Здесь могла бы быть ваша реклама.

Size: px
Start display at page:

Download "Здесь могла бы быть ваша реклама."

Transcription

1 Здесь могла бы быть ваша реклама.

2 Maxim Eingorn & Alexander Zhuk Living In A World Without Multidimensional Kaluza-Klein Models Song: The Rasmus Living In A World Without You

3 Theodor Franz Eduard Kaluza (November 9, 1885 January 19, 1954) In April, 1919 Kaluza noticed that when he solved Albert Einstein s equations for general relativity using five dimensions, then James Clark Maxwell s equations for electromagnetism emerged spontaneously. ( [1] Kaluza Th. Zum Unitätsproblem in der Physik. // Sitzungsber. Preuss. Akad. Wiss P Song: The Rasmus & Anette Olzon October And April

4 Oskar Benjamin Klein (September 15, 1894 February 5, 1977) In 196 Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius. ( [] Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie. // Zeitschrift für Physik Vol. 37. P An alternative Oscar

5 Multidimensional Kaluza-Klein Models Kaluza-Klein theory (KK theory) is a model that seeks to unify the two fundamental forces of gravitation and electromagnetism. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This extra dimension is a compact set and the phenomenon of having a space-time with compact dimensions is referred to as compactification. Even in the absence of a completely satisfying theoretical physics framework, the idea of exploring extra, compactified, dimensions is of considerable interest in the experimental physics and astrophysics communities. A variety of predictions, with real experimental consequences, can be made (in the case of large extra dimensions/warped models). For example, on the simplest of principles, one might expect to have standing waves in the extra compactified dimension(s). If a spatial extra dimension is of radius R, the invariant mass of such standing waves would be M n =nh/(rc) with n an integer... This set of possible mass values is often called the Kaluza-Klein tower. A table lamp The Eiffel Tower 55 cm, 69

6 Nima Arkani-Hamed (April 5, 197) The paradigm (the ADD-model) of large extra dimensions (with G.Dvali and S.Dimopoulos). [3] Arkani-Hamed N., Dimopoulos S. and Dvali G. The hierarchy problem and new dimensions at a millimeter. // Phys. Lett. B Vol P. 63 7; arxiv:hep-ph/ A leading Canadian-American theoretical physicist with interests in high-energy physics, string theory and cosmology. (

7 Savas Dimopoulos (195) A Greek particle physicist well-known for his work on constructing theories beyond the Standard Model, which are currently being searched for and tested at particle colliders and in other experiments. ( MSSM = Minimal Supersymmetric Standard Model [4] Arkani-Hamed N., Dimopoulos S. and Dvali G. Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. // Phys. Rev. D Vol. 59, ; arxiv:hep-ph/

8 ( [5] Antoniadis I., Arkani-Hamed N., Dimopoulos S. and Dvali G. New dimensions at a millimeter to a fermi and superstrings at a TeV. // Phys. Lett. B Vol. 49. P ; arxiv:hep-ph/ Georgi (Gia) Dvali (1964) Best known for the ADD-model, which he proposed together with N.Arkani-Hamed and S.Dimopoulos in It is a scenario inspired by string theory to explain the relative weakness of gravity to other forces, in which the Standard Model fields are confined to a (3+1)-dimensional membrane but gravity can also propagate in additional transverse spatial dimensions that are compact but may be as large as one-tenth of a millimeter. In this framework quantum gravity, string theory and black holes may be experimentally investigated at the Large Hadron Collider.

9 Arkani-Hamed N. Dimopoulos S. Dvali G. [3] The hierarchy problem and new dimensions at a millimeter Abstract Eric Theodore Cartman from South Park

10 [4] Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity Abstract [5] New dimensions at a millimeter to a fermi and superstrings at a TeV Abstract Kenny McCormick from South Park Song: Слот Они убили Кенни

11 [6] Arkani-Hamed N., Dimopoulos S., Kaloper N. and Sundrum R. A small Cosmological Constant from a Large Extra Dimension. // Phys. Lett. B Vol P ; arxiv:hep-th/ Abstract [7] Arkani-Hamed N., Dimopoulos S., Kaloper N. and March-Russell J. Early inflation and cosmology in theories with sub-millimeter dimensions. // arxiv:hep-ph/ Abstract Mr. Mackey from South Park

12 [8] Arkani-Hamed N., Dimopoulos S., Dvali G. and Kaloper N. Infinitely large new dimensions. // Phys. Rev. Lett Vol. 84. P ; arxiv:hep-th/ Abstract [9] Arkani-Hamed N., Dimopoulos S., Kaloper N. and March-Russell J. Rapid asymmetric inflation and early cosmology in theories with sub-millimeter dimensions. // Nucl. Phys. B Vol P ; arxiv:hep-ph/ Abstract Plotting paper

13 String Theory String theory is a developing theory in particle physics that attempts to reconcile quantum mechanics and general relativity. It is a candidate for the theory of everything (TOE), a manner of describing the known fundamental forces and matter in a mathematically complete system. The theory has yet to make testable experimental predictions, which a theory must do in order to be considered a part of science. String theory mainly posits that the electrons and quarks within an atom are not 0-dimensional objects, but rather 1-dimensional oscillating lines ( strings ). The earliest string model, the bosonic string, incorporated only bosons, although this view developed to the superstring theory, which posits that a connection (a supersymmetry ) exists between bosons and fermions. String theories also require the existence of several extra, unobservable, dimensions to the universe, in addition to the usual four spacetime dimensions. Jim Parsons/Sheldon Cooper in The Big Bang Theory. (

14 Five major string theories were formulated. The main difference between each of them was the number of dimensions. Then a unification of all previous superstring theories, called M-theory, was proposed, which asserted that strings are really 1-dimensional slices of a -dimensional membrane vibrating in 11-dimensional space. As a result of the many properties and principles shared by these approaches, their mutual logical consistency and the fact that some easily include the standard model of particle physics, some mathematical physicists believe that string theory is a step towards the correct fundamental description of nature. Nevertheless, other prominent physicists have criticized string theory for not providing any quantitative experimental predictions. String theory can be formulated in terms of an action principle which describes how strings move through space and time. In the absence of external interactions, string dynamics are governed by tension and kinetic energy, which combine to produce oscillations. The quantum mechanics of strings implies these oscillations take on discrete vibrational modes, the spectrum of the theory. theory of everything (TOE) vs. king of nothing (KON), an adaption of the age old saying Jack of all trades, master of none

15 Since the string theory is widely believed to be a consistent theory of quantum gravity, many hope that it correctly describes our universe, making it a theory of everything. On distance scales larger than the string radius, each oscillation mode behaves as a different species of particle, with its mass, spin and charge determined by the string s dynamics. Splitting and recombination of strings correspond to particle emission and absorption, giving rise to the interactions between particles. Marco Leonardi, José Antonio Domínguez Banderas and Enrique Miguel Iglesias Preysler in Once Upon a Time in Mexico Songs: Enrique Iglesias Not In Love and Antonio Banderas Cancion Del Mariachi An analogy for strings modes of vibration is a guitar string s production of multiple but distinct musical notes. In the analogy, different notes correspond to different particles. The only difference is the guitar is only -dimensional; you can strum it up, and down. In actuality the guitar strings would be every dimension, and the strings could vibrate in any direction, meaning that the particles could move through not only our dimension, but other dimensions as well.

16 String Theory and extra dimensions Two different ways have been proposed. The first is to compactify extra dimensions. 6 or 7 extra dimensions are so small as to be undetectable by present day experiments. Another possibility is that we are stuck in a (1+3)-dimensional (three spatial dimensions plus the time dimension) subspace of the full universe. Gravity acting in the hidden dimensions affects other non-gravitational forces such as electromagnetism. In fact, Kaluza s early work demonstrated that general relativity in five dimensions actually predicts the existence of electromagnetism. Superstring Theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. (

17 Our physical space is observed to have only three large dimensions... However, nothing prevents a theory from including more than 4 dimensions. In the case of string theory consistency requires spacetime to have 10 (1+3+6) dimensions. The conflict between observation and theory is resolved by making the unobserved dimensions compactified. Our minds have difficulty visualizing higher dimensions because we can only move in 3 spatial dimensions. One way of dealing with this limitation is not to try to visualize higher dimensions at all, but just to think of them as extra numbers in the equations that describe the way the world works. This opens the question of whether these extra numbers can be investigated directly in any experiment. Superstring theory is not the first theory to propose extra spatial dimensions; the Kaluza-Klein theory had done so previously. ( Christopher D Olier Reeve (September 5, 195 October 10, 004) in Superman

18 Classical tests of multidimensional gravity: negative result [10] Eingorn M. and Zhuk A. Classical tests of multidimensional gravity: negative result. // Class. Quant. Grav Vol. 7, 05014; arxiv:gr-qc/ Classical gravitational tests: 1. the frequency shift;. the perihelion shift; 3. the deflection of light. General Relativity is in good agreement with experiments. What about Kaluza-Klein models? Topology: M = R M = R M T 1 1 D 3 D 3 the external (or our ) 3-dimensional space the internal (D-3)-dimensional compact space Metrics: ( ) ds = g dx dx = g dx + i k 0 ik α α β g0αdx dx gαβdx dx Alexander Nestor Haddaway Song: What about me?

19 Three assumptions: 1. If there is no matter source, then the spacetime is the Minkowski spacetime: g = η = 1, g = η = 0, g = η = δ α 0α αβ αβ αβ. The weak field limit: a) the gravitational field is weak; b) velocities of test bodies are small. 3. The energy-momentum tensor of N moving point masses: N 1 i k ik dx dx cdt T = m p g r r p 1 dt dt ds δ = The Einstein equation: S DG ɶ D 1 Rik = T 4 ik gikt c D 1 D ( 1) ( ) p r = x x x 1 D (,,, ) the gravitational constant in the multidimensional spacetime square of the (D-1)-dimensional sphere of a unit radius

20 N N D 1 g 1+ ϕ r + ϕ r + ϕ ϕ r r + v ϕ r r ( ) ( ) ( ) ( ) p p p p c c c p= 1 D c p= 1 The nonrelativistic gravitational potential φ satisfies the D- dimensional Poisson equation: The rest mass density: ϕ = ρ ϕ ( D ) S G D N p= 1 N ( r ) = ϕ ( r rp ) p= 1 N g v ϕ r r D ρ m δ r r p Metric coefficients: ( p ) ( ) ϕ p ϕ 0α 3 pα p 3 α D c p= 1 c t x is the potential in the point r p produced by all particles, except of the p-th. ( r r p ) is the potential in the point produced by the p-th particle: ϕ = S G m δ r r f = ϕ f ( r ) ( ) D D p p r For D=3: (106.13) and (106.14) in [11] ЛандауЛ.Д., Лифшиц Е.М.Теоретическая физика: Учебноепособие. В 10 т. Т. II. Теорияполя. М.: Наука, с.

21 1 g 1 + ϕ ( r ) + ϕ ( r ), g 0, g 1 ϕ ( r ) δ c c D c α αβ αβ 1 Metric coefficients in the case of one particle at rest: αβ ϕ ϕ = δ = SDG mδ α β D x x [1] Eingorn M. and Zhuk A. Nonrelativistic limit of multidimensional gravity: exact solutions and applications. // Class. Quant. Grav Vol. 7, 05500; arxiv:gr-qc/ ( r ) 1/ + + d GNm k i ϕ( r3, ξ1,, ξd ) = exp π r 3 r3 k1 = kd = i= 1 a i π k 1 π k d GNm c rg ξ 1 cos ξ d a1 ad r3 r3 cos = r3 a1, a,, ad in the Solar System periods of tori 4π G N r r g G N m = c = r 3 3 S G D D = d a i = 1 i

22 Metrics in isotropic 3-D spherical coordinates: ds r + r g g 1 c dt r3 r 3 1 rg ( 1+ dr ) 3 + r3 dθ + r3 sin θdψ D r3 1 rg D r3 (( 4 ) ( 5 ) ( ) ) D dx dx dx the asymptotic form of metrics for the deltashaped matter source. Three classical gravitational tests The frequency shift 1 1/ 1/ ω ϕ ω g = ω g ω, ϕ 1, 1 ϕ1 ϕ ω ω1 1 + c ( ) ( ) and there is no deviation from General Relativity.

23 The perihelion shift The deflection of light The observed value, arcsec per century: The observed value, arcsec: 43.11± δψ = Dπ m c r g M ( D ) δψ = D 1 D r g ρ General Relativity General Relativity D = D = D = D = D D = = Suddenly: multidimensional Kaluza-Klein models contradict experimental data.

24 Conclusions 1. Metric coefficients in the weak field limit were obtained for Kaluza-Klein multidimensional models in the case of the delta-shaped matter source.. Formulas for the perihelion shift and the deflection of light were found. 3. These formulas demonstrate good agreement with experimental data only in the case of ordinary 3-dimensional space. 4. This result does not depend on the size of extra dimensions. Alternative models: 1. brane worlds;. black strings. [13] Eingorn M. and Zhuk A. Kaluza-Klein models: can we construct a viable example? // arxiv:gr-qc/

25 Thank you for attention! Pallas s cat (Otocolobus manul or Felis manul), also known as the Manul, a wild cat of Central Asia

Warp Duality in Braneworlds

Warp Duality in Braneworlds Warp Duality in Braneworlds Andrew B. McGowan September 14, 2007 Abstract In recent years there have emerged numerous models of spacetime that include extra dimensions. In particular there have been a

More information

Neutron Stars in the Braneworld

Neutron Stars in the Braneworld Neutron Stars in the Braneworld Mike Georg Bernhardt Ruprecht-Karls-Universität Heidelberg Zentrum für Astronomie, Landessternwarte 24 April 29 Outline Introduction Why bother with Extra Dimensions? Braneworlds

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions

More information

Life with More Than 4: Extra Dimensions

Life with More Than 4: Extra Dimensions Life with More Than 4: Extra Dimensions Andrew Larkoski 4/15/09 Andrew Larkoski SASS 5 Outline A Simple Example: The 2D Infinite Square Well Describing Arbitrary Dimensional Spacetime Motivations for Extra

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Physics 690/ Spring, 2005 Notes: History of Extra Dimensions

Physics 690/ Spring, 2005 Notes: History of Extra Dimensions Physics 690/482-02 Spring, 2005 Notes: History of Extra Dimensions Josh Erlich In this course we will study physics in extra dimensions. The idea of extra dimensions goes back a long time, but the formalism

More information

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Physics Beyond the Standard Model Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Increasingly General Theories Grand Unified Theories of electroweak and strong interactions Supersymmetry

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

The Frontiers of Superstring Theory :

The Frontiers of Superstring Theory : 18 th June, 2008 RIKEN theory colloquium The Frontiers of Superstring Theory : "D-branes" and new perspective of our world Koji Hashimoto ( 橋本幸士 ) Theoretical Physics Labo ( 川合理論研 ) Braneworld Brane Our

More information

...and the extradimensions quest

...and the extradimensions quest A brief introduction to the Randall-Sundrum Models...and the extradimensions quest Bruno BERTRAND Center for particle physics and phenomenology (CP3) CP3 Seminar : Randall-Sundrum models - Bruno BERTRAND

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

arxiv:hep-ph/ v1 8 Feb 2000

arxiv:hep-ph/ v1 8 Feb 2000 Gravity, Particle Physics and their Unification 1 J. M. Maldacena Department of Physics Harvard University, Cambridge, Massachusetts 02138 arxiv:hep-ph/0002092v1 8 Feb 2000 1 Introduction Our present world

More information

Gravity in the Braneworld and

Gravity in the Braneworld and Gravity in the Braneworld and the AdS/CFT Correspondence Takahiro TANAKA Department of Physics, Kyoto University, Kyoto 606-8502, Japan October 18, 2004 Abstract We discuss gravitational interaction realized

More information

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap Cordes et Branes: des outils pour la cosmologie primordiale Strings & branes: tools for primordial cosmology Dan Israël, iap D. Israël, Strings & branes 1 Preamble Despite its exotic aspects, string theory

More information

Brane world scenarios

Brane world scenarios PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 2 journal of February 2003 physics pp. 183 188 Brane world scenarios DILEEP P JATKAR Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

arxiv: v2 [physics.pop-ph] 15 Jul 2008

arxiv: v2 [physics.pop-ph] 15 Jul 2008 Putting the Warp into Warp Drive Richard K Obousy and Gerald Cleaver Baylor University, Waco, Texas, 76706, USA (Dated: July 15, 2008) Abstract arxiv:0807.1957v2 [physics.pop-ph] 15 Jul 2008 Over the last

More information

The Correct Interpretation of the Kaluza-Klein Theory

The Correct Interpretation of the Kaluza-Klein Theory Copyright 2014 by Sylwester Kornowski All rights reserved The Correct Interpretation of the Kaluza-Klein Theory Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Everlasting Theory (S-SET),

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

arxiv:gr-qc/ v1 25 Jan 1997

arxiv:gr-qc/ v1 25 Jan 1997 Inflationary solutions and inhomogeneous Kaluza-Klein cosmology in 4 n dimensions Santiago E. Perez Bergliaffa Departamento de Física, Universidad Nacional de La Plata C.C. 67, 1900, La Plata, Buenos Aires,

More information

Large Extra Dimensions and the Hierarchy Problem

Large Extra Dimensions and the Hierarchy Problem Large Extra Dimensions and the Hierarchy Problem The Hierarchy Problem - At Planck energies (M P L 10 19 GeV ) all four forces have the same strength. -At the Electroweak scale (M EW 1T ev ) the four forces

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

Extra Dimensions in Physics? Shamit Kachru Stanford University

Extra Dimensions in Physics? Shamit Kachru Stanford University Extra Dimensions in Physics? Shamit Kachru Stanford University One of the few bits of fundamental physics that becomes obvious to most of us in childhood: our playing field consists of three spatial dimensions,

More information

Brane-World Black Holes

Brane-World Black Holes Brane-World Black Holes A. Chamblin, S.W. Hawking and H.S. Reall DAMTP University of Cambridge Silver Street, Cambridge CB3 9EW, United Kingdom. Preprint DAMTP-1999-133 arxiv:hep-th/990905v 1 Oct 1999

More information

1 Introduction. 1.3 History of research

1 Introduction. 1.3 History of research Derivation of two-valuedness and angular momentum of spin/2 from rotation of 3-sphere K. Sugiyama Published 23/5/9; revised 25/2/5. Abstract We derive the two-valuedness and the angular momentum of a spin/2

More information

Introduction to (Large) Extra Dimensions

Introduction to (Large) Extra Dimensions SLAC Dark Matter & Exotic Physics WG p. 1/39 Introduction to (Large) Extra Dimensions A. Lionetto Department of Physics & INFN Roma Tor Vergata SLAC Dark Matter & Exotic Physics WG p. 2/39 Outline Introduction

More information

WHERE IS THE FIFTH DIMENSION?

WHERE IS THE FIFTH DIMENSION? WHERE IS THE FIFTH DIMENSION? Paul S. Wesson Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario NL 3G1, Canada 1 June 015 Abstract: Recent advances show that a fifth dimension

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Théorie des cordes: quelques applications. Cours IV: 11 février 2011

Théorie des cordes: quelques applications. Cours IV: 11 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours IV: 11 février 2011 Résumé des cours 2009-10: quatrième partie 11 février 2011 G. Veneziano,

More information

Trapped in an infinite extra dimension

Trapped in an infinite extra dimension Trapped in an infinite extra dimension Damien George Nikhef theory group Nikhef Jamboree 15 16 th December 2009 Amsterdam Extra dimensions D.P. George Trapped in an infinite extra dimension 2/11 Beyond

More information

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC S. SHMATOV for ATLAS and CMS Collaborations Joint Institute for Nuclear Research, Dubna, Russia E-mail: shmatov@cern.ch A brief review

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

What ideas/theories are physicists exploring today?

What ideas/theories are physicists exploring today? Where are we Headed? What questions are driving developments in fundamental physics? What ideas/theories are physicists exploring today? Quantum Gravity, Stephen Hawking & Black Hole Thermodynamics A Few

More information

Black holes in D>4 dimensional space-times

Black holes in D>4 dimensional space-times Black holes in D>4 dimensional space-times Key-words: extra dimensions, string theory, brane world models, LHC, stability, perturbations, quasinormal modes, Hawking radiation R. A. Konoplya May 20, 2010

More information

TOPIC V BLACK HOLES IN STRING THEORY

TOPIC V BLACK HOLES IN STRING THEORY TOPIC V BLACK HOLES IN STRING THEORY Lecture notes Making black holes How should we make a black hole in string theory? A black hole forms when a large amount of mass is collected together. In classical

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JJC 2014 Dec. 11th 2014 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

TeV-scale Black Holes

TeV-scale Black Holes University of Arizona SH, Ben Koch and Marcus Bleicher: hep-ph/0507138, hep-ph/0507140 Black Holes as Physics Meeting Point General Relativity Thermodynamics Quantum Field Theory String Theory Black Holes

More information

Aether compactification

Aether compactification PHYSICAL REVIEW D 78, 044047 (2008) Aether compactification Sean M. Carroll 1 and Heywood Tam 1 1 California Institute of Technology, Pasadena, California 91125, USA (Received 8 April 2008; published 29

More information

Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC

Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC Available on CMS information server CMS CR 2006/086 October 31, 2006 Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC Sergei Shmatov Joint Institute for Nuclear Research, Dubna,

More information

COSMOLOGY IN HIGHER DIMENSIONS

COSMOLOGY IN HIGHER DIMENSIONS COSMOLOGY IN HIGHER DIMENSIONS 1. Introduction 2. Overview of Higher Dimensional Cosmology 3. Cosmology in Higher Dimensions 4. String Frame 5. Summary Kei-ichi MAEDA Waseda University 1. INTRODUCTION

More information

String Theory to the Rescue Proof of String Theory & Extra Dimensions?

String Theory to the Rescue Proof of String Theory & Extra Dimensions? String Theory to the Rescue Proof of String Theory & Extra Dimensions? EVERY POINT IN THE UNIVERSE IS NO MORE THAN ONE BLOCK FROM A STARBUCKS! Yale Physics 120 4/23/2018 Quantum Physics and Beyond John

More information

Black Holes at the LHC

Black Holes at the LHC Black Holes at the LHC Dr Cigdem Issever University of Oxford 04. November 2008 Particle Physics Seminar Outline Introduction to Black Holes Gravity and Standard Model Extra Dimension Models Production

More information

THE PHYSICS/COSMOLOGY CONNECTION. 1. Summary of Particle Physics: The Standard Model limitations of the standard model

THE PHYSICS/COSMOLOGY CONNECTION. 1. Summary of Particle Physics: The Standard Model limitations of the standard model THE PHYSICS/COSMOLOGY CONNECTION 1. Summary of Particle Physics: The Standard Model limitations of the standard model 2. Summary of Cosmology: The Big Bang Model limitations of the Big Bang model 3. Unifying

More information

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed New Models Savas Dimopoulos with Nima Arkani-Hamed Small numbers and hierarchy problems 10 18 GeV M PL Gauge Hierarchy Problem 10 3 GeV M W 10 12 GeV ρ 1 4 vac Cosmological Constant Problem Program of

More information

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Pohang, January 20 -- January 28, 2014 Motivations : (1) Extra-dimensions and string theory (2) Brane-world models (3) Black

More information

Compact Stars in the Braneworld

Compact Stars in the Braneworld Compact Stars in the Braneworld Mike Georg Bernhardt Zentrum für Astronomie Heidelberg Landessternwarte 28 January 29 Outline Review: Relativistic Stars TOV equations Solutions of the TOV equations Neutron

More information

Quantum Entanglement Through Hidden Dimensions

Quantum Entanglement Through Hidden Dimensions Advanced Studies in Theoretical Physics Vol. 13, 2019, no. 2, 67-72 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2019.911 Quantum Entanglement Through Hidden Dimensions K. Douhou and S-E.

More information

arxiv:quant-ph/ v1 16 Jun 2005

arxiv:quant-ph/ v1 16 Jun 2005 Black-body radiation in extra dimensions Haavard Alnes, Finn Ravndal 2 and Ingunn Kathrine Wehus 3 Institute of Physics, University of Oslo, N-036 Oslo, Norway. arxiv:quant-ph/05063 v 6 Jun 2005 Abstract

More information

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004 An introduction to brane world cosmology Andreas Müller Theory group LSW http://www.lsw.uni-heidelberg.de/users/amueller Advanced seminar LSW Heidelberg 03/03/2004 Overview principles bulk and brane extradimensions

More information

Quantization as a Necessary Condition for Gauge Invariance

Quantization as a Necessary Condition for Gauge Invariance Quantization as a Necessary Condition for Gauge Invariance J. Towe Department of Physics, The Antelope Valley College Lancaster, CA, USA jtowe@avc.edu Symmetry and quantization are the two major enterprises

More information

SN1987A Constraints on Large Compact Dimensions

SN1987A Constraints on Large Compact Dimensions SLAC-PUB-808 SU-ITP-99/5 March 0, 999 SN987A Constraints on Large Compact Dimensions Schuyler Cullen Physics Department Stanford University, Stanford, California 909 USA Maxim Perelstein Stanford Linear

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JRJC 2015 Nov. 19th 2015 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

arxiv:gr-qc/ v1 4 Jun 2003

arxiv:gr-qc/ v1 4 Jun 2003 Wormhole solutions in the Randall-Sundrum scenario M. La Camera Department of Physics and INFN - University of Genoa Via Dodecaneso 33, 16146 Genova, Italy Abstract In the simplest form of the Randall-Sundrum

More information

Large Mass Hierarchy from a Small Extra Dimension

Large Mass Hierarchy from a Small Extra Dimension Large Mass Hierarchy from a Small Extra Dimension Sridip Pal (09MS002) DPS PH4204 April 4,2013 Sridip Pal (09MS002) DPS PH4204 () Large Mass Hierarchy from a Small Extra Dimension April 4,2013 1 / 26 Outline

More information

Black holes and the renormalisation group 1

Black holes and the renormalisation group 1 Black holes and the renormalisation group 1 Kevin Falls, University of Sussex September 16, 2010 1 based on KF, D. F. Litim and A. Raghuraman, arxiv:1002.0260 [hep-th] also KF, D. F. Litim; KF, G. Hiller,

More information

Eternally accelerating spacelike br Title cosmologies. Journal Modern Physics Letters A, 21(40): 2

Eternally accelerating spacelike br Title cosmologies. Journal Modern Physics Letters A, 21(40): 2 Eternally accelerating spacelike br Title cosmologies Author(s) Mochizuki, R Alternative Journal Modern Physics Letters A, 21(40): 2 RL http://hdl.handle.net/10130/46 Electronic version of an article pu

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Rapid Inflation of the Early Universe. 27. Exploring the Early Universe. The Isotropy Problem. Possible Causes of Cosmic Inflation

Rapid Inflation of the Early Universe. 27. Exploring the Early Universe. The Isotropy Problem. Possible Causes of Cosmic Inflation 27. Exploring the Early Universe Rapid inflation of the early Universe Mass & energy formed during inflation Most matter & antimatter annihilated each other Neutrinos & helium are primordial fireball relics

More information

Early Inflation and Cosmology in Theories with Sub-Millimeter Dimensions

Early Inflation and Cosmology in Theories with Sub-Millimeter Dimensions CERN-TH/99-56 SU-ITP-99/12 Early Inflation and Cosmology in Theories with Sub-Millimeter Dimensions Nima Arkani-Hamed a, Savas Dimopoulos b, Nemanja Kaloper b, and John March-Russell c a SLAC, Stanford

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

The following diagram summarizes the history of unification in Theoretical Physics:

The following diagram summarizes the history of unification in Theoretical Physics: Summary of Theoretical Physics L. David Roper, roperld@vt.edu Written for the Book Group of Blacksburg VA For the discussion of The Elegant Universe by Brian Greene, 10 October 004 This file is available

More information

Black holes and extra dimensions

Black holes and extra dimensions Black holes and extra dimensions Dejan Stojkovic Case Western Reserve University University of Oxford Feb 28, 2006 1 Motivation Black holes: most interesting and intriguing solutions of Einstein's equations

More information

An exotic class of Kaluza Klein models

An exotic class of Kaluza Klein models An exotic class of Kaluza Klein models arxiv:hep-th/9910093v1 1 Oct 1999 Matt Visser Physics Department, University of Southern California, Los Angeles, CA 90080-0484, USA 1 September 1985; L A TEX-ed

More information

THE GEOMETRY OF THE TORUS UNIVERSE

THE GEOMETRY OF THE TORUS UNIVERSE International Journal of Modern Physics D Vol. 16, No. 4 (2007) 681 686 c World Scientific Publishing Company THE GEOMETRY OF THE TORUS UNIVERSE R. MURDZEK Physics Department, Al. I. Cuza University, Iassy,

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Observables of Quantum Gravity at the LHC

Observables of Quantum Gravity at the LHC Observables of Quantum Gravity at the LHC Sabine Hossenfelder Perimeter Institute Models with Extra Dimensions Extrapolation over 16 orders of Magnitude Extrapolation over 16 orders of Magnitude Arkani-Hamed

More information

PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE

PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE arxiv:gr-qc/0106041v1 13 Jun 2001 B. C. Paul Department of Physics, North Bengal University, Siliguri, Dist. Darjeeling, Pin : 734

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal Derivative Coupling of Scalar Field

Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal Derivative Coupling of Scalar Field Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 9, 423-431 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.5234 Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal

More information

arxiv:gr-qc/ v1 13 Sep 2002

arxiv:gr-qc/ v1 13 Sep 2002 Multidimensional Cosmology and Asymptotical AdS U. Günther (1), P. Moniz (2), A. Zhuk (3) (1) Inst. Math., Universität Potsdam, D-14415 Potsdam, Germany, (2) Dept. Phys., UBI, 6200 Covilh~a, Portugal,

More information

Introduction to Black Holes, Extra Dimensions and Colliders

Introduction to Black Holes, Extra Dimensions and Colliders Introduction to Black Holes, Extra Dimensions and Colliders James Frost Institute of Physics Half-day Meeting Thursday 9th December 2010 James Frost (University of Cambridge) IOP Half-Day Meeting Thursday

More information

4D Gravity on a Brane in 5D Minkowski Space

4D Gravity on a Brane in 5D Minkowski Space NYU-TH/00/04/0 April 25, 2000 4D Gravity on a Brane in 5D Minkowski Space Gia Dvali, Gregory Gabadadze, Massimo Porrati Department of Physics, New York University, New York, NY 0003 Abstract We suggest

More information

The Randall-Sundrum model

The Randall-Sundrum model The Randall-Sundrum model Aleksandr Chatrchyan & Björn Jüliger After a brief non-technical introduction to the Hierarchy problem, we first discuss the old five-dimensional Kaluza-Klein model, its tower

More information

arxiv:hep-ph/ v2 30 Aug 2002

arxiv:hep-ph/ v2 30 Aug 2002 LPNHE-00-05 arxiv:hep-ph/007166v 30 Aug 00 Search for Extra Space-Dimensions at the LHC B. Laforge Laboratoire de Physique Nucléaire et de Hautes Energies CNRS-INP3 et Universités Paris VI & VII France

More information

Glueballs and AdS/CFT

Glueballs and AdS/CFT Preprint typeset in JHEP style - PAPER VERSION hep-ph/yymmnnn Glueballs and AdS/CFT John Terning T-8 MS B285, Los Alamos National Lab., Los Alamos NM, 87545 Email: terning@lanl.gov Abstract: I review the

More information

A BRIEF TOUR OF STRING THEORY

A BRIEF TOUR OF STRING THEORY A BRIEF TOUR OF STRING THEORY Gautam Mandal VSRP talk May 26, 2011 TIFR. In the beginning... The 20th century revolutions: Special relativity (1905) General Relativity (1915) Quantum Mechanics (1926) metamorphosed

More information

Final Exam. String theory. What are these strings? How big are they? Types of strings. String Interactions. Strings can vibrate in different ways

Final Exam. String theory. What are these strings? How big are they? Types of strings. String Interactions. Strings can vibrate in different ways Final Exam Monday, May 8: 2:45-4:45 pm 2241 Chamberlin Note sheet: two double-sided pages Cumulative exam-covers all material, 40 questions 11 questions from exam 1 material 12 questions from exam 2 material

More information

Extra Dimensional Signatures at CLIC

Extra Dimensional Signatures at CLIC Extra Dimensional Signatures at CLIC Thomas G. Rizzo SLAC A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e + e linear collider with a center

More information

Einstein, String Theory, and the Future

Einstein, String Theory, and the Future Einstein, String Theory, and the Future Jonathan Feng University of California, Irvine Einstein: A Century of Relativity Skirball Cultural Center, Los Angeles 29 January 2005 Relativity in a Nutshell 29

More information

If I only had a Brane

If I only had a Brane If I only had a Brane A Story about Gravity and QCD. on 20 slides and in 40 minutes. AdS/CFT correspondence = Anti de Sitter / Conformal field theory correspondence. Chapter 1: String Theory in a nutshell.

More information

Curiosités géométriques et physique de l'univers

Curiosités géométriques et physique de l'univers Curiosités géométriques et physique de l'univers MidiSciences, Grenoble, 05/2010 String Theory & Invisible Dimensions Ecole Normale Supérieure de Lyon plan fundamental interactions standard model vs. general

More information

arxiv:hep-th/ v2 21 Apr 2005

arxiv:hep-th/ v2 21 Apr 2005 Why do we live in 3+1 dimensions? R. Durrer a M. Kunz a M. Sakellariadou a,b arxiv:hep-th/0501163v2 21 Apr 2005 a Department of Theoretical Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211

More information

TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW

TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW Annu. Rev. Nucl. Part. Sci. 2003. 53:77 121 doi: 10.1146/annurev.nucl.53.041002.110503 Copyright c 2003 by Annual Reviews. All rights reserved TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW E.G. Adelberger,

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

PoS(Kruger 2010)034. CMS searches for new physics. Mara Senghi Soares On behalf of the CMS Collaboration.

PoS(Kruger 2010)034. CMS searches for new physics. Mara Senghi Soares On behalf of the CMS Collaboration. On behalf of the CMS Collaboration E-mail: mara.senghi@ciemat.es We discuss the first searches for new physics being carried out with the CMS detector, at the early stage of data taking. Prospects for

More information

Chapter Outline. The Ultimate Structure of Matter. The Library. Of What is the Universe Made? Reductionism. The Building Blocks of Matter

Chapter Outline. The Ultimate Structure of Matter. The Library. Of What is the Universe Made? Reductionism. The Building Blocks of Matter Chapter Outline The Ultimate Structure of Matter Chapter 13 Of What is the Universe Made? Discovering Elementary Particles The Elementary Particle Zoo The Four Fundamental Forces Great Idea: All matter

More information

Cosmology and astrophysics of extra dimensions

Cosmology and astrophysics of extra dimensions Cosmology and astrophysics of extra dimensions Astrophysical tests of fundamental physics Porto, 27-29 March 2007 P. Binétruy, APC Paris Why extra dimensions? Often appear in the context of unifying gravitation

More information

Some PPPs (particle physics puzzles)

Some PPPs (particle physics puzzles) Some PPPs (particle physics puzzles) What s up with neutrinos? What is dark matter? What is dark energy? Where does inflation come from? Why is there more matter than antimatter? Are there even more fundamental

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field.

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. 1 C. S. Khodre, 2 K. D.Patil, 3 S. D.Kohale and 3 P. B.Jikar 1 Department of Mathematics,

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

The Ultimate Structure of Matter

The Ultimate Structure of Matter The Ultimate Structure of Matter Chapter 13 Great Idea: All matter is made of quarks and leptons, which are the most fundamental building blocks of the universe that we know. Chapter Outline Of What is

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information