Homogeneous Barycentric Coordinates

Size: px
Start display at page:

Download "Homogeneous Barycentric Coordinates"

Transcription

1 hapter 9 Homogeneous arycentric oordinates 9. bsolute and homogeneous barycentric coordinates The notion of barycentric coordinates dates back to. F. Möbius ( ). Given a reference triangle, we put at the vertices,, masses u, v, w respectively, and determine the balance point. The masses at and can be replaced by a single mass v + w at the point = v +w. Together with the mass at, this can be replaced by a mass u + v + w v+w at the point P which divides in the ratio P : P = v + w : u. This is the point with absolute barycentric coordinate u +v +w, provided u + v + w 0. We also say that u+v+w the balance point P has homogeneous barycentric coordinates (u : v : w) with reference to. 9.. The centroid The midpoints of the sides are D = + 2, E = + 2 The centroid G divides each median in the ratio 2:. Thus,, F = +. 2 G = +2D 3 = This is the absolute barycentric coordinate of G (with reference to ). Its homogeneous barycentric coordinates are simply G =(::). triple (u : v : w) with u + v + w =0does not represent any finite point on the plane. We shall say that it represents an infinite point. See?.

2 40 Homogeneous arycentric oordinates F G E Z I D 9..2 The incenter The bisector divides the side in the ratio : = c : b. This gives = b+c. Note that has length ca. Now, in triangle, the bisector I divides b+c b+c ca in the ratio I : I = c : = b + c : a. It follows that b+c I = a +(b + c) a + b + c = a + b + c. a + b + c The homogeneous barycentric coordinates of the incenter are I =(a : b : c) The barycenter of the perimeter onsider the barycenter (center of mass) of the perimeter of triangle. The edges,, can be replaced respectively by masses a, b, c at their midpoint D = +, 2 E = +, and F = +. With reference to the medial triangle DEF, this has coordinates 2 2 a : b : c. Since the sidelengths of triangle DEF are in the same proportions, this barycenter is the incenter of the medial triangle, also called the Spieker center S p of. F E S p D

3 9. bsolute and homogeneous barycentric coordinates 4 The center of mass of the perimeter is therefore the point S p = a D + b E + c F a + b + c = a + + b + + c a + b + c (b + c) +(c + a) +(a + b) =. 2(a + b + c) In homogeneous barycentric coordinates, 9..4 The Gergonne point S p =(b + c : c + a : a + b). We follow the same method to compute the coordinates of the Gergonne point G e. Here, = s b and = s c, so that = (s b)b +(s c). a Z G e I The ratio G e : G e, however, is not immediate obvious. It can nevertheless be found by applying the Menelaus theorem to triangle with transversal Z. Thus, G e G e Z Z =. From this, Therefore, G e G e = Z Z = a s c s a s b = a(s a) (s b)(s c). (s b)(s c) + a(s a) G e = (s b)(s c)+a(s a) (s b)(s c) +(s a)(s c) +(s a)(s b) =. (s b)(s c)+a(s a)

4 42 Homogeneous arycentric oordinates The homogeneous barycentric coordinates of the Gergonne point are 9.2 evian triangle G e = (s b)(s c) :(s c)(s a) :(s a)(s b) = : :. s a s b s c It is clear that the calculations in the preceding section applies in the general case. We summarize the results in the following useful alternative of the eva theorem. Theorem 9. (eva). Let,, Z be points on the lines,, respectively. The lines,, Z are collinear if and only if the given points have coordinates of the form = (0 : y : z), = (x : 0 : z), Z = (x : y : 0), for some x, y, z. If this condition is satisfied, the common point of the lines,, Z is P =(x : y : z). P P P P P Remarks. () The points,, Z are called the traces of P. We also say that Z is the cevian triangle of P (with reference to triangle ). Sometimes, we shall adopt the more functional notation for the cevian triangle and its vertices: cev(p ): P =(0:y : z), P =(x :0:z), P =(x : y :0). (2) The point P divides the segment in the ratio P : = x : x + y + z. (3) It follows that the areas of the oriented triangles P and are in the ratio Δ(P) : Δ() = x : x + y + z. This leads to the following interpretation of homogeneous barycentric coordinates: the homogeneous barycentric coordinates of a point P can be taken as the proportions of (signed) areas of oriented triangles: P =Δ(P):Δ(P):Δ(P).

5 9.2 evian triangle 43 O 9.2. The circumcenter onsider the circumcenter O of triangle. Since O =2α, the area of triangle O is 2 O O sin O = 2 R2 sin 2α. Similarly, the areas of triangles O and O are respectively 2 R2 sin 2β and 2 R2 sin 2γ. It follows that the circumcenter O has homogeneous barycentric coordinates ΔO :ΔO :ΔO = 2 R2 sin 2α : 2 R2 sin 2β : 2 R2 sin 2γ =sin2α :sin2β :sin2γ = a cos α : b cos β : c cos γ = a b2 + c 2 a 2 : b c2 + a 2 b 2 : c a2 + b 2 c 2 2bc 2ca 2ab = a 2 (b 2 + c 2 a 2 ):b 2 (c 2 + a 2 b 2 ):c 2 (a 2 + b 2 c 2 ) The Nagel point and the extouch triangle The -excircle touches the side at a point such that = s c and = s b. From this, the homogeneous barycentric coordinates of are 0:s b : s c; similarly for the points of tangency and Z of the - and -excircles: =(0 : s b : s c), =(s a :0:s c), Z =(s a : s b :0), From these we conclude that,, and Z concur. Their common point is called the Nagel point and has coordinates N a =(s a : s b : s c). The triangle Z is called the extouch triangle.

6 44 Homogeneous arycentric oordinates I b I c Z N a s c s b s b s c The orthocenter and the orthic triangle For the orthocenter H with traces,, Z on,, respectively, we have = c cos β, = b cos γ. This gives : = c cos β : b cos γ = cos β b similarly for the other two traces. I a : cos γ ; c Z H = 0 : b cos β : c cos γ a c = : 0 : cos α cos γ a b Z = : : 0 cos α cos β H = a cos α : b cos β : c cos γ = b 2 c 2 a 2 : c 2 +a 2 b 2 : a 2 +b 2 c 2

7 9.3 Homotheties 45 The triangle Z is called the orthic triangle. 9.3 Homotheties Let P be a given point, and k a real number. The homothety with center P and ratio k is the transformation h(p, k) which maps a point to the point such that P = k P. Equivalently, divides P in the ratio P : = k : k, and h(p, k)() =( k)p + k. P k k 9.3. Superiors and inferiors The homotheties h(g, 2) and h ( G, 2) are called the superior and inferior operations respectively. Thus, sup(p ) and inf(p ) are the points dividing P and the centroid G according to the ratios PG : Gsup(P )= :2, PG : Ginf(P )= 2:. P G sup(p ) inf(p ) Proposition 9.. IfP =(u : v : w) in homogeneous barycentric coordinates, then sup(p )= (v + w u : w + u v : u + v w), inf(p )= (v + w : w + u : u + v). Proof. In absolute barycentric coordinates, sup(p )= 3G 2P 2(u + v + w) = ( + + ) u + v + w (u + v + w)( + + ) 2(u + v + w) = u + v + w u + v + w (v + w u) +(w + u v) +(u + v w) =. u + v + w Therefore, sup(p )=(v + w u : w + u v : u + v w) in homogeneous barycentric coordinates. The case for inferior is similar.

8 46 Homogeneous arycentric oordinates Example. () The superior of the incenter is the Nagel point. The inferior of the incenter is the Spieker center, the barycenter of the perimeter of the triangle. (2) The nine-point center, being the midpoint of O and H, is the inferior of O. H From the homogeneous barycentric of O, we obtain N G O N = b 2 (c 2 + a 2 b 2 )+c 2 (a 2 + b 2 c 2 ): : = a 2 (b 2 + c 2 ) (b 2 c 2 ) 2 : :. L o 9.4 rea and barycentric coordinates Theorem 9.2. If for i =, 2, 3, P i = x i + y i + z i (in absolute barycentric coordinates), then the area of the oriented triangle P P 2 P 3 is x y z ΔP P 2 P 3 = x 2 y 2 z 2 x 3 y 3 z 3 Δ. Theorem 9.3 (Routh theorem). If,, Z are points on the lines,, respectively such that : = λ :, : = μ :, Z : Z = ν :, then the cevian lines,, Z bound a triangle with area (λμν ) 2 (μν + μ +)(νλ + ν +)(λμ + λ +) Δ. ν R Z μ P Q λ Proof. In homogeneous barycentric coordinates with reference to triangle, =(0::λ), =(μ :0:), Z =(:ν :0).

9 9.4 rea and barycentric coordinates 47 Those of P, Q, R can be worked out easily: P = Z Q = Z R = =(μ :0:) Z =(:ν :0) =(0::λ) Z =(:ν :0) =(0::λ) =(μ :0:) P =(μ : μν :) Q =(:ν : νλ) R =(λμ ::λ) This means that the absolute barycentric coordinates of P, Q, R are P = (μ + μν + ), μν + μ + Q = ( + ν + νλ), νλ + ν + R = (λμ + + λ). λμ + λ + From these, μ μν ν νλ λμ λ rea(pqr)= (μν + μ +)(νλ + ν +)(λμ + λ +) Δ (λμν ) 2 = (μν + μ +)(νλ + ν +)(λμ + λ +) Δ.

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 21 Menelaus and eva theorems 21.1 Menelaus theorem Theorem 21.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 29) Paul Yiu Department of Mathematics Florida tlantic University c a Summer 2014 1 The Pythagorean Theorem Theorem (Pythagoras). The lengths a

More information

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem hapter 5 Menelaus theorem 5.1 Menelaus theorem Theorem 5.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof. (= ) LetW

More information

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007 Survey of Geometry Paul Yiu Department of Mathematics Florida tlantic University Spring 2007 ontents 1 The circumcircle and the incircle 1 1.1 The law of cosines and its applications.............. 1 1.2

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 3 Menelaus and eva theorems 3.1 Menelaus theorem Theorem 3.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

Isotomic Inscribed Triangles and Their Residuals

Isotomic Inscribed Triangles and Their Residuals Forum Geometricorum Volume 3 (2003) 125 134. FORUM GEOM ISSN 1534-1178 Isotomic Inscribed Triangles and Their Residuals Mario Dalcín bstract. We prove some interesting results on inscribed triangles which

More information

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 10) Paul iu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Menelaus theorem Theorem (Menelaus). Given a triangle with points,, on the side lines,,

More information

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17 Nagel, Speiker, Napoleon, Torricelli MA 341 Topics in Geometry Lecture 17 Centroid The point of concurrency of the three medians. 07-Oct-2011 MA 341 2 Circumcenter Point of concurrency of the three perpendicular

More information

Triangle Centers. Maria Nogin. (based on joint work with Larry Cusick)

Triangle Centers. Maria Nogin. (based on joint work with Larry Cusick) Triangle enters Maria Nogin (based on joint work with Larry usick) Undergraduate Mathematics Seminar alifornia State University, Fresno September 1, 2017 Outline Triangle enters Well-known centers enter

More information

Advanced Euclidean Geometry

Advanced Euclidean Geometry dvanced Euclidean Geometry Paul iu Department of Mathematics Florida tlantic University Summer 2016 July 11 Menelaus and eva Theorems Menelaus theorem Theorem 0.1 (Menelaus). Given a triangle with points,,

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter hapter 8 Feuerbach s theorem 8.1 Distance between the circumcenter and orthocenter Y F E Z H N X D Proposition 8.1. H = R 1 8 cosαcos β cosγ). Proof. n triangle H, = R, H = R cosα, and H = β γ. y the law

More information

A Note on Reflections

A Note on Reflections Forum Geometricorum Volume 14 (2014) 155 161. FORUM GEOM SSN 1534-1178 Note on Reflections Emmanuel ntonio José García bstract. We prove some simple results associated with the triangle formed by the reflections

More information

On the Circumcenters of Cevasix Configurations

On the Circumcenters of Cevasix Configurations Forum Geometricorum Volume 3 (2003) 57 63. FORUM GEOM ISSN 1534-1178 On the ircumcenters of evasix onfigurations lexei Myakishev and Peter Y. Woo bstract. We strengthen Floor van Lamoen s theorem that

More information

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid hapter 6 asic triangle centers 6.1 The Euler line 6.1.1 The centroid Let E and F be the midpoints of and respectively, and G the intersection of the medians E and F. onstruct the parallel through to E,

More information

The Apollonius Circle and Related Triangle Centers

The Apollonius Circle and Related Triangle Centers Forum Geometricorum Qolume 3 (2003) 187 195. FORUM GEOM ISSN 1534-1178 The Apollonius Circle and Related Triangle Centers Milorad R. Stevanović Abstract. We give a simple construction of the Apollonius

More information

On Emelyanov s Circle Theorem

On Emelyanov s Circle Theorem Journal for Geometry and Graphics Volume 9 005, No., 55 67. On Emelyanov s ircle Theorem Paul Yiu Department of Mathematical Sciences, Florida Atlantic University Boca Raton, Florida, 3343, USA email:

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

Isogonal Conjugates. Navneel Singhal October 9, Abstract

Isogonal Conjugates. Navneel Singhal October 9, Abstract Isogonal Conjugates Navneel Singhal navneel.singhal@ymail.com October 9, 2016 Abstract This is a short note on isogonality, intended to exhibit the uses of isogonality in mathematical olympiads. Contents

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

Chapter 14. Cevian nest theorem Trilinear pole and polar Trilinear polar of a point

Chapter 14. Cevian nest theorem Trilinear pole and polar Trilinear polar of a point hapter 14 evian nest theorem 14.1 Trilinear pole and polar 14.1.1 Trilinear polar of a point Given a point ith traces and on the sidelines of triangle let = Y = Z =. These points Y Z lie on a line called

More information

The Menelaus and Ceva Theorems

The Menelaus and Ceva Theorems hapter 7 The Menelaus and eva Theorems 7.1 7.1.1 Sign convention Let and be two distinct points. point on the line is said to divide the segment in the ratio :, positive if is between and, and negative

More information

A Note on the Barycentric Square Roots of Kiepert Perspectors

A Note on the Barycentric Square Roots of Kiepert Perspectors Forum Geometricorum Volume 6 (2006) 263 268. FORUM GEOM ISSN 1534-1178 Note on the arycentric Square Roots of Kiepert erspectors Khoa Lu Nguyen bstract. Let be an interior point of a given triangle. We

More information

Construction of a Triangle from the Feet of Its Angle Bisectors

Construction of a Triangle from the Feet of Its Angle Bisectors onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study the problem of construction of a triangle from the feet of its internal angle bisectors. conic solution is possible.

More information

The Lemoine Cubic and Its Generalizations

The Lemoine Cubic and Its Generalizations Forum Geometricorum Volume 2 (2002) 47 63. FRUM GEM ISSN 1534-1178 The Lemoine ubic and Its Generalizations ernard Gibert bstract. For a given triangle, the Lemoine cubic is the locus of points whose cevian

More information

Heptagonal Triangles and Their Companions

Heptagonal Triangles and Their Companions Forum Geometricorum Volume 9 (009) 15 148. FRUM GEM ISSN 1534-1178 Heptagonal Triangles and Their ompanions Paul Yiu bstract. heptagonal triangle is a non-isosceles triangle formed by three vertices of

More information

Barycentric coordinates

Barycentric coordinates arycentric coordinates by Paris Pamfilos The artist finds a greater pleasure in painting than in having completed the picture. Seneca, Letter to Lucilius ontents 1 Preliminaries and definition 2 2 Traces,

More information

Geometry JWR. Monday September 29, 2003

Geometry JWR. Monday September 29, 2003 Geometry JWR Monday September 29, 2003 1 Foundations In this section we see how to view geometry as algebra. The ideas here should be familiar to the reader who has learned some analytic geometry (including

More information

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry.

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry. SOME NEW THEOREMS IN PLNE GEOMETRY LEXNDER SKUTIN 1. Introduction arxiv:1704.04923v3 [math.mg] 30 May 2017 In this article we will represent some ideas and a lot of new theorems in plane geometry. 2. Deformation

More information

The Apollonius Circle as a Tucker Circle

The Apollonius Circle as a Tucker Circle Forum Geometricorum Volume 2 (2002) 175 182 FORUM GEOM ISSN 1534-1178 The Apollonius Circle as a Tucker Circle Darij Grinberg and Paul Yiu Abstract We give a simple construction of the circular hull of

More information

arxiv: v1 [math.ho] 10 Feb 2018

arxiv: v1 [math.ho] 10 Feb 2018 RETIVE GEOMETRY LEXNDER SKUTIN arxiv:1802.03543v1 [math.ho] 10 Feb 2018 1. Introduction This work is a continuation of [1]. s in the previous article, here we will describe some interesting ideas and a

More information

Three Natural Homoteties of The Nine-Point Circle

Three Natural Homoteties of The Nine-Point Circle Forum Geometricorum Volume 13 (2013) 209 218. FRUM GEM ISS 1534-1178 Three atural omoteties of The ine-point ircle Mehmet Efe kengin, Zeyd Yusuf Köroğlu, and Yiğit Yargiç bstract. Given a triangle with

More information

XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade

XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade XIV Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade 1. (M.Volchkevich) The incircle of right-angled triangle A ( = 90 ) touches at point K. Prove that the chord

More information

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line Triangles III Stewart s Theorem, Orthocenter, uler Line 23-Sept-2011 M 341 001 1 Stewart s Theorem (1746) With the measurements given in the triangle below, the following relationship holds: a 2 n + b

More information

Revised Edition: 2016 ISBN All rights reserved.

Revised Edition: 2016 ISBN All rights reserved. Revised Edition: 2016 ISBN 978-1-280-29557-7 All rights reserved. Published by: Library Press 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: info@wtbooks.com Table of Contents

More information

Some Collinearities in the Heptagonal Triangle

Some Collinearities in the Heptagonal Triangle Forum Geometricorum Volume 16 (2016) 249 256. FRUM GEM ISSN 1534-1178 Some ollinearities in the Heptagonal Triangle bdilkadir ltintaş bstract. With the methods of barycentric coordinates, we establish

More information

Singapore International Mathematical Olympiad Training Problems

Singapore International Mathematical Olympiad Training Problems Singapore International athematical Olympiad Training Problems 18 January 2003 1 Let be a point on the segment Squares D and EF are erected on the same side of with F lying on The circumcircles of D and

More information

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS GEOMETRY OF KIEPERT ND GRINERG MYKISHEV HYPEROLS LEXEY. ZSLVSKY bstract. new synthetic proof of the following fact is given: if three points,, are the apices of isosceles directly-similar triangles,, erected

More information

1/19 Warm Up Fast answers!

1/19 Warm Up Fast answers! 1/19 Warm Up Fast answers! The altitudes are concurrent at the? Orthocenter The medians are concurrent at the? Centroid The perpendicular bisectors are concurrent at the? Circumcenter The angle bisectors

More information

Steiner s porism and Feuerbach s theorem

Steiner s porism and Feuerbach s theorem hapter 10 Steiner s porism and Feuerbach s theorem 10.1 Euler s formula Lemma 10.1. f the bisector of angle intersects the circumcircle at M, then M is the center of the circle through,,, and a. M a Proof.

More information

Classical Theorems in Plane Geometry 1

Classical Theorems in Plane Geometry 1 BERKELEY MATH CIRCLE 1999 2000 Classical Theorems in Plane Geometry 1 Zvezdelina Stankova-Frenkel UC Berkeley and Mills College Note: All objects in this handout are planar - i.e. they lie in the usual

More information

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC. hapter 2 The laws of sines and cosines 2.1 The law of sines Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle. 2R = a sin α = b sin β = c sin γ. α O O α as Since the area of a

More information

Generalized Mandart Conics

Generalized Mandart Conics Forum Geometricorum Volume 4 (2004) 177 198. FORUM GEOM ISSN 1534-1178 Generalized Mandart onics ernard Gibert bstract. We consider interesting conics associated with the configuration of three points

More information

A Theorem about Simultaneous Orthological and Homological Triangles

A Theorem about Simultaneous Orthological and Homological Triangles Theorem about Simultaneous Orthological and Homological Triangles Ion Pătraşcu Frații uzești ollege, raiova, Romania Florentin Smarandache University of New Mexico, Gallup ampus, US bstract. In this paper

More information

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIV GEOMETRIL OLYMPI IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally two remaining circles. lso

More information

Equal Area Triangles Inscribed in a Triangle

Equal Area Triangles Inscribed in a Triangle INTERNATIONAL JOURNAL OF GEOMETRY Vol 5 2016, No 1, 19-30 Equl Are Tringles Inscribed in Tringle SÁNDOR NAGYDOBAI KISS Abstrct We exmine the condition tht two or more inscribed tringles in tringle hve

More information

Recreational Mathematics

Recreational Mathematics Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2003 Chapters 5 8 Version 030630 Chapter 5 Greatest common divisor 1 gcd(a, b) as an integer combination of

More information

Hagge circles revisited

Hagge circles revisited agge circles revisited Nguyen Van Linh 24/12/2011 bstract In 1907, Karl agge wrote an article on the construction of circles that always pass through the orthocenter of a given triangle. The purpose of

More information

Notes on Barycentric Homogeneous Coordinates

Notes on Barycentric Homogeneous Coordinates Notes on arycentric Homogeneous oordinates Wong Yan Loi ontents 1 arycentric Homogeneous oordinates 2 2 Lines 3 3 rea 5 4 Distances 5 5 ircles I 8 6 ircles II 10 7 Worked Examples 14 8 Exercises 20 9 Hints

More information

Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem

Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem Forum Geometricorum Volume 18 (2018) 353 359. FORUM GEOM ISSN 1534-1178 Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem Nikolaos Dergiades and Tran Quang Hung Abstract. We give simple proofs

More information

A Quadrilateral Half-Turn Theorem

A Quadrilateral Half-Turn Theorem Forum Geometricorum Volume 16 (2016) 133 139. FORUM GEOM ISSN 1534-1178 A Quadrilateral Half-Turn Theorem Igor Minevich and atrick Morton Abstract. If ABC is a given triangle in the plane, is any point

More information

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Conic Construction of a Triangle from the Feet of Its Angle Bisectors onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given

More information

TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS

TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS Math. J. Okayama Univ. 53 (2011), 185 216 TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS Yoshio Agaoka Abstract. We consider a family of triangle centers whose barycentric coordinates are given by quadratic

More information

Triangles III. Stewart s Theorem, Orthocenter, Euler Line. 23-Sept-2011 MA

Triangles III. Stewart s Theorem, Orthocenter, Euler Line. 23-Sept-2011 MA Triangles III Stewart s Theorem, Orthocenter, Euler Line 23-Sept-2011 MA 341 001 1 Stewart s Theorem (1746) With the measurements given in the triangle below, the following relationship holds: a 2 n +

More information

Affine Maps and Feuerbach s Theorem

Affine Maps and Feuerbach s Theorem Affine Maps and Feuerbach s Theorem arxiv:1711.09391v1 [math.mg] 26 Nov 2017 1 Introduction. Patrick Morton In this paper we will study several important affine maps in the geometry of a triangle, and

More information

Synthetic foundations of cevian geometry, III: The generalized orthocenter

Synthetic foundations of cevian geometry, III: The generalized orthocenter arxiv:1506.06253v2 [math.mg] 14 Aug 2015 Synthetic foundations of cevian geometry, III: The generalized orthocenter 1 Introduction. Igor Minevich and atrick Morton 1 August 17, 2015 In art II of this series

More information

A strangely synimetric pattern involving conjugacies and "local" and "global" bisectors

A strangely synimetric pattern involving conjugacies and local and global bisectors A strangely synimetric pattern involving conjugacies and "local" and "global" bisectors Douglas R. Hofstadter Center for Research on Concepts & Cognition Indiana University 510 North Fess Street Bloomington,

More information

Isogonal Conjugacy Through a Fixed Point Theorem

Isogonal Conjugacy Through a Fixed Point Theorem Forum Geometricorum Volume 16 (016 171 178. FORUM GEOM ISSN 1534-1178 Isogonal onjugacy Through a Fixed Point Theorem Sándor Nagydobai Kiss and Zoltán Kovács bstract. For an arbitrary point in the plane

More information

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice : Midterm Multiple Choice Practice 1. In the diagram below, a square is graphed in the coordinate plane. A reflection over which line does not carry the square onto itself? (1) (2) (3) (4) 2. A sequence

More information

Square Wreaths Around Hexagons

Square Wreaths Around Hexagons Forum Geometricorum Volume 6 (006) 3 35. FORUM GEOM ISSN 534-78 Square Wreaths Around Hexagons Floor van Lamoen Abstract. We investigate the figures that arise when squares are attached to a triple of

More information

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30.

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. 1. (V. Yasinsky) In trapezoid D angles and are right, = D, D = + D, < D. Prove that

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

Cevian Projections of Inscribed Triangles and Generalized Wallace Lines

Cevian Projections of Inscribed Triangles and Generalized Wallace Lines Forum Geometricorum Volume 16 (2016) 241 248. FORUM GEOM ISSN 1534-1178 Cevian Projections of Inscribed Triangles and Generalized Wallace Lines Gotthard Weise 1. Notations Abstract. Let Δ=ABC be a reference

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Example 1(a). Given a triangle, the intersection P of the perpendicular bisector of and

More information

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS 22 SPL PROLS WITH SOLUTIOS FRO 555 GOTRY PROLS SOLUTIOS S O GOTRY I FIGURS Y. V. KOPY Stanislav hobanov Stanislav imitrov Lyuben Lichev 1 Problem 3.9. Let be a quadrilateral. Let J and I be the midpoints

More information

Power Round: Geometry Revisited

Power Round: Geometry Revisited Power Round: Geometry Revisited Stobaeus (one of Euclid s students): But what shall I get by learning these things? Euclid to his slave: Give him three pence, since he must make gain out of what he learns.

More information

Harmonic Division and its Applications

Harmonic Division and its Applications Harmonic ivision and its pplications osmin Pohoata Let d be a line and,,, and four points which lie in this order on it. he four-point () is called a harmonic division, or simply harmonic, if =. If is

More information

Page 1 of 8 Name: 1. Write in symbolic form the inverse of ~p q. 1. ~q p 2. q ~ p 3. p q 4. p ~ q 2. In symbolic form, write the contrapositive of p ~q. 1. q ~ p 2. ~p ~q 3. ~p q 4. ~q p 3. Figure 1 In

More information

The Kiepert Pencil of Kiepert Hyperbolas

The Kiepert Pencil of Kiepert Hyperbolas Forum Geometricorum Volume 1 (2001) 125 132. FORUM GEOM ISSN 1534-1178 The Kiepert Pencil of Kiepert Hyperbolas Floor van Lamoen and Paul Yiu bstract. We study Kiepert triangles K(φ) and their iterations

More information

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem hapter 3 The angle bisectors 3.1 The angle bisector theorem Theorem 3.1 (ngle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If

More information

Construction of Ajima Circles via Centers of Similitude

Construction of Ajima Circles via Centers of Similitude Forum Geometricorum Volume 15 (2015) 203 209. FORU GEO SS 1534-1178 onstruction of jima ircles via enters of Similitude ikolaos Dergiades bstract. We use the notion of the centers of similitude of two

More information

A Distance Property of the Feuerbach Point and Its Extension

A Distance Property of the Feuerbach Point and Its Extension Forum Geometricorum Volume 16 (016) 83 90. FOUM GEOM ISSN 1534-1178 A Distance Property of the Feuerbach Point and Its Extension Sándor Nagydobai Kiss Abstract. We prove that among the distances from the

More information

Problems First day. 8 grade. Problems First day. 8 grade

Problems First day. 8 grade. Problems First day. 8 grade First day. 8 grade 8.1. Let ABCD be a cyclic quadrilateral with AB = = BC and AD = CD. ApointM lies on the minor arc CD of its circumcircle. The lines BM and CD meet at point P, thelinesam and BD meet

More information

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 1 Triangles: Basics This section will cover all the basic properties you need to know about triangles and the important points of a triangle.

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade Ratmino, 2016, July 31 1. (Yu.linkov) n altitude H of triangle bisects a median M. Prove that the medians of

More information

Chapter 3. Coaxial circles. 3.1 The radical axis of two circles. A quadratic equation of the form

Chapter 3. Coaxial circles. 3.1 The radical axis of two circles. A quadratic equation of the form Chapter 3 Coaxial circles 3.1 The radical axis of two circles A quadratic equation of the form x 2 +y 2 +2gx+2fy +c = 0 represents a circle, center( g, f) and radius the square root ofg 2 +f 2 c. It is

More information

How not to fail proving Ceva s theorem

How not to fail proving Ceva s theorem How not to fail proving Ceva s theorem Boyko B. Bantchev Vectors can be extremely effective in proving theorems and carrying out calculations in plane geometry. Their current use is limited due to vector

More information

ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE

ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE INTERNATIONAL JOURNAL OF GEOMETRY Vol 6 07 No - ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE PAUL ABLAGA Abstract In this note we prove the existence of the analogous points of the Gergonne

More information

THE GEOMETRY OF HOMOLOGICAL TRIANGLES

THE GEOMETRY OF HOMOLOGICAL TRIANGLES THE GEOMETRY OF HOMOLOGIL TRINGLES X Z D D F E S F D B B F E E B Y FLORENTIN SMRNDHE ION PĂTRŞU FLORENTIN SMRNDHE ION PĂTRŞU THE GEOMETRY OF HOMOLOGIL TRINGLES 0 This book can be ordered on paper or electronic

More information

BMC Intermediate II: Triangle Centers

BMC Intermediate II: Triangle Centers M Intermediate II: Triangle enters Evan hen January 20, 2015 1 The Eyeballing Game Game 0. Given a point, the locus of points P such that the length of P is 5. Game 3. Given a triangle, the locus of points

More information

Introduction to the Geometry of the Triangle

Introduction to the Geometry of the Triangle Introduction to the Geometry of the Triangle Paul Yiu Department of Mathematics Florida Atlantic University Preliminary Version Summer 2001 Table of Contents Chapter 1 The circumcircle and the incircle

More information

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 8) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 The incircle The internal angle bisectors of a triangle are concurrent at the incenter

More information

15.1 The power of a point with respect to a circle. , so that P = xa+(y +z)x. Applying Stewart s theorem in succession to triangles QAX, QBC.

15.1 The power of a point with respect to a circle. , so that P = xa+(y +z)x. Applying Stewart s theorem in succession to triangles QAX, QBC. Chapter 15 Circle equations 15.1 The power of a point with respect to a circle The power of P with respect to a circle Q(ρ) is the quantity P(P) := PQ 2 ρ 2. A point P is in, on, or outside the circle

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 21 Example 11: Three congruent circles in a circle. The three small circles are congruent.

More information

CLASS IX GEOMETRY MOCK TEST PAPER

CLASS IX GEOMETRY MOCK TEST PAPER Total time:3hrs darsha vidyalay hunashyal P. M.M=80 STION- 10 1=10 1) Name the point in a triangle that touches all sides of given triangle. Write its symbol of representation. 2) Where is thocenter of

More information

Chapter 13. Straight line equations Area and barycentric coordinates

Chapter 13. Straight line equations Area and barycentric coordinates Chapter 13 Straight line equations 13.1 Area and barycentric coordinates Theorem 13.1. If for i = 1,2,3, P i = x i A + y i B + z i C (in absolute barycentric coordinates), then the area of the oriented

More information

Geometry in the Complex Plane

Geometry in the Complex Plane Geometry in the Complex Plane Hongyi Chen UNC Awards Banquet 016 All Geometry is Algebra Many geometry problems can be solved using a purely algebraic approach - by placing the geometric diagram on a coordinate

More information

The Arbelos and Nine-Point Circles

The Arbelos and Nine-Point Circles Forum Geometricorum Volume 7 (2007) 115 120. FORU GEO ISSN 1534-1178 The rbelos and Nine-Point Circles uang Tuan ui bstract. We construct some new rchimedean circles in an arbelos in connection with the

More information

Pairs of Cocentroidal Inscribed and Circumscribed Triangles

Pairs of Cocentroidal Inscribed and Circumscribed Triangles Forum Geometricorum Volume 15 (2015) 185 190. FORUM GEOM ISSN 1534-1178 Pairs of Cocentroidal Inscribed and Circumscribed Triangles Gotthard Weise Abstract. Let Δ be a reference triangle and P a point

More information

Trigonometric Fundamentals

Trigonometric Fundamentals 1 Trigonometric Fundamentals efinitions of Trigonometric Functions in Terms of Right Triangles Let S and T be two sets. function (or mapping or map) f from S to T (written as f : S T ) assigns to each

More information

Practice Problems in Geometry

Practice Problems in Geometry Practice Problems in Geometry Navneel Singhal August 12, 2016 Abstract The problems here are not sorted in order of difficulty because sometimes after seeing the source of the problem, people get intimidated.

More information

Bicevian Tucker Circles

Bicevian Tucker Circles Forum Geometricorum Volume 7 (2007) 87 97. FORUM GEOM ISSN 1534-1178 icevian Tucker ircles ernard Gibert bstract. We prove that there are exactly ten bicevian Tucker circles and show several curves containing

More information

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3 c 007 The Author(s) and The IMO Compendium Group Contents Inversion Dušan Djukić 1 General Properties................................... 1 Problems........................................ 3 Solutions........................................

More information

Chapter 5: Properties and Attributes of Triangles Review Packet

Chapter 5: Properties and Attributes of Triangles Review Packet Geometry B Name: Date: Block: Chapter 5: Properties and Attributes of Triangles Review Packet All work must be shown to receive full credit. Define the following terms: 1. altitude of a triangle 2. centroid

More information

Introduction to the Geometry of the Triangle

Introduction to the Geometry of the Triangle Introduction to the Geometry of the Triangle Paul Yiu Summer 2001 Department of Mathematics Florida Atlantic University Version 2.0402 April 2002 Table of Contents Chapter 1 The circumcircle and the incircle

More information

Two applications of the theorem of Carnot

Two applications of the theorem of Carnot Annales Mathematicae et Informaticae 40 (2012) pp. 135 144 http://ami.ektf.hu Two applications of the theorem of Carnot Zoltán Szilasi Institute of Mathematics, MTA-DE Research Group Equations, Functions

More information

Affine Transformations

Affine Transformations Solutions to hapter Problems 435 Then, using α + β + γ = 360, we obtain: ( ) x a = (/2) bc sin α a + ac sin β b + ab sin γ c a ( ) = (/2) bc sin α a 2 + (ac sin β)(ab cos γ ) + (ab sin γ )(ac cos β) =

More information

KEY EXAMPLE (Lesson 23.1) Find the coordinates of the circumcenter of the triangle. Coordinates: A (-2, -2), B (2, 3), C (2, -2) 2) Midpoint of BC

KEY EXAMPLE (Lesson 23.1) Find the coordinates of the circumcenter of the triangle. Coordinates: A (-2, -2), B (2, 3), C (2, -2) 2) Midpoint of BC Houghton Mifflin Harcourt Publishing ompan STUDY GUIDE REVIEW Special Segments in Triangles Essential Question: How can ou use special segments in triangles to solve real-world problems? KEY EXMPLE (Lesson

More information

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these Q. If a, b, c are distinct positive real in H.P., then the value of the expression, b a b c + is equal to b a b c () (C) (D) 4 Q. In a triangle BC, (b + c) = a bc where is the circumradius of the triangle.

More information