternatonal multmeda

More information

CSE4210 Architecture and Hardware for DSP

CSE4210 Architecture and Hardware for DSP 4210 Archtecture and Hardware for DSP Lecture 1 Introducton & Number systems Admnstratve Stuff 4210 Archtecture and Hardware for DSP Text: VLSI Dgtal Sgnal Processng Systems: Desgn and Implementaton. K.

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Compression in the Real World :Algorithms in the Real World. Compression in the Real World. Compression Outline

Compression in the Real World :Algorithms in the Real World. Compression in the Real World. Compression Outline Compresson n the Real World 5-853:Algorthms n the Real World Data Compresson: Lectures and 2 Generc Fle Compresson Fles: gzp (LZ77), bzp (Burrows-Wheeler), BOA (PPM) Archvers: ARC (LZW), PKZp (LZW+) Fle

More information

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant Tutoral 2 COMP434 ometrcs uthentcaton Jun Xu, Teachng sstant csjunxu@comp.polyu.edu.hk February 9, 207 Table of Contents Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Flexible Quantization

Flexible Quantization wb 06/02/21 1 Flexble Quantzaton Bastaan Klejn KTH School of Electrcal Engneerng Stocholm wb 06/02/21 2 Overvew Motvaton for codng technologes Basc quantzaton and codng Hgh-rate quantzaton theory wb 06/02/21

More information

Adaptive Pre-Interpolation Filter for Motion-Compensated Prediction

Adaptive Pre-Interpolation Filter for Motion-Compensated Prediction Adaptve Pre-Interpolaton Flter for Moton-Compensated Predcton Je Dong and Kng Ng Ngan Department of Electronc Engneerng The Chnese Unverst of Hong Kong ISCAS011 Ma 15-18 011 Ro de Janero Brazl Motvaton

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider:

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider: Flterng Announcements HW2 wll be posted later today Constructng a mosac by warpng mages. CSE252A Lecture 10a Flterng Exampel: Smoothng by Averagng Kernel: (From Bll Freeman) m=2 I Kernel sze s m+1 by m+1

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Invariant deformation parameters from GPS permanent networks using stochastic interpolation

Invariant deformation parameters from GPS permanent networks using stochastic interpolation Invarant deformaton parameters from GPS permanent networks usng stochastc nterpolaton Ludovco Bag, Poltecnco d Mlano, DIIAR Athanasos Dermans, Arstotle Unversty of Thessalonk Outlne Startng hypotheses

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Microwave Diversity Imaging Compression Using Bioinspired

Microwave Diversity Imaging Compression Using Bioinspired Mcrowave Dversty Imagng Compresson Usng Bonspred Neural Networks Youwe Yuan 1, Yong L 1, Wele Xu 1, Janghong Yu * 1 School of Computer Scence and Technology, Hangzhou Danz Unversty, Hangzhou, Zhejang,

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Hierarchical State Estimation Using Phasor Measurement Units

Hierarchical State Estimation Using Phasor Measurement Units Herarchcal State Estmaton Usng Phasor Measurement Unts Al Abur Northeastern Unversty Benny Zhao (CA-ISO) and Yeo-Jun Yoon (KPX) IEEE PES GM, Calgary, Canada State Estmaton Workng Group Meetng July 28,

More information

Asymptotic Quantization: A Method for Determining Zador s Constant

Asymptotic Quantization: A Method for Determining Zador s Constant Asymptotc Quantzaton: A Method for Determnng Zador s Constant Joyce Shh Because of the fnte capacty of modern communcaton systems better methods of encodng data are requred. Quantzaton refers to the methods

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Introduction to information theory and data compression

Introduction to information theory and data compression Introducton to nformaton theory and data compresson Adel Magra, Emma Gouné, Irène Woo March 8, 207 Ths s the augmented transcrpt of a lecture gven by Luc Devroye on March 9th 207 for a Data Structures

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11 ECE 472/572 - Dgtal Image Processng Lecture 6 Geometrc and Radometrc Transformaton 09/27/ Roadmap Introducton Image format vector vs. btmap IP vs. CV vs. CG HLIP vs. LLIP Image acquston Percepton Structure

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras CS4495/6495 Introducton to Computer Vson 3C-L3 Calbratng cameras Fnally (last tme): Camera parameters Projecton equaton the cumulatve effect of all parameters: M (3x4) f s x ' 1 0 0 0 c R 0 I T 3 3 3 x1

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Lec 05 Arithmetic Coding

Lec 05 Arithmetic Coding ECE 5578 Multimedia Communication Lec 05 Arithmetic Coding Zhu Li Dept of CSEE, UMKC web: http://l.web.umkc.edu/lizhu phone: x2346 Z. Li, Multimedia Communciation, 208 p. Outline Lecture 04 ReCap Arithmetic

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

En Route Traffic Optimization to Reduce Environmental Impact

En Route Traffic Optimization to Reduce Environmental Impact En Route Traffc Optmzaton to Reduce Envronmental Impact John-Paul Clarke Assocate Professor of Aerospace Engneerng Drector of the Ar Transportaton Laboratory Georga Insttute of Technology Outlne 1. Introducton

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

New rate adaptation method for JPEG2000-based SNR Scalable Video Coding with Integer Linear Programming models

New rate adaptation method for JPEG2000-based SNR Scalable Video Coding with Integer Linear Programming models New rate adaptaton method for JPEG2000-based SNR Scalable Vdeo Codng wth Integer Lnear Programmng models Lvo Lma #1, Renata Mansn, Rccardo Leonard #2 # Sgnal Processng Group Department of Electroncs for

More information

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen Meshless Surfaces presented by Nloy J. Mtra An Nguyen Outlne Mesh-Independent Surface Interpolaton D. Levn Outlne Mesh-Independent Surface Interpolaton D. Levn Pont Set Surfaces M. Alexa, J. Behr, D. Cohen-Or,

More information

Switched Quasi-Logarithmic Quantizer with Golomb Rice Coding

Switched Quasi-Logarithmic Quantizer with Golomb Rice Coding http://dx.do.org/10.5755/j01.ee.3.4.1877 Swtched Quas-Logarthmc Quantzer wth Golomb Rce Codng Nkola Vucc 1, Zoran Perc 1, Mlan Dncc 1 1 Faculty of Electronc Engneerng, Unversty of Ns, Aleksandar Medvedev

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Assessing inter-annual and seasonal variability Least square fitting with Matlab: Application to SSTs in the vicinity of Cape Town

Assessing inter-annual and seasonal variability Least square fitting with Matlab: Application to SSTs in the vicinity of Cape Town Assessng nter-annual and seasonal varablty Least square fttng wth Matlab: Applcaton to SSTs n the vcnty of Cape Town Francos Dufos Department of Oceanography/ MARE nsttute Unversty of Cape Town Introducton

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radal-Bass uncton Networs v.0 March 00 Mchel Verleysen Radal-Bass uncton Networs - Radal-Bass uncton Networs p Orgn: Cover s theorem p Interpolaton problem p Regularzaton theory p Generalzed RBN p Unversal

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Novel Pre-Compression Rate-Distortion Optimization Algorithm for JPEG 2000

Novel Pre-Compression Rate-Distortion Optimization Algorithm for JPEG 2000 Novel Pre-Compresson Rate-Dstorton Optmzaton Algorthm for JPEG 2000 Yu-We Chang, Hung-Ch Fang, Chung-Jr Lan, and Lang-Gee Chen DSP/IC Desgn Laboratory, Graduate Insttute of Electroncs Engneerng Natonal

More information