[ f x x 2 2 x, 4.1. Click here for answers. Click here for solutions. MAXIMUM AND MINIMUM VALUES

Size: px
Start display at page:

Download "[ f x x 2 2 x, 4.1. Click here for answers. Click here for solutions. MAXIMUM AND MINIMUM VALUES"

Transcription

1 SECTION. MAXIMUM AND MINIMUM VALUES. MAXIMUM AND MINIMUM VALUES A Click here for answers. S Click here for solutions. Sketch the graph of a function f that is continuous on [0, 3] and has the given properties.. Absolute maximum at 0, absolute minimum at 3, local minimum at, local maximum at. Absolute maximum at, absolute minimum at 3. is a critical number, but f has no local maximum or minimum. Absolute minimum at 0, absolute maximum at, local maxima at and, local minimum at Sketch the graph of f b hand and use our sketch to find the absolute and local maximum and minimum values of f. (Use the graphs and transformations of Section..) 5. f x x; x 6. f x x ; x 8 7. f x x ; 0 x 8. f x x ; 0 x 9. f x x ; 0 x 0. f x x ; 0 x. f x x ; x. f x x ; x 3. ; 0 x f x x. f cos ; 5. f sec ; f x x 5 f x x 8. f x e x, x Find the critical numbers of the function. 9. f x x 3x 0. f x 5 8x. f x x 3 3x. f t t 3 6t 3t 3. t x s 9 x. t x x 5. f x 5 6x x 3 6. f t t 3 3t 6t f x x 3 9x x 3 s t t 3 3t 6t s t t t 3 t 30. f r r r 3. f sin 3. t 33. V x xsx 3. T x x x 3 sin 35 5 Find the absolute maximum and absolute minimum values of f on the given interval. 35. f x x x, 0, f x x x,, 37. f x x 3 x, 3, f x x 3 5x x 7, 0, f x x 3 3x,, 0. f x 8x 5x x 3, 3,. f x x x, 3,. f x 3x 5 5x 3,, 3. f x x x, [, ]. f x s9 x,, 5. f x x, x, ; 6. Use a graph to estimate the critical numbers of f x x 3x x correct to one decimal place. ; 7. (a) Use a graph to estimate the absolute maximum and minimum values of f x x 3x 3 3x x on the interval 0,, correct to two decimal places. (b) Use calculus to find the exact maximum and minimum values. 8. Show that 0 is a critical number of the function f x x 5 but f has neither a local maximum nor a local minimum at Sketch the graph of a function on 0, that is discontinuous and has both an absolute maximum and an absolute Copright 03, Cengage Learning. All rights reserved.

2 SECTION. MAXIMUM AND MINIMUM VALUES. ANSWERS E Click here for exercises. S Click here for solutions.... Abs. max. f (0) = 3; abs.min.f () = 5 5. Abs. max. f () = 3 ;abs.min.f () = 6..3, 0.,. 7. (a), 0. (b), Abs. min. f ( ) = 6. Abs. max. f (8) = 3 7. None 8. Abs. min. f () = 0 9. Abs. max. f (0) = 0. Abs. max. f (0) = ; abs. min. f () = 0. Abs. and loc. max. f (0) = ; abs. min. f ( ) = 3. Abs. max. f ( ) = ; abs. and loc. min f (0) = 0 3. Abs. max. f () = 7; abs. and loc. min. f ( ) =0. Abs. and loc. max. f (0) = 5. Abs. and loc. min. f (0) = 6. None 7. Abs. and loc. max. f (0) = 8. Abs. min. f (0) = None. ±. ± ± 6. None 7., 8. ( ± 5 ) / 9. 0, ( 3 ± 5 ) / 30. ± 3. nπ/, n an integer 3. (n +)π, n an integer ,, Abs. max. f (3) = 5; abs. min. f () = 36. Abs. max. f ( ) = ; abs. min. f ( ) = Abs. max. f (5) = 66; abs. min. f () = Abs. max. f (3) = 6; abs. min. f () = Abs. max. f () = 9; abs.min. f ( ) = 0 Copright 03, Cengage Learning. All rights reserved. 0. Abs. max. f ( 3) = 89; abs.min. f ( ) = 9. Abs. max. f ( 3) = 7; abs.min.f ( ± ) =. Abs. max. f () = 55; abs. min. f ( ) = Abs. max. f () = 5; abs. min. f () = 3

3 SECTION. MAXIMUM AND MINIMUM VALUES 3. SOLUTIONS E Click here for exercises f (x) = x, 0 x<. Absolute maximum f (0) = ; no local maximum. No absolute or local 0. f (x) = x, 0 x f (x)=+x, x. Absolute minimum f ( ) = ; nolocal No local or absolute maximum. Absolute maximum f (0) = ; no local maximum. Absolute minimum f () = 0;nolocal. f (x) = x, x. Absolute and local maximum f (0) =. Absolute minimum f ( ) = 3; nolocal. (_, ) 0 x f (x) = x, x. Absolute maximum f ( ) = ; no local maximum. Absolute and local minimum f (0) = f (x) =x, x 8. Absolute maximum f (8) = 3; no local maximum. No local or absolute 3. 7 f (x) = x, 0 x. Absolute maximum f () = 7; no local maximum. Absolute and local minimum f ( ) =0since x 0 for all x. 7. f (x) = x, 0 <x<. No maximum or. 0 x f (θ) =cos(θ/), π <θ<π.localand _¹ ¹ absolute maximum f (0) =. No local or absolute Copright 03, Cengage Learning. All rights reserved. 8. f (x) = x, 0 <x. Absolute minimum f () = 0; no local No absolute or local maximum. 5. =_ ¹ _ ¹ ( _3, ) (0, ) 0 f (θ) =secθ, π <θ π. 3 Local and absolute minimum f (0) =. No absolute or local maximum.

4 SECTION. MAXIMUM AND MINIMUM VALUES Copright 03, Cengage Learning. All rights reserved. 6. f (x) =x 5.Nomaximumor 7. f (x) = x. Local and absolute maximum f (0) =. No local or absolute 8. f (x) = e x, x 0. Absolute minimum f (0) = 0; no local No absolute or local maximum. 9. f (x) =x 3x f (x) = 6x =0 x = 3. So the critical number is f (x)=5+8x f (x) =8 0. No critical number.. f (x) =x 3 3x + f (x) =3x 3=3 ( x ) =3(x +)(x ). So the critical numbers are ±.. f (t) =t 3 +6t +3t f (t) =3t +t +3=3 ( t +t + ). B the quadratic formula, solutions are t = ± = ± 3. Critical numbers are t = ± g (x) = 9 x = x /9 g (x) = 9 x 8/9 = 9 9 x 0, 8 but g (0) doesnotexist,sox =0is a critical number.. g (x) = x + g (x) =if x>, g (x) = if x<,butg ( ) does not exist, so x = is a critical number. 5. f (x) =5+6x x 3 f (x) =6 6x =6(+x)( x). f (x) =0 x = ±,so± are the critical numbers. 6. f (t) =t 3 +3t +6t + f (t) =6t +6t +6. But t + t +=0has no real solution since b ac = ()() = 3 < 0. No critical number. 7. f (x) =x 3 9x x +3 f (x) =x 8x =6 ( x 3x ) =6(x +)(x ) f (x) =0 x =, ; so the critical numbers are x =,. 8. s (t) =t 3 +3t 6t + s (t) =6t +6t 6=6 ( t + t ). B the quadratic formula, the critical numbers are t = ( ± 5 ) /. 9. s (t) =t +t 3 +t s (t) =t 3 +t +t =t ( t +3t + ) =0when t =0or t +3t +=0. B the quadratic formula, the critical numbers are t =0, 3 ± 5. r 30. f (r) = r + ( r f + ) r (r) (r) = = r + (r +) (r +) =0 r = r = ±, so these are the critical numbers. Note that f (r) alwasexistssincer f (θ) =sin (θ) f (θ) =sin(θ)cos(θ)() =(sinθcos θ) =[sin( θ)] =sinθ =0 f (θ) =0 sin θ =0 θ = nπ, n an integer. So θ = nπ/ are the critical numbers. 3. g (θ) =θ +sinθ g (θ) =+cosθ =0 cos θ =. The critical numbers are θ = π +nπ =(n +)π, n an integer. 33. V (x) =x x V (x) = x x + x V ( ) does not exist. For x> [the domain of V (x)], V (x) > 0,sois the onl critical number. 3. T (x) =x (x ) /3 T (x) =x (x ) /3 + x ( ) 3 (x ) /3 (). So T ( ) does not exist. T (x) =x (x ) ( /3 x + x) 3 =x (x ) /3 ( 8 3 x ) =0 x =0or x = 3 8. So the critical numbers are x =0, 3 8,and. 35. f (x) =x x +, [0, 3]. f (x) =x =0 x =. f (0) =, f () =, f (3) = 5. So f (3) = 5 is the absolute maximum and f () = is the absolute 36. f (x) = x x, [, ]. f (x) = x =0 x =. f ( ) = 7, f ( ) =, f () =. So f ( ) = 7 is the absolute minimum, f ( ) = is the absolute maximum. 37. f (x) =x 3 x +, [ 3, 5]. f (x) =3x = 3 ( x ) =3(x +)(x ) = 0 x = ±. f ( 3) = 0, f ( ) = 7, f () = 5, f (5) = 66. So f () = 5 is the absolute minimum and f (5) = 66 is the absolute maximum.

5 SECTION. MAXIMUM AND MINIMUM VALUES f (x) =x 3 5x +x +7, [0, 3]. f (x) =x 30x +=6(x ) (x ) = 0 x =,. f (0) = 7, f ( ) = 39, f () = 3, f (3) = 6. So f (3) = 6 is the absolute maximum and f () = 3 the absolute 39. f (x) =x 3 +3x +, [, ]. f (x) =6x +6x =6x (x +)=0 x =, 0. f ( ) = 0, f ( ) = 5, f (0) =, f () = 9. So f () = 9 is the absolute maximum and f ( ) = 0 is the absolute 0. f (x) =8x +5x x 3, [ 3, ]. f (x) =8+30x x =6(3 x)(+x) =0 x =3,. f ( 3) = 89, f ( ) = 9, f (3) = 8, f () = 56. So f ( 3) = 89 is the absolute maximum and f ( ) = 9 is the absolute. f (x) =x x +, [ 3, ]. f (x) =x 3 8x =x ( x ) =0 x =0, ±. f ( 3) = 7, f ( ) =, f (0) =, f ( ) =, f () =,sof ( ± ) = is the absolute minimum and f ( 3) = 7 is the absolute maximum.. f (x) =3x 5 5x 3, [, ]. f (x) =5x 5x =5x (x +)(x ) = 0 x =, 0,. f ( ) = 57, f ( ) =, f (0) =, f () = 3, f () = 55. Sof ( ) = 57 is the absolute minimum and f () = 55 is the absolute maximum. 3. f (x) =x + x, [, ]. f (x) =x x =x3 x =0 x 3 =0 (x ) ( x + x + ) =0, but x + x + 0,sox =. The denominator is 0 at x =0, but not in the desired interval. f ( ) = 7, f () = 3, f () = 5. Sof () = 3 is the absolute minimum and f () = 5 istheabsolutemaximum.. f (x) = 9 x, [, ]. f (x) = x / 9 x =0 x =0. f ( ) =, f (0) = 3, f () = 5.So f () = 5 is the absolute minimum and f (0) = 3 is the absolute maximum. 5. f (x) = x, [, ]. x + f (x +) x (x) = = 0 no critical (x +) (x +) number. f () = and f () = 3,sof () = is the absolute minimum and f () = is the absolute maximum We see that f (x) =0at about x =.3, 0.,and.. Since f exists everwhere, these are the onl critical numbers. 7. (a) From the graph, it appears that the absolute maximum value is f () =, and that the absolute minimum value is about f (0.5) = 0.. (b) f (x) =x 3x 3 +3x x f (x) =x 3 9x +6x =(x ) (x ). So f (x) =0 x = or x =. Now f () = =0 (neither maximum nor minimum) and ) 3 ( ) 3 +3 ( ) = 7 56 f ( ) ( = (minimum). At the right endpoint we have f () = =(maximum). 8. f (x) =x 5. f (x) =5x f (0) = 0 so 0 is a critical number. But f (0) = 0 and f takes both positive and negative values in an open interval containing 0,so f has neither a local maximum nor a local minimum at Copright 03, Cengage Learning. All rights reserved.

3.3. Click here for solutions. Click here for answers. DERIVATIVES AND THE SHAPES OF GRAPHS

3.3. Click here for solutions. Click here for answers. DERIVATIVES AND THE SHAPES OF GRAPHS SECTION DERIVATIVES AND THE SHAPES OF GRAPHS DERIVATIVES AND THE SHAPES OF GRAPHS A Click here for answers S Click here for solutions 6 a Find the intervals on which f is increasing or decreasing b Find

More information

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES SECTION 9. PARAMETRIC CURVES 9. PARAMETRIC CURVES A Click here for answers. S Click here for solutions. 5 (a) Sketch the curve b using the parametric equations to plot points. Indicate with an arrow the

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Differential Equations: Homework 8

Differential Equations: Homework 8 Differential Equations: Homework 8 Alvin Lin January 08 - May 08 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r +

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

ADDITONAL MATHEMATICS

ADDITONAL MATHEMATICS ADDITONAL MATHEMATICS 00 0 CLASSIFIED TRIGONOMETRY Compiled & Edited B Dr. Eltaeb Abdul Rhman www.drtaeb.tk First Edition 0 5 Show that cosθ + + cosθ = cosec θ. [3] 0606//M/J/ 5 (i) 6 5 4 3 0 3 4 45 90

More information

Review for Cumulative Test 2

Review for Cumulative Test 2 Review for Cumulative Test We will have our second course-wide cumulative test on Tuesday February 9 th or Wednesday February 10 th, covering from the beginning of the course up to section 4.3 in our textbook.

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

Book 4. June 2013 June 2014 June Name :

Book 4. June 2013 June 2014 June Name : Book 4 June 2013 June 2014 June 2015 Name : June 2013 1. Given that 4 3 2 2 ax bx c 2 2 3x 2x 5x 4 dxe x 4 x 4, x 2 find the values of the constants a, b, c, d and e. 2. Given that f(x) = ln x, x > 0 sketch

More information

Written Homework 7 Solutions

Written Homework 7 Solutions Written Homework 7 Solutions Section 4.3 20. Find the local maxima and minima using the First and Second Derivative tests: Solution: First start by finding the first derivative. f (x) = x2 x 1 f (x) =

More information

Maximum and Minimum Values section 4.1

Maximum and Minimum Values section 4.1 Maximum and Minimum Values section 4.1 Definition. Consider a function f on its domain D. (i) We say that f has absolute maximum at a point x 0 D if for all x D we have f(x) f(x 0 ). (ii) We say that f

More information

https://sites.google.com/site/dhseisen/

https://sites.google.com/site/dhseisen/ Name: Calculus AP - Summer Assignment 2017 All questions and concerns related to this assignment should be directed to Ms. Eisen on or before Wednesday, June 21, 2017. If any concerns should arise over

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3 Warm Up Simplify. 1) 99 = 3 11 2) 125 + 2 20 = 5 5 + 4 5 = 9 5 3) 2 + 7 2 + 3 7 = 4 + 6 7 + 2 7 + 21 4) 4 42 3 28 = 4 3 3 2 = 4 6 6 = 25 + 8 7 = 2 6 3 Test Results Average Median 5 th : 76.5 78 7 th :

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

( 4. AP Exam Practice Questions for Chapter 7. AP Exam Practice Questions for Chapter 7 1 = = x dx. 1 3x So, the answer is A.

( 4. AP Exam Practice Questions for Chapter 7. AP Exam Practice Questions for Chapter 7 1 = = x dx. 1 3x So, the answer is A. AP Eam Practice Questions for Chapter 7 AP Eam Practice Questions for Chapter 7. e e So, the answer is A. e e ( ) A e e d e e e e. 7 + + (, ) + (, ) (, ) 7 + + + 7 + 7 + ( ) ( ),, A d + + + + + + + d +

More information

Pre-Calculus Midterm Practice Test (Units 1 through 3)

Pre-Calculus Midterm Practice Test (Units 1 through 3) Name: Date: Period: Pre-Calculus Midterm Practice Test (Units 1 through 3) Learning Target 1A I can describe a set of numbers in a variety of ways. 1. Write the following inequalities in interval notation.

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, )

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, ) Midterm Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the domain and graph the function. ) G(t) = t - 3 ) 3 - -3 - - 3 - - -3

More information

Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions function Characteristics of a function from set A to set B

Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions function Characteristics of a function from set A to set B Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions A function f from a set A to a set B is a relation that assigns to each element x in the set A exactly one element y in set B.

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION We have already investigated some applications of derivatives. However, now that we know the differentiation rules, we are in a better

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Not for reproduction

Not for reproduction ROTATION OF AES For a discussion of conic sections, see Review of Conic Sections In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x.

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x. SECTION. A CATALOG OF ESSENTIAL FUNCTIONS. A CATALOG OF ESSENTIAL FUNCTIONS A Click here for answers. S Click here for solutions. Match each equation with its graph. Eplain our choices. (Don t use a computer

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y. BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH06 Review Sheet. Perform the indicated operations and simplif: n n 0 n + n ( 9 ) ( ) + + 6 + 9ab

More information

CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I. VERSION 1.3 KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE

CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I. VERSION 1.3 KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I VERSION 1. KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE 1) f 4 (Answers to Exercises for Chapter 1: Review) A.1.1. CHAPTER 1: REVIEW

More information

Calculus I Practice Problems 8: Answers

Calculus I Practice Problems 8: Answers Calculus I Practice Problems : Answers. Let y x x. Find the intervals in which the function is increasing and decreasing, and where it is concave up and concave down. Sketch the graph. Answer. Differentiate

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then.

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then. COMPLEX NUMBERS _+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved.

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved. 3.2 Polynomial Functions and Their Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphing Basic Polynomial Functions End Behavior and the Leading Term Using Zeros to Graph Polynomials

More information

Maximum and Minimum Values - 3.3

Maximum and Minimum Values - 3.3 Maimum and Minimum Values - 3.3. Critical Numbers Definition A point c in the domain of f is called a critical number offiff c or f c is not defined. Eample a. The graph of f is given below. Find all possible

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6665/0 Edexcel GCE Core Mathematics C3 Gold Level (Hard) G Time: hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y. BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH06 Review Sheet. Perform the indicated operations and simplif: n n 0 n +n ( 9 )( ) + + 6 + 9ab a+b

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

C3 papers June 2007 to 2008

C3 papers June 2007 to 2008 physicsandmathstutor.com June 007 C3 papers June 007 to 008 1. Find the exact solutions to the equations (a) ln x + ln 3 = ln 6, (b) e x + 3e x = 4. *N6109A04* physicsandmathstutor.com June 007 x + 3 9+

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Summer Assignment MAT 414: Calculus

Summer Assignment MAT 414: Calculus Summer Assignment MAT 414: Calculus Calculus - Math 414 Summer Assignment Due first day of school in September Name: 1. If f ( x) = x + 1, g( x) = 3x 5 and h( x) A. f ( a+ ) x+ 1, x 1 = then find: x+ 7,

More information

Equations and Solutions

Equations and Solutions Section 2.1 Solving Equations: The Addition Principle 1 Equations and Solutions ESSENTIALS An equation is a number sentence that says that the expressions on either side of the equals sign, =, represent

More information

0 where A is the amount present initially. Estimate, to the nearest year, the

0 where A is the amount present initially. Estimate, to the nearest year, the MATH 65 Common Final Exam Review SPRING 04. Cindy will require $9,000 in 4 years to return to college to get an MBA degree. How much money should she ask her parents for now so that, if she invests it

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

MATH College Algebra Review for Test 2

MATH College Algebra Review for Test 2 MATH 34 - College Algebra Review for Test 2 Sections 3. and 3.2. For f (x) = x 2 + 4x + 5, give (a) the x-intercept(s), (b) the -intercept, (c) both coordinates of the vertex, and (d) the equation of the

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers)

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) Name CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) I. Simplify. Identify the zeros, vertical asymptotes, horizontal asymptotes, holes and sketch each rational function. Show the work that leads to your

More information

Calculus. Summer Assignment

Calculus. Summer Assignment Summer Review Packet for All Students Enrolling in Calculus #160 Next Year. Name: To earn credit, show all necessary work to support your answer in the space provided. Calculus Summer Assignment Name This

More information

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives Pre-Calculus MATH 119 Fall 2013 Learning Objectives Section 1.1 1. Use the Distance Formula 2. Use the Midpoint Formula 4. Graph Equations Using a Graphing Utility 5. Use a Graphing Utility to Create Tables

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.3 Real Zeros of Polynomial Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Use long

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Trigonometric Ratios. θ + k 360

Trigonometric Ratios. θ + k 360 Trigonometric Ratios These notes are intended as a summary of section 6.1 (p. 466 474) in your workbook. You should also read the section for more complete explanations and additional examples. Coterminal

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

NON-AP CALCULUS SUMMER PACKET

NON-AP CALCULUS SUMMER PACKET NON-AP CALCULUS SUMMER PACKET These problems are to be completed to the best of your ability by the first day of school. You will be given the opportunity to ask questions about problems you found difficult

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0.

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

download instant at

download instant at download instant at https://testbanksolution.net CHAPTER, FORM A TRIGONOMETRY NAME DATE For Problems 1-10, do not use a calculator. 1. Write sin 9 in terms of its cofunction. 1.. Find cos A, sec A, and

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

CHAPTER 2 Limits and Their Properties

CHAPTER 2 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus...5 Section. Finding Limits Graphically and Numerically...5 Section. Section. Evaluating Limits Analytically...5 Continuity and One-Sided

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Lesson 5: The Graph of the Equation y = f(x)

Lesson 5: The Graph of the Equation y = f(x) Lesson 5: The Graph of the Equation y = f(x) Learning targets: I can identify when a function is increasing, decreasing, positive and negative and use interval notation to describe intervals where the

More information

Find: sinθ. Name: Date:

Find: sinθ. Name: Date: Name: Date: 1. Find the exact value of the given trigonometric function of the angle θ shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle.) Find: sinθ c a θ a a =

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.2 Polynomial Functions of Higher Degree Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud Calculus: Early Transcendental Functions Lecture Notes for Calculus 101 Feras Awad Mahmoud Last Updated: August 2, 2012 1 2 Feras Awad Mahmoud Department of Basic Sciences Philadelphia University JORDAN

More information

Trig. Trig is also covered in Appendix C of the text. 1SOHCAHTOA. These relations were first introduced

Trig. Trig is also covered in Appendix C of the text. 1SOHCAHTOA. These relations were first introduced Trig Trig is also covered in Appendix C of the text. 1SOHCAHTOA These relations were first introduced for a right angled triangle to relate the angle,its opposite and adjacent sides and the hypotenuse.

More information

Math 113 HW #10 Solutions

Math 113 HW #10 Solutions Math HW #0 Solutions 4.5 4. Use the guidelines of this section to sketch the curve Answer: Using the quotient rule, y = x x + 9. y = (x + 9)(x) x (x) (x + 9) = 8x (x + 9). Since the denominator is always

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.2 Exponents and Radicals Copyright Cengage Learning. All rights reserved. Objectives Integer Exponents Rules for Working with Exponents Scientific

More information

8.3 Trigonometric Substitution

8.3 Trigonometric Substitution 8.3 8.3 Trigonometric Substitution Three Basic Substitutions Recall the derivative formulas for the inverse trigonometric functions of sine, secant, tangent. () () (3) d d d ( sin x ) = ( tan x ) = +x

More information

Name These exercises cover topics from Algebra I and Algebra II. Complete each question the best you can.

Name These exercises cover topics from Algebra I and Algebra II. Complete each question the best you can. Name These eercises cover topics from Algebra I and Algebra II. Complete each question the best you can. Multiple Choice: Place through the letter of the correct answer. You may only use your calculator

More information

MATH 100 REVIEW PACKAGE

MATH 100 REVIEW PACKAGE SCHOOL OF UNIVERSITY ARTS AND SCIENCES MATH 00 REVIEW PACKAGE Gearing up for calculus and preparing for the Assessment Test that everybody writes on at. You are strongly encouraged not to use a calculator

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved.

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved. 11.4 The Comparison Tests Copyright Cengage Learning. All rights reserved. The Comparison Tests In the comparison tests the idea is to compare a given series with a series that is known to be convergent

More information