Glenn T. Seaborg and the Modern Periodic Table of Elements. V. Pershina GSI, Darmstadt, Germany

Size: px
Start display at page:

Download "Glenn T. Seaborg and the Modern Periodic Table of Elements. V. Pershina GSI, Darmstadt, Germany"

Transcription

1 Glenn T. Seaborg and the Modern Periodic Table of Elements V. Pershina GSI, Darmstadt, Germany

2 Glenn T. Seaborg ( ) 1997 [

3 Periodic Table of Dimitri I. Mendeleev Dimitri I. Mendeleev and the Table of 1869 the Table of 1904

4 Atomic Structure and Periodic Table Rutherford - (scattering of alpha-particles by heavy nuclei) determination of nuclear charge Z A 1913 Moseley (x-ray spectral lines Z) and Meyers - properties vary periodically with Z (atomic number) 1923 Bohr proposed that the periodicity in properties might be explained by the electronic structure. Bohr model of atom: (n + l) 1925 Pauli's four quantum numbers (n, l, m l and m s ) and his exclusion principle

5 Atomic Structure and Periodic Table 1926 Schrödinger equation - three quantum numbers: n, l and m l examination of atomic spectra electron configurations are determined experimentally 8s 8p 9s 1926 (1936) empirical Madelung's rule (Klechkowski) : n+l

6 Henry D. Hubbard Periodic Chart of 1924 The American classic one went through 12 editions (1936)

7 [

8 "Actinide concept" of Glenn T. Seaborg , Chicago: discovery of two more elements Am (95) and Cm (96) by separation chemistry based on the "actinidie concept" "I was warned at the time that it was professional suicide to promote this idea, which has since been called one of the most significant changes in the periodic table since Mendeleev s 19th century design," Seaborg wrote, but he held to his convictions [

9 Periodic Table of Glenn T. Seaborg Glenn T. Seaborg had "written one of the most brilliant pages in the history of discovery of chemical elements" G. T. Seaborg, Nobel Lecture, December 12, 1951]

10 Development of ab initio Theory 1926 Schrödinger equation Ĥ Ψ = E Ψ E T = Ψ Hˆ Ψ Ψ Ψ 1928 Dirac equation H = H = 1 2 ˆ 2 Z r + 1 i i i i< j rij icα ( k) ( k) β( k) c ˆ 2 + k k k< j rij Z r 1 Wave-function 1928 Hartree (Coulomb) (SCF) 1933 Hartree-Fock (exchange) Ψ = ϕ i 2 Ψ = ( N!) 1/ ϕ1(1) ϕ1(2)... ϕn ( N)

11 History of ab initio Atomic Relativistic Calculations 1935 first rel. (num.) calculations for atoms with more than 2 electrons (HF Dirac-Fock formalism: Swirles, UK) 1940 relativistic (Hartee) SCF calc. on Cu (Williams, US) 1959 revolution in micro-electronic 1960 rel-c. calc. (Hartree) on Fe, Pt,... U (Cohen, CF) (IBM704) 1960 Grant: analytical integration and SCF equations for spinors DHF and Dirac-Slater calculations Coulthard (Melb.), Nestor, et. al. (Oak Ridge), Libermann, Waber, Cromer, et. al. (CF, Los Alamos) (Z= ) Desclaux (F), Greiner, Fricke (G) (till Z=173) Hermann and Skillman (Z < 103) (non-rel.) Periodic Table of Fricke, Greiner and Waber

12 Electronic Configurations of Transactinides d 2 7s 2 6d 3 7s 2 6d 4 7s 2 6d 5 7s 2 6d 6 7s 2 6d 7 7s 2 6d 8 7s 2 6d 9 7s 2 6d 10 7s 2 7s 2 7p 1 7s 2 7p 2 7s 2 7p 3 7s 2 7p 4 7s 2 7p 5 7s 2 7p 6 E, ev 119 8s s 2?? np 3/2 9s 1/2 ns 1/2 np 1/2 8d 3/2 Electronic configurations of elements [118] + 8s Element Seaborg Goldanski (1968) Waber, et al. Seaborg (1969) Fricke, Waber (1971) Madelung DS DF 121 7d 7d 8p 1/ g 2 7d 2 7d8p 1/ g 3 6f 1 7d 2 6f7d8p 1/ g 4 6f 3 7d 1 6f 3 8p 1/2-60 Ge Sn Pb Z 125 5g 5 5g 1 6f 3 7d 1 5g6f 3 8p 1/ g 6 5g 2 6f 3 7d 1 5g 2 6f 2 7d8p 1/2

13 Periodic Table of Fricke, Greiner and Waber 9p1/2 8p3/2 9s 34 elements: 8p1/2+ 7d + 5g(18) + 6f(14) [B. Fricke, W. Greiner and J. T. Waber, Theor. Chim. Acta 21, 235 (1971)]

14 Periodic Table of Glenn T. Seaborg (transactinides and superactinides) 32 elements: 5g(18) + 6f(14) [O. L. Keller, Jr., and G. T. Seaborg, Ann. Rev. Nucl. Sci., 27, 139 (1977)]

15 Modern Atomic Relativistic ab initio Methods - Dirac-Coulomb-Breit H h B D DCB = hd ( i) + i i< j ij ( i) = = cαp + βmc (1/ r + V nuc 2 [ αiα j + ( αirij)( α 2rij) / rij ]/ rij ij + B ij ) - 4c wave-functions (Slater, Gauss., numer.) φ nkm = ϕ ϕ P = Q i nk ( r) Υ r ( r) Υ r nk km ( r, ξ ) ( r, ξ km ) - Electron correlation (beyond DHF)

16 Beyond Dirac-Fock: Electron Correlation Configuration interaction (CI) CIS, CISD, CISDT Ψ = k =1 c ψ k k MCSCF (MCDF) Ψ = k ' = 1 u= 1 c k ' c u ϕ u MBPT 0 H ˆ = Hˆ + Hˆ (1) Coupled Cluster (rel. in 1980) CCSD(T) FSCC, IHCC, etc. Ψ = 2 S exp( S) Ψ0 = 1+ S Ψ 2! 0

17 Electronic Configurations of Lr and Rf Ground states in various approximations Element DF MCDF DCB + CC Lr 6d7s 2 7s 2 7p 1/2 7s 2 7p 1/2 Rf 6d 2 7s 2 6d7s 2 7p 1/2 6d 2 7s 2 DF: Fricke, Waber, Desclaux, et al. ( 1970) MCDF: Desclaux, Fricke, Johnson, Glebov, et al. ( ) DCB CC: Eliav, Kaldor, et al. (1994, 1995)

18 Electronic Configurations of the Superactinides at Different Levels of Theory 119 8s 120 8s 2 [118] + 8s Elem. Madelung DS DF MCDF (AL) DCB CC Seaborg (1968) Waber (1968) Fricke (1971) Nefedov (2006) Eliav (1998) 121 7d 7d 8p 1/2 8p 8p 122 5g 2 7d 2 7d8p 1/2 7d8p 1/2 7d8p 1/ g 3 6f 1 7d 2 6f7d8p 1/2 6f 2 8p 1/ g 4 6f 3 7d 1 6f 3 8p 1/2 6f 2 8p 2 1/ g 5 5g 1 6f 3 7d 1 5g6f 3 8p 1/2 5g6f 2 8p 2 1/ g 6 5g 2 6f 3 7d 1 5g 2 6f 2 7d8p 1/2 5g 2 6f 3 8p 1/2...? n + l rule no correlation with correlation

19 Periodic Table of Pyykkö MCDF calculated electronic configurations Z q El. conf f f g g g g s 2 5g s 2 5g 16 8p s 15 g g 18 6f p 4 [P. Pyykkö, PCCP 13, 161 [2011]] 18 elements: 5g(18) : superlanthanides

20 Periodic Tables of Elements till Z=172 based on (MC) Dirac-Fock Calculations Fricke 165 Seaborg 166 Pyykkö ,140, (8p,7d,6f,5g)

21 A Higher Accuracy: QED Effects Main contributions to Lamb shift: electron self-energy (SE) vacuum polarization (VP) nuclear finite size (FS) ΔS α ( αz) = 3 π n 4 F( αz) m c e 2 F (αz ) = F + F + SE VP F FS [P. Pyykkö, et al., Phys. Rev. A 57, R689 (1998)]

22 Influence of Electron Correlation and QED Effects on Atomic Properties IP and EA (in ev) of Cn and element 118 in various approximations Element DF DF + DFB + DCB + CC + CC CC QED IP(112) (0.023) EA(118) (0.006) CC: E. Eliav, et. al. PRA, 52, 2765 (1995); E. Eliav, et. al. PRL 77, 5350 (1996); I. Goidenko, et al. PRA 67, (R) (2003) QED: C. Thierfelder and P. Schwerdtfeger, PRA 82, (2010)

23 Electronic Configuration of E140 correlation QED Method Ground state Ref. Year high-sectors FSCC possible! Eliav soon MCDF (OL) + QED 5g 15 8p 4 6f (?) Indelicato 2011 MCDF (AL) 5g 14 6f 3 7d8p 2 Nefedov 2006 MCDF (AL) 5g 16 8p 2 (2+) Pyykkö 2011 DF 5g 14 6f 3 7d8p 2 Fricke 1971 DF 5g 18 7d 3 Nefedov 2004 level of theory MCDF(OL) are restricted due to computer limitations [P. Indelicato, Theor. Chem. Acc. 129, 495 (2011)]

24 The End of the Periodic Table MCDF + Breit + QED calculations confirmed the end of the PT with Z = 173 [E(1s) < -2mc2] Z = [P. Indelicato, et al. Theor. Chim. Acta 129, 495 (2011)]

25 Future Periodic Table of the Elements? Z=173 Placement of elements in the PT will be more difficult and the structure not simple

Model operator approach to calculations of the Lamb shifts in relativistic many-electron atoms

Model operator approach to calculations of the Lamb shifts in relativistic many-electron atoms Model operator approach to calculations of the Lamb shifts in relativistic many-electron atoms Vladimir Shabaev a in collaboration with Ilya Tupitsyn a and Vladimir Yerokhin b a St. Petersburg State University

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Triple excitations in the coupled-cluster method. Application to atomic properties.

Triple excitations in the coupled-cluster method. Application to atomic properties. Triple excitations in the coupled-cluster method. Application to atomic properties. Sergey G. Porsev 1 and Andrei Derevianko 2 1 Petersburg Nuclear Physics Institute Gatchina, Russia 2 University of Nevada

More information

Fine Structure Calculations of Atomic Data for Ar XVI

Fine Structure Calculations of Atomic Data for Ar XVI Journal of Modern Physics, 2015, 6, 1609-1630 Published Online September 2015 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2015.611163 Fine Structure Calculations of Atomic

More information

Energy levels and radiative rates for Ne-like ions from Cu to Ga

Energy levels and radiative rates for Ne-like ions from Cu to Ga Pramana J. Phys. (2017) 89:79 DOI 10.1007/s12043-017-1469-x Indian Academy of Sciences Energy levels and radiative rates for Ne-like ions from Cu to Ga NARENDRA SINGH and SUNNY AGGARWAL Department of Physics,

More information

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX Optics and Photonics Journal, 2014, 4, 54-89 Published Online March 2014 in SciRes. http://www.scirp.org/journal/opj http://dx.doi.org/10.4236/opj.2014.43008 Energy Levels, Oscillator Strengths, and Transition

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Chemistry of the 5g elements. Relativistic calculations on hexafluorides

Chemistry of the 5g elements. Relativistic calculations on hexafluorides Chemistry of the 5g elements. Relativistic calculations on hexafluorides Jean-Pierre Dognon, Pekka Pyykkö To cite this version: Jean-Pierre Dognon, Pekka Pyykkö. Chemistry of the 5g elements. Relativistic

More information

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms Electron-loss and capture cross sections of W and its ions colliding with H and He atoms I.Yu. Tolstikhina and V.P. Shevelko P.N. Lebedev Physical Institute, Moscow September 5, 2012 In collaboration with:

More information

Relativistic Calculations for Be-like Iron

Relativistic Calculations for Be-like Iron Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 468 472 Chinese Physical Society Vol. 50, No. 2, August 15, 2008 Relativistic Calculations for Be-like Iron YANG Jian-Hui, 1 LI Ping, 2, ZHANG Jian-Ping,

More information

Tests of fundamental symmetries with atoms and molecules

Tests of fundamental symmetries with atoms and molecules Tests of fundamental symmetries with atoms and molecules 1 Listening to an atom q Coulomb forces + Quantum Electro-Dynamics => a relatively simple interpretation q Unprecedented control over internal and

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

Electron affinities of boron, aluminum, gallium, indium, and thallium

Electron affinities of boron, aluminum, gallium, indium, and thallium PHYSICAL REVIEW A VOLUME 56, NUMBER 6 DECEMBER 1997 Electron affinities of boron, aluminum, gallium, indium, and thallium Ephraim Eliav School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Lecture 10: Relativistic effects. Einstein s great idea as applied to chemistry: why gold is yellow and lead batteries function

Lecture 10: Relativistic effects. Einstein s great idea as applied to chemistry: why gold is yellow and lead batteries function Lecture 10: Relativistic effects Einstein s great idea as applied to chemistry: why gold is yellow and lead batteries function Course exam Examination on Monday May 7, 2.00 pm 4.00 pm Content The whole

More information

Relativistic quantum mechanics

Relativistic quantum mechanics Free-electron solution of Quantum mechanics 2 - Lecture 11 UJJS, Dept. of Physics, Osijek January 15, 2013 Free-electron solution of 1 2 3 Free-electron solution of 4 5 Contents Free-electron solution

More information

Relativistic electronic structure studies on the heaviest elements

Relativistic electronic structure studies on the heaviest elements Radiochim. Acta 99, 459 476 (2011) / DOI 10.1524/ract.2011.1855 by Oldenbourg Wissenschaftsverlag, München Relativistic electronic structure studies on the heaviest elements By V. Pershina GSI Helmholtzzentrum

More information

Chapter 3: Relativistic Wave Equation

Chapter 3: Relativistic Wave Equation Chapter 3: Relativistic Wave Equation Klein-Gordon Equation Dirac s Equation Free-electron Solutions of the Timeindependent Dirac Equation Hydrogen Solutions of the Timeindependent Dirac Equation (Angular

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Coupled-cluster and perturbation methods for macromolecules

Coupled-cluster and perturbation methods for macromolecules Coupled-cluster and perturbation methods for macromolecules So Hirata Quantum Theory Project and MacroCenter Departments of Chemistry & Physics, University of Florida Contents Accurate electronic structure

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Energy systematics of vanadium Kα x-ray satellites and hypersatellites. R. L. Watson, V. Horvat, and Y. Peng

Energy systematics of vanadium Kα x-ray satellites and hypersatellites. R. L. Watson, V. Horvat, and Y. Peng Energy systematics of vanadium Kα x-ray satellites and hypersatellites R. L. Watson, V. Horvat, and Y. Peng Vanadium K x-ray spectra excited by 15 MeV/u Ne, Ar, Kr, Ag, and Ho ion collisions were described

More information

Atomic-Physics Tests of QED & the Standard Model

Atomic-Physics Tests of QED & the Standard Model Atomic-Physics Tests of QED & the Standard Model W.R. Johnson Notre Dame University http://www.nd.edu/ johnson Abstract A brief review of tests of strong-field QED in many-electron atoms and of atomic

More information

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, "Atomic structure theory"

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, Atomic structure theory Page Lecture Dirac-Hartree-Fock code. Second-order perturbation theory and running second-order code. Atomic calculations and the search for the variation of the fine-structure constant. Dirac-Hartree-Fock

More information

Modern Inorganic Chemistry (a)inorganic Materials

Modern Inorganic Chemistry (a)inorganic Materials Modern Inorganic Chemistry (a)inorganic Materials (b)metal ions in Biology {built on principles established long long ago} Let us go through a small tour of some examples & current topics which make inorganic

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

arxiv: v2 [physics.atom-ph] 26 Sep 2016

arxiv: v2 [physics.atom-ph] 26 Sep 2016 Noname manuscript No. (will be inserted by the editor) Electron structure of superheavy elements Uut, Fl and Uup (Z=113 to 115). V. A. Dzuba V. V. Flambaum arxiv:1608.03048v [physics.atom-ph] 6 Sep 016

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ Course overview This is a course about density functional theory (DFT)

More information

Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+ to Hg 78+ Ions. II. Theory

Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+ to Hg 78+ Ions. II. Theory Missouri University of Science and Technology Scholars' Mine Physics Faculty Research & Creative Works Physics 5-1-2006 Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hg 75+

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method)

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) (note) (note) Schrodinger equation: Example: find an approximate solution for AHV Trial wave function: (note) b opt Mean-Field Approximation

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

Chapter 2: Elements are the Building Blocks of Matter

Chapter 2: Elements are the Building Blocks of Matter Chapter 2: Elements are the Building Blocks of Matter Elements A pure substance that cannot be broken down or separated into simpler substances by either physical or chemical means. Made up of one kind

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION Vol. 84 (1993) ACTA PHYSICA POLONICA A No. 6 ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION RADOSLAW SZMYTKOWSKI Institute of Theoretical Physics

More information

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. sub-barrier fusion reactions 2. Coupled-channels approach and barrier distributions 3. Application

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Theoretical basics and modern status of radioactivity studies

Theoretical basics and modern status of radioactivity studies Leonid Grigorenko Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna, Russia Theoretical basics and modern status of radioactivity studies Lecture 2: Radioactivity Coefficients

More information

Gas-phase chemistry of element 114, flerovium

Gas-phase chemistry of element 114, flerovium EPJ Web of Conferences 11, 7 (21) DOI: 1.151/epjconf/21117 Nobel Symposium NS1 Chemistry and Physics of Heavy and Superheavy Elements Gas-phase chemistry of element 114, flerovium Alexander Yakushev 1,2,a

More information

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri Closed-shell Atomic Electric Dipole Moments K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri An observation of EDM of a non-degenerate physical system is a direct unambiguous evidence of

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Lecture 4: methods and terminology, part II

Lecture 4: methods and terminology, part II So theory guys have got it made in rooms free of pollution. Instead of problems with the reflux, they have only solutions... In other words, experimentalists will likely die of cancer From working hard,

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Péter G. Szalay Eötvös Loránd University Institute of Chemistry H-1518 Budapest, P.O.Box 32, Hungary szalay@chem.elte.hu

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway 1 The Rigorous Calculation of Molecular Properties to Chemical Accuracy T. Helgaker, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University of Oslo, Norway S. Coriani,

More information

Pseudopotential. Meaning and role

Pseudopotential. Meaning and role Pseudopotential. Meaning and role Jean-Pierre Flament jean-pierre.flament@univ-lille.fr Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) Université de Lille-Sciences et technologies MSSC2018

More information

Role of the periodic table in discovery of new elements

Role of the periodic table in discovery of new elements Proc. Radiochim. Acta 1, 1 5 (2011) / DOI 10.1524/rcpr.2011.0000 by Oldenbourg Wissenschaftsverlag, München Role of the periodic table in discovery of new elements By D. C. Hoffman 1,2, 1 Nuclear Science

More information

Predictive Computing for Solids and Liquids

Predictive Computing for Solids and Liquids Predictive Computing for Solids and Liquids So Hirata Department of Chemistry May 214 Blue Waters Symposium 1 Schrödinger equation for a water molecule 1-particle, 3-dimensional partial differential equation

More information

Nuclear Effects in Electron Capture into Highly Charged Heavy Ions

Nuclear Effects in Electron Capture into Highly Charged Heavy Ions Nuclear Effects in Electron Capture into Highly Charged Heavy Ions W. Scheid 1,A.Pálffy 2,Z.Harman 2, C. Kozhuharov 3, and C. Brandau 3 1 Institut für Theoretische Physik der Justus-Liebig-Universität

More information

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6. .~, ~ I, sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.)1e'" 21t-ol Je C'...-------- lj-vi, J? Jr Jr \Ji 2~:J~ -ryej- r- 2 Jr A - f3 c _,~,= ~,.,w._..._.

More information

arxiv:physics/ v1 [physics.atom-ph] 2 Apr 2006

arxiv:physics/ v1 [physics.atom-ph] 2 Apr 2006 arxiv:physics/0604007v1 [physics.atom-ph] 2 Apr 2006 Relativistic Calculation Of Kβ Hypersatellite Energies and Transition Probabilities for Selected Atoms with 13 Z 80 31 December 2017 A. M. Costa, M.

More information

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 1-1 Lecture 1 - Electrons, Photons and Phonons Contents: September 4, 2002 1. Electronic structure of semiconductors 2. Electron statistics

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle.

THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle. THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle. First, we introduce four dimensional notation for a vector by writing x µ = (x, x 1, x 2, x 3 ) = (ct, x,

More information

Precise Relativistic many-body calculations for alkali-metal atoms

Precise Relativistic many-body calculations for alkali-metal atoms Precise Relativistic many-body calculations for alkali-metal atoms W.R. Johnson, M.S. Safronova, and A. Derevianko Notre Dame University http://www.nd.edu/ johnson Abstract The single-double (SD) method,

More information

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr +

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr + Commun. Theor. Phys. (Beijing, China) 37 (22) pp 76 7 c International Academic Publishers Vol. 37, No. 6, June 5, 22 Calculation of the Isotope Shifts on 5S /2 4D 3/2,5/2 Transitions of 87,88 Sr + LI Yong,,2

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino Heavy-ion fusion reactions and superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. fusion reactions: why are they interesting? 2. Coupled-channels approach 3. Future perspectives:

More information

Methods for Treating Electron Correlation CHEM 430

Methods for Treating Electron Correlation CHEM 430 Methods for Treating Electron Correlation CHEM 430 Electron Correlation Energy in the Hartree-Fock approximation, each electron sees the average density of all of the other electrons two electrons cannot

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

Supersymmetrization of Quaternionic Quantum Mechanics

Supersymmetrization of Quaternionic Quantum Mechanics Supersymmetrization of Quaternionic Quantum Mechanics Seema Rawat 1), A. S. Rawat ) and O. P. S. Negi 3) 1) Department of Physics Zakir Hussain Delhi College, Jawahar Nehru Marg New Delhi-11, India ) Department

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8th element had similar properties

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8 th element had similar properties

More information

Proton radius puzzle

Proton radius puzzle Proton radius puzzle Krzysztof Pachucki Universiy of Warsaw Frascati, December 21, 2016 Measurements of atomic spectra Measurement of transition frequencies can be very accurate [Garching, 2013] ν(1s 2S)

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

arxiv: v2 [nucl-ex] 10 Mar 2011

arxiv: v2 [nucl-ex] 10 Mar 2011 Conversion coefficients for superheavy elements T. Kibédi a,, M.B. Trzhaskovskaya b, M. Gupta c, A.E. Stuchbery a a Department of Nuclear Physics, Research School of Physics and Engineering, The Australian

More information

current status And future prospects

current status And future prospects September 20, 2007 Rare Isotopes & Fundamental symmetries workshop Atomic pnc theory: current status And future prospects marianna safronova outline Motivation & Summary of experiment Nuclear spin-independent

More information

Atomic Data for Lowly-Charged Tungsten Ions

Atomic Data for Lowly-Charged Tungsten Ions Atomic Data for Lowly-Charged Tungsten Ions Patrick Palmeri patrick.palmeri@umons.ac.be ADAS 2012 (Cadarache, France) 1 Outline Introduction HFR+CPOL Method Results: W 0, W 3-5+ Conclusions & Perspectives

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, USA Vienna, Austria, Dec

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems 1 Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems T. Helgaker Centre for Theoretical and Computational Chemistry, Department of

More information

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI Marta Włoch, a Jeffrey R. Gour, a and Piotr Piecuch a,b a Department of Chemistry,Michigan State University, East Lansing, MI 48824 b

More information

Clusters in Nuclear Matter

Clusters in Nuclear Matter Clusters in Nuclear Matter Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke (Universität Rostock) Thomas

More information

Theoretical study on the K α transition properties of F-like ions

Theoretical study on the K α transition properties of F-like ions J. At. Mol. Sci. doi: 10.4208/jams.013010.022010a Vol. 1, No. 2, pp. 134-142 May 2010 Theoretical study on the K α transition properties of F-like ions X. L. Wang, J. J. Wan, Y. J. Wang, and C. Z. Dong

More information

1 Rayleigh-Schrödinger Perturbation Theory

1 Rayleigh-Schrödinger Perturbation Theory 1 Rayleigh-Schrödinger Perturbation Theory All perturbative techniques depend upon a few simple assumptions. The first of these is that we have a mathematical expression for a physical quantity for which

More information

CHAPTER 5. The Structure of Atoms

CHAPTER 5. The Structure of Atoms CHAPTER 5 The Structure of Atoms Chapter Outline Subatomic Particles Fundamental Particles The Discovery of Electrons Canal Rays and Protons Rutherford and the Nuclear Atom Atomic Number Neutrons Mass

More information