On the approximation properties of TP model forms

Size: px
Start display at page:

Download "On the approximation properties of TP model forms"

Transcription

1 On the approximation properties of TP model forms Domonkos Tikk 1, Péter Baranyi 1 and Ron J. Patton 2 1 Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics H-1117 Budapest, Magyar Tudósok Körútja 2., Hungary s: tikk@tmit.bme.hu, baranyi@tmit.bme.hu 2 Control and Intelligent Systems Research Group, University of Hull Cottingham Road, Hull, HU6 7RX, UK r.j.patton@eng.hull.ac.uk

2 Overview Introduction TP model forms Nowhere denseness theorems and their consequences Trade-off results Conclusion

3 1 Introduction 1.1 TP model forms TP model in broad sense: an approximation technique where the approximating functions are in tensor product form, whereas a TP model form is a particular approximating function in a TP model. TP model in narrower sense: when a TP model is applied to dynamic system control (in focus of this paper). Recently, a large variety of LMI based controller designs have been carried out for TP models under PDC. (TP model transformation). A crucial point of control design frameworks is the modelling accuracy =. This talk analyzes the approximation capabilities of the TP model forms when applied to dynamic system control.

4 1.2 Historical background 1900, Hilbert s 13 th conjecture: there exist such continuous multi-variable functions, which cannot be decomposed as the finite superposition of continuous functions of less variables 1957, Disproved by Arnold and Kolmogorov: Theorem 1 For all n 2, and for any continuous real function f of n variables on the domain [0, 1], f : [0, 1] n R, there exist n(2n + 1) continuous, monotone increasing univariate functions on [0, 1], by which f can be reconstructed according to the following equation 2n n f(x 1,..., x n ) = ψ pq (x p ). (1) q=0 φ q p=1 Problem: functions φ q and ψ pq are often very complicated and highly nonsmooth, so their construction is difficult.

5 Improvements in the 60s by e.g. Sprecher and Lorentz: decreased the number of components. 1980, De Figueiredo: Kolmogorov s theorem can be generalized for multilayer feedforward neural networks these can be considered as universal approximators from late 80s, most neural and fuzzy systems are universal approximators.

6 1.3 Practical limitations Approximating models have exponential complexity in terms of the number of components, i.e. the number of components grows exponentially as the approximation error tends to zero. This exponentiality cannot be eliminated, so the universal approximation property of these models cannot be exploited straightforwardly for practical purposes. 1999, Moser, Tikk: If the number of the components is bounded, the resulting set of models is nowhere dense in the space of approximated functions, i.e., this is an almost discrete sets. (model type: Sugeno controllers).

7 1.4 Possible solution Main question: what extent the approximation should be accurate? Practical aspect: an acceptably good approximation is enough, where the given problem determines the factor of acceptability in terms of the accuracy ε. The task is to find a possible trade-off between the specified accuracy and the number of components. This talk focuses on TP model form based control and its approximation properties due to its importance in system design framework.

8 2 TP model forms 2.1 Dynamic model Assume that the following parametrically varying state-space dynamic model of the system is given: sx(t) = A(p(t))x(t) + B(p(t))u(t) (2) y(t) = C(p(t))x(t) + D(p(t))u(t), The system matrix ( ) A(p(t)) B(p(t)) S(p(t)) = R O I (3) C(p(t)) D(p(t)) is a parametrically varying object, where p(t) Ω is time varying N-dimensional parameter vector, where Ω R N is a closed hypercube. p(t) can also include some elements of x(t). Further, for a continuous-time system sx(t) = ẋ(t); or for a discrete-time system sx(t) = x(t + 1) holds.

9 2.2 Tensor product (TP) model form In this case S(p(t)) is given as a convex combination of the linear vertex systems S 1,...,S I on a compact domain: S(p(t)) co{s 1,...,S I ; w i (p(t))} (4) where w i (p(t)) are the basis functions that defines the convex combination. If the basis is normalized we obtain equivalent form as in TS model case: I I S(p(t)) w i (p(t))s i and w i (p(t)) = 1 i=1 i=1

10 2.3 TP model decomposition form for dimensions S(p(t)) I 1 i 1 =1 I N i N =1 basis functions: w n,in (p(t)) vertex systems: S i1,...,i N Example: ( N ) w n,in (p n (t))s i1,...,i N n=1 ẋ(t) = A(x(t))x(t) + B(x(t))u(t); x(t) = TP model approximation: ẋ(t) I 1 I 2 i 1 =1 i 2 =1 ( ) x1 (t) x 2 (t) w 1,i1 (x 1 (t))w 2,i2 (x 2 (t)) (A i1,i 2 x(t) + B i1,i 2 u(t))

11 3 Nowhere denseness Denotation: matrix function of the following form as TP form of order (I 1, I 2 ) ( ) z1 I 1 I 2 ) TP(z 1, z 2 ) = S w z 1,i1 (z 1 )w 2,i2 (z 2 )S i1,i 2 ( z1 2 z 2 i 1 =1 i 2 =1 where here the number of the component is bounded by I 1 in the first and by I 2 in the second variable. Matrices S i1,i 2 contain the coefficients as defined in (3). w 1,i1 (z 1 ) and w 2,i2 (z 2 ) are the normalized basis functions. TP (p) ( ) (n 1,n 2 ) [0, 1] 2 which is equally a subset of TP forms and L p ( [0, 1] 2). An elements of set (5) is a TP model forms of order (I 1, I 2 ). (5)

12 3.1 Results Lemma 1 Let ω : [0, 1] R be a function of the form ω(z 1, z 2 ) = α if z 2 z 1, ω(z 1, z 2 ) α else, where α R. Then for each p [1, ] and I 1, I 2 N there holds { } inf ω t p t = TP[i,j] TP TP (p) (I 1,I 2 ) > 0. (6) for arbitrary (i, j) pair. Lemma 1 exemplifies a function that cannot be approximated arbitrarily well by TP model forms of order (I 1, I 2 ) w.r.t. ( the L p norm. The ω that is approximated above, thus not en element of cl TP (p) ( )) (I 1,I 2 [0, 1] 2, that is the closure (w.r.t the L p norm) of the subset TP (p) ( ) ( (I 1,I 2 ) [0, 1] 2 of L ) p [0, 1] 2

13 Theorem 1 To each p [1, ], ε > 0 and t = TP [i,j], TP TP (p) ( ) (I 1,I 2 ) [0, 1] 2, I 1, I 2 N there is a continuous function ( ω L p ([0, 1] 2 )\cl TP (p) ( )) (I 1,I 2 ) [0, 1] 2 fulfilling ω t p < ε. Theorem 1 guarantees that to each ε > 0 and t = TP [i,j], TP T (p) ( ) (I 1,I 2 ) [0, 1] 2 ( there is a function ω L p ([0, 1] 2 )\cl TP (p) ( )) (I 1,I 2 ) [0, 1] 2 with ω t p < ε. That is TP (p) (I 1,I 2 ) is no-where dense in Lp ([0, 1] 2 ).

14 4 Examples u Two examples are presented by means of a mechanical system of Figure The original non-linear state-space model of the system that can exactly be represented by a TP model; 2. Same system with modified nonlinear term. Exact model does not exist. m x k d Figure 1: Mass spring damper system

15 4.1 Original model The dynamical equation of the mechanical system of Figure 1 is given as: m ẍ(t) + g(x(t), ẋ(t)) + k(x(t)) = φ(ẋ(t)) u(t), (7) where m is the mass and u(t) represents the force. The function k(x) is the nonlinear or uncertain stiffness coefficient of the spring, g(x, ẋ) is the non-linear or uncertain term damping coefficient of the damper, and φ(ẋ(t)) is the nonlinear input term. Assume that g(x(t), ẋ(t)) = d(c 1 x(t) + c 2 ẋ 3 (t)), k(x(t)) = c 3 x(t) + c 4 x 3 (t), and φ(ẋ(t)) = 1 + c 5 ẋ 3 (t). TP model transformation is performed. If the density of sampling grid is increased to infinity the limes of the rank of the sampled tensor remains 2 on the first two dimensions. Exact representation is possible.

16 Basis functions Basis functions x x 2 Figure 2: The basis functions obtained by TP model transformation; 2 functions in each dimension assure exact approximation

17 4.2 Modified system where g(x, ẋ) = d(c 1 x f(x, ẋ)ẋ +c 2 ẋ 3 ) f(x 1, x 2 ) = { 0.5 if x 2 x (x 1 x 2 ) if x 2 < x 1 is a continuous function constructed based upon the ω in Lemma x Figure 3: The graph of function f(x 1, x 2 ) over the region [ 1.5, 1.5] [ 1.5, 1.5] x

18 Approximation depends on the density of the sampling grid. In the previous example number of basis functions does not increase with the increase of sampling points. In the case of the current example the necessary number of basis functions tends to infinity with the increase of the number of measurement points Table 1 shows the maximum error of the approximation when the function was sampled on a equidistant grid on the parameter space. Table 1: Maximum error vs. number of basis functions in each dimension number of basis functions maximum error

19 Basis functions Basis functions x x 2 Figure 4: 50 basis functions in each dimension the model is approximated by TP model form

20 5 Conclusion Theorem 1 points out if we restrict the number of components the corresponding set of TP model forms is nowhere dense in the approximation model space. The solution for this discrepancy can be the trade-off between the accuracy and the number of components.

TP MODEL TRANSFORMATION BASED CONTROL OF THE TORA SYSTEM

TP MODEL TRANSFORMATION BASED CONTROL OF THE TORA SYSTEM Production Systems and Information Engineering Volume 2 (24), pp. 159-175 159 TP MODEL TRANSFORMATION BASED CONTROL OF THE TORA SYSTEM ZOLTÁN PETRES, BARNA RESKÓ, AND PÉTER BARANYI Integrated Intelligent

More information

MATLAB algorithms for TP transformation

MATLAB algorithms for TP transformation MATLAB algorithms for TP transformation *Pèter Baranyi and **Yeung Yam *Integrated Intelligent Systems Japanese Hungarian Laboratory Budapest University of Technology and Economics **Dept. Automation and

More information

Approximation and Complexity Trade-off by TP model transformation in Controller Design: a Case Study of the TORA system

Approximation and Complexity Trade-off by TP model transformation in Controller Design: a Case Study of the TORA system Approximation and Complexity Trade-off by TP model transformation in Controller Design: a Case Study of the TORA system Zoltán Petres and Péter Baranyi System and Control Laboratory, Computer and Automation

More information

Extended TP Model Transformation for Polytopic Representation of Impedance Model with Feedback Delay

Extended TP Model Transformation for Polytopic Representation of Impedance Model with Feedback Delay Extended TP Model Transformation for Polytopic Representation of Impedance Model with Feedback Delay PÉTER GALAMBOS 1,2, PÉTER BARANYI 1,3 and PÉTER KORONDI 1,4 1 Computer and Automation Research Institute,

More information

Proof of the inuence of the Tensor Product model representation on the feasibility of Linear Matrix Inequality

Proof of the inuence of the Tensor Product model representation on the feasibility of Linear Matrix Inequality Budapest University of Technology and Economics (BME) Faculty of Electrical Engineering and Informatics (VIK) Proof of the inuence of the Tensor Product model representation on the feasibility of Linear

More information

A survey on universal approximation and its limits in soft computing techniques

A survey on universal approximation and its limits in soft computing techniques A survey on universal approximation and its limits in soft computing techniques Domonkos Tikk 1, László T. Kóczy 1 and Tamás D. Gedeon 2 1 Dept. of Telecom. & Telematics, Budapest University of Technology

More information

Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation

Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation Ph.D. Dissertation Zoltán Petres Supervisors: Péter Baranyi Ph.D. Péter Korondi Ph.D. Budapest, 26. Alulírott

More information

Approximation of Multivariate Functions

Approximation of Multivariate Functions Approximation of Multivariate Functions Vladimir Ya. Lin and Allan Pinkus Abstract. We discuss one approach to the problem of approximating functions of many variables which is truly multivariate in character.

More information

On Ridge Functions. Allan Pinkus. September 23, Technion. Allan Pinkus (Technion) Ridge Function September 23, / 27

On Ridge Functions. Allan Pinkus. September 23, Technion. Allan Pinkus (Technion) Ridge Function September 23, / 27 On Ridge Functions Allan Pinkus Technion September 23, 2013 Allan Pinkus (Technion) Ridge Function September 23, 2013 1 / 27 Foreword In this lecture we will survey a few problems and properties associated

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Deep Belief Networks are Compact Universal Approximators

Deep Belief Networks are Compact Universal Approximators Deep Belief Networks are Compact Universal Approximators Franck Olivier Ndjakou Njeunje Applied Mathematics and Scientific Computation May 16, 2016 1 / 29 Outline 1 Introduction 2 Preliminaries Universal

More information

Universal Approximation by Ridge Computational Models and Neural Networks: A Survey

Universal Approximation by Ridge Computational Models and Neural Networks: A Survey The Open Applied Mathematics Journal, 2008, 31-58 31 Universal Approximation by Ridge Computational Models and Neural Networks: A Survey Marcello Sanguineti Department of Communications, Computer and System

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Approximation theory in neural networks

Approximation theory in neural networks Approximation theory in neural networks Yanhui Su yanhui su@brown.edu March 30, 2018 Outline 1 Approximation of functions by a sigmoidal function 2 Approximations of continuous functionals by a sigmoidal

More information

Multilayer feedforward networks are universal approximators

Multilayer feedforward networks are universal approximators Multilayer feedforward networks are universal approximators Kur Hornik, Maxwell Stinchcombe and Halber White (1989) Presenter: Sonia Todorova Theoretical properties of multilayer feedforward networks -

More information

Design of State Observer for a Class of Non linear Singular Systems Described by Takagi-Sugeno Model

Design of State Observer for a Class of Non linear Singular Systems Described by Takagi-Sugeno Model Contemporary Engineering Sciences, Vol. 6, 213, no. 3, 99-19 HIKARI Ltd, www.m-hikari.com Design of State Observer for a Class of Non linear Singular Systems Described by Takagi-Sugeno Model Mohamed Essabre

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

Comparing continuous and discrete versions of Hilbert s thirteenth problem

Comparing continuous and discrete versions of Hilbert s thirteenth problem Comparing continuous and discrete versions of Hilbert s thirteenth problem Lynnelle Ye 1 Introduction Hilbert s thirteenth problem is the following conjecture: a solution to the equation t 7 +xt + yt 2

More information

Control, Stabilization and Numerics for Partial Differential Equations

Control, Stabilization and Numerics for Partial Differential Equations Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

More information

Parallel Distributed Compensation Based Stabilization of A 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach

Parallel Distributed Compensation Based Stabilization of A 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach PDC Based Stabilization of a 3-DOF RC Helicopter Paper: Parallel Distributed Compensation Based Stabilization of A 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach Péter Baranyi, Péter

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 3. Fundamental properties IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Example Consider the system ẋ = f

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0 FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to M + [x 0 ] without changing its norm.

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 03: Multi-layer Perceptron Outline Failure of Perceptron Neural Network Backpropagation Universal Approximator 2 Outline Failure of Perceptron Neural Network Backpropagation

More information

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function ECE7850: Hybrid Systems:Theory and Applications Lecture Note 7: Switching Stabilization via Control-Lyapunov Function Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

x i2 j i2 ε + ε i2 ε ji1 ε j i1

x i2 j i2 ε + ε i2 ε ji1 ε j i1 T-S Fuzzy Model with Linear Rule Consequence and PDC Controller: A Universal Framewor for Nonlinear Control Systems Hua O. Wang Jing Li David Niemann Laboratory for Intelligent and Nonlinear Control (LINC)

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Mean-field dual of cooperative reproduction

Mean-field dual of cooperative reproduction The mean-field dual of systems with cooperative reproduction joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, July 6th, 2018 Poisson construction of Markov processes Let (X t ) t 0 be a continuous-time

More information

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION Peter Ochs University of Freiburg Germany 17.01.2017 joint work with: Thomas Brox and Thomas Pock c 2017 Peter Ochs ipiano c 1

More information

Nonlinear Systems Theory

Nonlinear Systems Theory Nonlinear Systems Theory Matthew M. Peet Arizona State University Lecture 2: Nonlinear Systems Theory Overview Our next goal is to extend LMI s and optimization to nonlinear systems analysis. Today we

More information

Robust Multi-Objective Control for Linear Systems

Robust Multi-Objective Control for Linear Systems Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE Part of the OLOCEP project (includes GloptiPoly)

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace Takao Fujimoto Abstract. This research memorandum is aimed at presenting an alternative proof to a well

More information

Matrix assembly by low rank tensor approximation

Matrix assembly by low rank tensor approximation Matrix assembly by low rank tensor approximation Felix Scholz 13.02.2017 References Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer. Matrix generation in isogeometric analysis

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions Honors Advanced Algebra Name Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions MGSE9 12.F.IF.7 Graph functions expressed symbolically and show key features

More information

Design of observers for Takagi-Sugeno fuzzy models for Fault Detection and Isolation

Design of observers for Takagi-Sugeno fuzzy models for Fault Detection and Isolation Design of observers for Takagi-Sugeno fuzzy models for Fault Detection and Isolation Abdelkader Akhenak, Mohammed Chadli, José Ragot and Didier Maquin Institut de Recherche en Systèmes Electroniques Embarqués

More information

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints An Li and Jane J. Ye Abstract. In this paper we study an optimal control problem with nonsmooth

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrA.5 An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

Presenter: Noriyoshi Fukaya

Presenter: Noriyoshi Fukaya Y. Martel, F. Merle, and T.-P. Tsai, Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gkdv Equations, Comm. Math. Phys. 31 (00), 347-373. Presenter: Noriyoshi

More information

arzelier

arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.1 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS STABILITY ANALYSIS Didier HENRION www.laas.fr/ henrion henrion@laas.fr Denis ARZELIER www.laas.fr/

More information

On a constructive proof of Kolmogorov s superposition theorem

On a constructive proof of Kolmogorov s superposition theorem On a constructive proof of Kolmogorov s superposition theorem Jürgen Braun, Michael Griebel Abstract Kolmogorov showed in [4] that any multivariate continuous function can be represented as a superposition

More information

An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction

An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction Krisztian Buza Dpt. of Computer Science and Inf. Theory Budapest University of Techn. and Economics 1117 Budapest,

More information

Variational construction of periodic and connecting orbits in the planar Sitnikov problem. Mitsuru Shibayama(Kyoto University)

Variational construction of periodic and connecting orbits in the planar Sitnikov problem. Mitsuru Shibayama(Kyoto University) Variational construction of periodic and connecting orbits in the planar Sitnikov problem Mitsuru Shibayama(Kyoto University) 1 The three-body problem Consider the planar three-body problem which is governed

More information

Robust Observer for Uncertain T S model of a Synchronous Machine

Robust Observer for Uncertain T S model of a Synchronous Machine Recent Advances in Circuits Communications Signal Processing Robust Observer for Uncertain T S model of a Synchronous Machine OUAALINE Najat ELALAMI Noureddine Laboratory of Automation Computer Engineering

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

Classical transcendental curves

Classical transcendental curves Classical transcendental curves Reinhard Schultz May, 2008 In his writings on coordinate geometry, Descartes emphasized that he was only willing to work with curves that could be defined by algebraic equations.

More information

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems On Dominant Poles and Model Reduction of Second Order Time-Delay Systems Maryam Saadvandi Joint work with: Prof. Karl Meerbergen and Dr. Elias Jarlebring Department of Computer Science, KULeuven ModRed

More information

Discrete time dynamical systems (Review of rst part of Math 361, Winter 2001)

Discrete time dynamical systems (Review of rst part of Math 361, Winter 2001) Discrete time dynamical systems (Review of rst part of Math 36, Winter 2) Basic problem: x (t);; dynamic variables (e.g. population size of age class i at time t); dynamics given by a set of n equations

More information

Numerical Methods for Differential Equations Mathematical and Computational Tools

Numerical Methods for Differential Equations Mathematical and Computational Tools Numerical Methods for Differential Equations Mathematical and Computational Tools Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 Part 1. Vector norms, matrix norms and logarithmic

More information

The C-Numerical Range in Infinite Dimensions

The C-Numerical Range in Infinite Dimensions The C-Numerical Range in Infinite Dimensions Frederik vom Ende Technical University of Munich June 17, 2018 WONRA 2018 Joint work with Gunther Dirr (University of Würzburg) Frederik vom Ende (TUM) C-Numerical

More information

On a constructive proof of Kolmogorov s superposition theorem

On a constructive proof of Kolmogorov s superposition theorem On a constructive proof of Kolmogorov s superposition theorem Jürgen Braun, Michael Griebel Abstract Kolmogorov showed in 4] that any multivariate continuous function can be represented as a superposition

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

On the construction of ISS Lyapunov functions for networks of ISS systems

On the construction of ISS Lyapunov functions for networks of ISS systems Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006 MoA09.1 On the construction of ISS Lyapunov functions for networks of ISS

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS J. OPERATOR THEORY 44(2000), 243 254 c Copyright by Theta, 2000 ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS DOUGLAS BRIDGES, FRED RICHMAN and PETER SCHUSTER Communicated by William B. Arveson Abstract.

More information

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS RBFN and TS systems Equivalent if the following hold: Both RBFN and TS use same aggregation method for output (weighted sum or weighted average) Number of basis functions

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Observability for deterministic systems and high-gain observers

Observability for deterministic systems and high-gain observers Observability for deterministic systems and high-gain observers design. Part 1. March 29, 2011 Introduction and problem description Definition of observability Consequences of instantaneous observability

More information

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions Robust Stability Robust stability against time-invariant and time-varying uncertainties Parameter dependent Lyapunov functions Semi-infinite LMI problems From nominal to robust performance 1/24 Time-Invariant

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

Recent Trends in Differential Inclusions

Recent Trends in Differential Inclusions Recent Trends in Alberto Bressan Department of Mathematics, Penn State University (Aveiro, June 2016) (Aveiro, June 2016) 1 / Two main topics ẋ F (x) differential inclusions with upper semicontinuous,

More information

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints S. Lopes, F. A. C. C. Fontes and M. d. R. de Pinho Officina Mathematica report, April 4, 27 Abstract Standard

More information

Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems

Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems Castro Urdiales / September 12-16, 2011 Alexander Grin Yanka Kupala State University

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional 15. Perturbations by compact operators In this chapter, we study the stability (or lack thereof) of various spectral properties under small perturbations. Here s the type of situation we have in mind:

More information

Least Squares Approximation

Least Squares Approximation Chapter 6 Least Squares Approximation As we saw in Chapter 5 we can interpret radial basis function interpolation as a constrained optimization problem. We now take this point of view again, but start

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Lyapunov Stability - I Hanz Richter Mechanical Engineering Department Cleveland State University Definition of Stability - Lyapunov Sense Lyapunov

More information

Semismooth implicit functions

Semismooth implicit functions Semismooth implicit functions Florian Kruse August 18, 2016 Abstract Semismoothness of implicit functions in infinite-dimensional spaces is investigated. We provide sufficient conditions for the semismoothness

More information

Padé type rational and barycentric interpolation

Padé type rational and barycentric interpolation Padé type rational and barycentric interpolation Claude Brezinski University of Lille - France Michela Redivo Zaglia University of Padova - Italy Padé type approximation and rational interpolation Problem

More information

arxiv: v1 [math.ds] 23 Apr 2017

arxiv: v1 [math.ds] 23 Apr 2017 Estimating the Region of Attraction Using Polynomial Optimization: a Converse Lyapunov Result Hesameddin Mohammadi, Matthew M. Peet arxiv:1704.06983v1 [math.ds] 23 Apr 2017 Abstract In this paper, we propose

More information

Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming

Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming arxiv:math/0603313v1 [math.oc 13 Mar 2006 Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming Erin M. Aylward 1 Pablo A. Parrilo 1 Jean-Jacques E. Slotine

More information

Solutions of two-point boundary value problems via phase-plane analysis

Solutions of two-point boundary value problems via phase-plane analysis Electronic Journal of Qualitative Theory of Differential Equations Proc. 1th Coll. Qualitative Theory of Diff. Equ. (July 1 4, 215, Szeged, Hungary) 216, No. 4, 1 1; doi: 1.14232/ejqtde.216.8.4 http://www.math.u-szeged.hu/ejqtde/

More information

Szemerédi s Lemma for the Analyst

Szemerédi s Lemma for the Analyst Szemerédi s Lemma for the Analyst László Lovász and Balázs Szegedy Microsoft Research April 25 Microsoft Research Technical Report # MSR-TR-25-9 Abstract Szemerédi s Regularity Lemma is a fundamental tool

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO

More information

Quasi-conformal minimal Lagrangian diffeomorphisms of the

Quasi-conformal minimal Lagrangian diffeomorphisms of the Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane (joint work with J.M. Schlenker) January 21, 2010 Quasi-symmetric homeomorphism of a circle A homeomorphism φ : S 1 S 1 is quasi-symmetric

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

Deep Belief Networks are compact universal approximators

Deep Belief Networks are compact universal approximators 1 Deep Belief Networks are compact universal approximators Nicolas Le Roux 1, Yoshua Bengio 2 1 Microsoft Research Cambridge 2 University of Montreal Keywords: Deep Belief Networks, Universal Approximation

More information

Some Background Math Notes on Limsups, Sets, and Convexity

Some Background Math Notes on Limsups, Sets, and Convexity EE599 STOCHASTIC NETWORK OPTIMIZATION, MICHAEL J. NEELY, FALL 2008 1 Some Background Math Notes on Limsups, Sets, and Convexity I. LIMITS Let f(t) be a real valued function of time. Suppose f(t) converges

More information