Exponential Integrators

Size: px
Start display at page:

Download "Exponential Integrators"

Transcription

1 Exponential Integrators John C. Bowman (University of Alberta) May 22, bowman/talks 1

2 Exponential Integrators Outline Exponential Euler History Generalizations Stationary Green Function Higher-Order Vector Case Conservative Exponential Integrators Lagrangian Discretizations Charged Particle in Electromagnetic Fields Embedded Exponential Runge Kutta (3,2) Pair Conclusions 2

3 Exponential Integrators Typical stiff nonlinear initial value problem: dx dt + η x = f(t, x), x(0) = x 0. Stiff: Nonlinearity f varies slowly in t compared with the value of the linear coefficient η: 1df f dt η Goal: Solve on the linear time scale exactly; avoid the linear time-step restriction ητ 1. In the presence of nonlinearity, straightforward integrating factor methods (cf. Lawson 1967) do not remove the explicit restriction on the linear time step τ. Instead, discretize the perturbed problem with a scheme that is exact on the time scale of the solvable part. 3

4 Exponential Euler Algorithm Express exact evolution of x in terms of P(t) = e ηt : ( ) x(t) = P 1 (t) x 0 + t 0 fp d t. Change variables: P d t = η 1 dp ( P(t) x(t) = P 1 (t) x 0 + η 1 1 f dp ). Rectangular approximation of integral Exponential Euler: ( x i+1 = P 1 x i + P 1 ) f i, η where P = e ητ and τ is the time step. The discretization is now with respect to P instead of t. 4

5 Exponential Euler Algorithm (E-Euler) x i+1 = P 1 x i + 1 P 1 f(x i ), η Also called Exponentially Fitted Euler, ETD Euler, filtered Euler, Lie Euler. As τ 0 the Euler method is recovered: x i+1 = x i + τf(x i ). If E-Euler has a fixed point, it must satisfy x = f(x) ; this is η then a fixed point of the ODE. In contrast, the popular Integrating Factor method (I-Euler). x i+1 = P 1 i (x i + τf i ) can at best have an incorrect fixed point: x = τf(x) e ητ 1. 5

6 Comparison of Euler Integrators 0 dx dt + x = cosx, x(0) = error euler i euler e euler t 6

7 History Certaine [1960]: Exponential Adams-Moulton Nørsett [1969]: Exponential Adams-Bashforth Verwer [1977] and van der Houwen [1977]: Exponential linear multistep method Friedli [1978]: Exponential Runge-Kutta Hochbruck et al. [1998]: Exponential integrators up to order 4 Beylkin et al. [1998]: Exact Linear Part (ELP) Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff order 2 Lu [2003]: Efficient Matrix Exponential Hochbruck & Ostermann [2005a, 2005b]: Explicit Exponential Runge-Kutta; stiff order conditions. 7

8 Generalization Let L be a linear operator with a stationary Green s function G(t, t ) = G(t t ): G(t, t ) t + LG(t,t ) = δ(t t ). Let f be a continuous function of x. Then the ODE has the formal solution dx dt + Lx = f(x), x(0) = x 0, x(t) = e t 0 Ldt x 0 + t 0 G(t t )f(x(t )) dt. 8

9 Letting s = t t : x(t) = e t 0 Ldt x 0 + t 0 G(s)f(x(t s)) ds. Change integration variable to h = H(s) = s 0 G( s) d s: x(t) = e t 0 Ldt x 0 + H(t) 1 f ( x(t H 1 (h)) ) dh. Rectangular rule Predictor (Euler): Trapezoidal rule Corrector: x(t) e t 0 Ldt x 0 + f(x(0))h(t). x(t) e t 0 Ldt x 0 + f(x(0)) + f( x(t)) H(t). 2 9

10 Other Generalizations Higher-order exponential integrators: Hochbruck et al. [1998], Cox & Matthews [2002], Hochbruck & Ostermann [2005a], Bowman et al. [2006]. Vector case (matrix exponential P = e ηt ). Exponential versions of Conservative Integrators [Bowman et al. 1997, Shadwick et al. 1999, Kotovych & Bowman 2002]. Lagrangian discretizations of advection equations are also exponential integrators: u t + v u = f(x,t, u), x u(x, 0) = u 0(x). η now represents the linear operator v x and P 1 u = e tv x u corresponds to the Taylor series of u(x vt). 10

11 Higher-Order Integrators General s-stage Runge Kutta scheme: x i = x 0 + τ i 1 j=0 a ij f(x j,t + b j τ), (i = 1,...,s). Butcher Tableau (s=4): b 0 a 10 b 1 a 20 a 21 b 2 a 30 a 31 a 32 b 3 a 40 a 41 a 42 a 43 11

12 Bogacki Shampine (3,2) Pair Embedded 4-stage pair [Bogacki & Shampine 1989]: rd order nd order Since f(x 3 ) is just f at the initial x 0 for the next time step, no additional source evaluation is required to compute x 4 [FSAL]. Also: 6-stage (5,4) pair [Bogacki & Shampine 1996]. 12

13 Vector Case When x is a vector, ν is typically a matrix: dx + νx = f(x). dt Let z = ντ. Discretization involves ϕ 1 (z) = z 1 (e z 1). Higher-order exponential integrators require ) j 1 ϕ j (z) = z (e j z z k. k! k=0 Exercise care when z has an eigenvalue near zero! Although a variable time step requires re-evaluation of the matrix exponential, this is not an issue for problems where the evaluation of the nonlinear term dominates the computation. Pseudospectral turbulence codes: diagonal matrix exponential. 13

14 Charged Particle in Electromagnetic Fields Lorentz force: mdv q dt = 1 v B + E. c Efficiently compute the matrix exponential exp(ω), where Ω = q mc τ 0 B z B y B z 0 B x. B y B x 0 Requires 2 trigonometric functions, 1 division, 1 square root, and 35 additions or multiplications. The other necessary matrix factor, Ω 1 [exp(ω) 1] requires care, since Ω is singular. Evaluate it as lim [(Ω + λ 0 λ1) 1 (e Ω 1)]. 14

15 Motion Under Lorentz Force 20 exact PC E-PC x 10 z y 15

16 An Embedded 4-Stage (3,2) Exponential Pair Letting z = ντ and b 4 = 1: x i = e b iντ x 0 + τ i 1 j=0 a 10 = 1 ( ) 1 2 ϕ 1 2 z, a 20 = 3 ( ) 3 4 ϕ 1 4 z a 21, a 21 = 9 8 ϕ 2 a ij f(x j,t + b j τ), ( ) 3 4 z ϕ 2 (i = 1,...,s). ( ) 1 2 z, a 30 =ϕ 1 (z) a 31 a 32, a 31 = 1 3 ϕ 1(z), a 32 = 4 3 ϕ 2(z) 2 9 ϕ 1(z), a 40 =ϕ 1 (z) ϕ 2(z), a 41 = 1 2 ϕ 2(z), a 42 = 2 3 ϕ 2(z), a 43 = 1 4 ϕ 2(z). (1) x 3 has stiff order 3 [Hochbruck and Ostermann 2005] (order is preserved even when ν is a general unbounded linear operator). x 4 provides a second-order estimate for adjusting the time step. ν 0: reduces to [3,2] Bogacki Shampine Runge Kutta pair. 16

17 Application to GOY Turbulence Shell Model E(k) k 17

18 Conclusions Exponential integrators are explicit schemes for ODEs with a stiff linearity. When the nonlinear source is constant, the time-stepping algorithm is precisely the analytical solution to the corresponding first-order linear ODE. Unlike integrating factor methods, exponential integrators have the correct fixed point behaviour. We present an efficient adaptive embedded 4-stage (3,2) exponential pair. A similar embedded 6-stage (5,4) exponential pair also exists. Care must be exercised when evaluating ϕ j (x) near 0. Accurate optimized double precision routines for evaluating these functions are available at bowman/phi.h 18

19 Asymptote: The Vector Graphics Language symptote (freely available under the GNU public license) 19

20 References [Beylkin et al. 1998] G. Beylkin, J. M. Keiser, & L. Vozovoi, J. Comp. Phys., 147:362, [Bogacki & Shampine 1989] [Bogacki & Shampine 1996] [Bowman et al. 1997] P. Bogacki & L. F. Shampine, Appl. Math. Letters, 2:1, P. Bogacki & L. F. Shampine, Comput. Math. Appl., 32:15, J. C. Bowman, B. A. Shadwick, & P. J. Morrison, Exactly conservative integrators, in 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, edited by A. Sydow,

21 [Bowman et al. 2006] volume 2, pp , Berlin, 1997, Wissenschaft & Technik. J. C. Bowman, C. R. Doering, B. Eckhardt, J. Davoudi, M. Roberts, & J. Schumacher, Physica D, 218:1, [Certaine 1960] J. Certaine, Math. Meth. Dig. Comp., p. 129, [Cox & Matthews 2002] S. Cox & P. Matthews, J. Comp. Phys., 176:430, [Friedli 1978] A. Friedli, Lecture Notes in Mathematics, 631:214, [Hochbruck & Ostermann 2005a] M. Hochbruck & A. Ostermann, SIAM J. Numer. Anal., 43:1069, 2005.

22 [Hochbruck & Ostermann 2005b] M. Hochbruck & A. Ostermann, Appl. Numer. Math., 53:323, [Hochbruck et al. 1998] M. Hochbruck, C. Lubich, & H. Selfhofer, SIAM J. Sci. Comput., 19:1552, [Kotovych & Bowman 2002] O. Kotovych & J. C. Bowman, J. Phys. A.: Math. Gen., 35:7849, [Lu 2003] Y. Y. Lu, J. Comput. Appl. Math., 161:203, [Nørsett 1969] S. Nørsett, Lecture Notes in Mathematics, 109:214, [Shadwick et al. 1999] B. A. Shadwick, J. C. Bowman, & P. J. Morrison, SIAM J. Appl. Math., 59:1112, 1999.

23 [van der Houwen 1977] P. J. van der Houwen, Construction of integration formulas for initial value problems, North-Holland Publishing Co., Amsterdam, 1977, North-Holland Series in Applied Mathematics and Mechanics, Vol. 19. [Verwer 1977] J. Verwer, Numer. Math., 27:143, 1977.

Exponential Integrators

Exponential Integrators Exponential Integrators John C. Bowman and Malcolm Roberts (University of Alberta) June 11, 2009 www.math.ualberta.ca/ bowman/talks 1 Outline Exponential Integrators Exponential Euler History Generalizations

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Exponential integrators and functions of the matrix exponential

Exponential integrators and functions of the matrix exponential Exponential integrators and functions of the matrix exponential Paul Matthews, Stephen Cox, Hala Ashi and Linda Cummings School of Mathematical Sciences, University of Nottingham, UK Introduction to exponential

More information

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester HIGHER ORDER METHODS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE

More information

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods Initial-Value Problems for ODEs Introduction to Linear Multistep Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Applied Math for Engineers

Applied Math for Engineers Applied Math for Engineers Ming Zhong Lecture 15 March 28, 2018 Ming Zhong (JHU) AMS Spring 2018 1 / 28 Recap Table of Contents 1 Recap 2 Numerical ODEs: Single Step Methods 3 Multistep Methods 4 Method

More information

Co-sponsored School/Workshop on Integrable Systems and Scientific Computing June Exponential integrators for stiff systems

Co-sponsored School/Workshop on Integrable Systems and Scientific Computing June Exponential integrators for stiff systems 2042-2 Co-sponsored School/Workshop on Integrable Systems and Scientific Computing 15-20 June 2009 Exponential integrators for stiff systems Paul Matthews University of Nottingham U.K. e-mail: Paul.Matthews@nottingham.ac.uk

More information

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2.

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2. Chapter 5 Exercises From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/ rjl/fdmbook Exercise 5. (Uniqueness for

More information

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes Jim Lambers MAT 772 Fall Semester 21-11 Lecture 21 Notes These notes correspond to Sections 12.6, 12.7 and 12.8 in the text. Multistep Methods All of the numerical methods that we have developed for solving

More information

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008 Outlines Module 4: for ODE Part I: Basic Part II: Advanced Lehrstuhl Informatik V Winter 2007/2008 Part I: Basic 1 Direction Fields 2 Euler s Method Outlines Part I: Basic Part II: Advanced 3 Discretized

More information

Ordinary differential equations. Phys 420/580 Lecture 8

Ordinary differential equations. Phys 420/580 Lecture 8 Ordinary differential equations Phys 420/580 Lecture 8 Most physical laws are expressed as differential equations These come in three flavours: initial-value problems boundary-value problems eigenvalue

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Multistep Methods Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 1. Runge Kutta methods 2. Embedded RK methods

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Part IB Numerical Analysis

Part IB Numerical Analysis Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Runge Kutta Chebyshev methods for parabolic problems

Runge Kutta Chebyshev methods for parabolic problems Runge Kutta Chebyshev methods for parabolic problems Xueyu Zhu Division of Appied Mathematics, Brown University December 2, 2009 Xueyu Zhu 1/18 Outline Introdution Consistency condition Stability Properties

More information

Solving Ordinary Differential equations

Solving Ordinary Differential equations Solving Ordinary Differential equations Taylor methods can be used to build explicit methods with higher order of convergence than Euler s method. The main difficult of these methods is the computation

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods COSC 336 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods Fall 2005 Repetition from the last lecture (I) Initial value problems: dy = f ( t, y) dt y ( a) = y 0 a t b Goal:

More information

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 55, 2749-2754 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.59236 Remark on the Sensitivity of Simulated Solutions of

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

8.1 Introduction. Consider the initial value problem (IVP):

8.1 Introduction. Consider the initial value problem (IVP): 8.1 Introduction Consider the initial value problem (IVP): y dy dt = f(t, y), y(t 0)=y 0, t 0 t T. Geometrically: solutions are a one parameter family of curves y = y(t) in(t, y)-plane. Assume solution

More information

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j )

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j ) HIGHER ORDER METHODS There are two principal means to derive higher order methods y n+1 = p j=0 a j y n j + h p j= 1 b j f(x n j,y n j ) (a) Method of Undetermined Coefficients (b) Numerical Integration

More information

Exponential integrators

Exponential integrators Acta Numerica (2), pp. 29 286 c Cambridge University Press, 2 doi:.7/s962492948 Printed in the United Kingdom Exponential integrators Marlis Hochbruck Karlsruher Institut für Technologie, Institut für

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Solving the nonlinear Schödinger equation using exponential integrators PREPRINT NUMERICS NO.

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Solving the nonlinear Schödinger equation using exponential integrators PREPRINT NUMERICS NO. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Solving the nonlinear Schödinger equation using exponential integrators by Håvard Berland and Bård Skaflestad PREPRINT NUMERICS NO. 5/2005 NORWEGIAN UNIVERSITY

More information

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations Rei-Wei Song and Ming-Gong Lee* d09440@chu.edu.tw, mglee@chu.edu.tw * Department of Applied Mathematics/

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25. Logistics Week 12: Monday, Apr 18 HW 6 is due at 11:59 tonight. HW 7 is posted, and will be due in class on 4/25. The prelim is graded. An analysis and rubric are on CMS. Problem du jour For implicit methods

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 4, Number 1, Winter 1992 THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS J.-P. KAUTHEN ABSTRACT. We present a method of lines

More information

CHAPTER 5: Linear Multistep Methods

CHAPTER 5: Linear Multistep Methods CHAPTER 5: Linear Multistep Methods Multistep: use information from many steps Higher order possible with fewer function evaluations than with RK. Convenient error estimates. Changing stepsize or order

More information

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP): MATH 351 Fall 217 multistep methods http://www.phys.uconn.edu/ rozman/courses/m351_17f/ Last modified: November 28, 217 Recall that we are interested in the numerical solution of the initial value problem

More information

MTH 452/552 Homework 3

MTH 452/552 Homework 3 MTH 452/552 Homework 3 Do either 1 or 2. 1. (40 points) [Use of ode113 and ode45] This problem can be solved by a modifying the m-files odesample.m and odesampletest.m available from the author s webpage.

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Linear Multistep methods Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the

More information

Solving scalar IVP s : Runge-Kutta Methods

Solving scalar IVP s : Runge-Kutta Methods Solving scalar IVP s : Runge-Kutta Methods Josh Engwer Texas Tech University March 7, NOTATION: h step size x n xt) t n+ t + h x n+ xt n+ ) xt + h) dx = ft, x) SCALAR IVP ASSUMED THROUGHOUT: dt xt ) =

More information

Exponential multistep methods of Adams-type

Exponential multistep methods of Adams-type Exponential multistep methods of Adams-type Marlis Hochbruck and Alexander Ostermann KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) 0 KIT University of the State of Baden-Wuerttemberg and National Laboratory

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Exponential Runge-Kutta methods for parabolic problems

Exponential Runge-Kutta methods for parabolic problems Exponential Runge-Kutta methods for parabolic problems Marlis Hochbruck a,, Alexander Ostermann b a Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, D-4225 Düsseldorf,

More information

Numerical Methods for the Solution of Differential Equations

Numerical Methods for the Solution of Differential Equations Numerical Methods for the Solution of Differential Equations Markus Grasmair Vienna, winter term 2011 2012 Analytical Solutions of Ordinary Differential Equations 1. Find the general solution of the differential

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods

Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods W. Hundsdorfer, A. Mozartova, M.N. Spijker Abstract In this paper nonlinear monotonicity and boundedness properties are analyzed

More information

Exponential integrators for semilinear parabolic problems

Exponential integrators for semilinear parabolic problems Exponential integrators for semilinear parabolic problems Marlis Hochbruck Heinrich-Heine University Düsseldorf Germany Innsbruck, October 2004 p. Outline Exponential integrators general class of methods

More information

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Mathematics for chemical engineers. Numerical solution of ordinary differential equations Mathematics for chemical engineers Drahoslava Janovská Numerical solution of ordinary differential equations Initial value problem Winter Semester 2015-2016 Outline 1 Introduction 2 One step methods Euler

More information

Southern Methodist University.

Southern Methodist University. Title: Continuous extensions Name: Lawrence F. Shampine 1, Laurent O. Jay 2 Affil./Addr. 1: Department of Mathematics Southern Methodist University Dallas, TX 75275 USA Phone: +1 (972) 690-8439 E-mail:

More information

Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers

Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers Consider the ODE u (t) = f(t, u(t)), u(0) = u 0, where u could be a vector valued function. Any ODE can be reduced to a first order system,

More information

EXPLICIT EXPONENTIAL RUNGE-KUTTA METHODS FOR SEMILINEAR PARABOLIC PROBLEMS

EXPLICIT EXPONENTIAL RUNGE-KUTTA METHODS FOR SEMILINEAR PARABOLIC PROBLEMS EXPLICIT EXPONENTIAL RUNGE-KUTTA METHODS FOR SEMILINEAR PARABOLIC PROBLEMS MARLIS HOCHBRUCK AND ALEXANDER OSTERMANN, Abstract. The aim of this paper is to analyze explicit exponential Runge-Kutta methods

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

The Initial Value Problem for Ordinary Differential Equations

The Initial Value Problem for Ordinary Differential Equations Chapter 5 The Initial Value Problem for Ordinary Differential Equations In this chapter we begin a study of time-dependent differential equations, beginning with the initial value problem (IVP) for a time-dependent

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

An Exactly Conservative Integrator for the n-body Problem

An Exactly Conservative Integrator for the n-body Problem An Exactly Conservative Integrator for the n-body Problem Oksana Kotovych and John C. Bowman Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G G1

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations Initial value problems for ordinary differential equations Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 IVP

More information

Multistage Methods I: Runge-Kutta Methods

Multistage Methods I: Runge-Kutta Methods Multistage Methods I: Runge-Kutta Methods Varun Shankar January, 0 Introduction Previously, we saw that explicit multistep methods (AB methods) have shrinking stability regions as their orders are increased.

More information

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS Kai Diethelm Abstract Dedicated to Prof. Michele Caputo on the occasion of his 8th birthday We consider ordinary fractional

More information

AN OVERVIEW. Numerical Methods for ODE Initial Value Problems. 1. One-step methods (Taylor series, Runge-Kutta)

AN OVERVIEW. Numerical Methods for ODE Initial Value Problems. 1. One-step methods (Taylor series, Runge-Kutta) AN OVERVIEW Numerical Methods for ODE Initial Value Problems 1. One-step methods (Taylor series, Runge-Kutta) 2. Multistep methods (Predictor-Corrector, Adams methods) Both of these types of methods are

More information

Multistep Methods for IVPs. t 0 < t < T

Multistep Methods for IVPs. t 0 < t < T Multistep Methods for IVPs We are still considering the IVP dy dt = f(t,y) t 0 < t < T y(t 0 ) = y 0 So far we have looked at Euler s method, which was a first order method and Runge Kutta (RK) methods

More information

Geometric Numerical Integration

Geometric Numerical Integration Geometric Numerical Integration (Ernst Hairer, TU München, winter 2009/10) Development of numerical ordinary differential equations Nonstiff differential equations (since about 1850), see [4, 2, 1] Adams

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Adaptive nested implicit Runge Kutta formulas of Gauss type

Adaptive nested implicit Runge Kutta formulas of Gauss type Applied Numerical Mathematics 59 (9) 77 7 www.elsevier.com/locate/apnum Adaptive nested implicit Runge Kutta formulas of Gauss type G.Yu. Kulikov, S.K. Shindin School of Computational and Applied Mathematics,

More information

Worksheet 8 Sample Solutions

Worksheet 8 Sample Solutions Technische Universität München WS 2016/17 Lehrstuhl für Informatik V Scientific Computing Univ.-Prof. Dr. M. Bader 19.12.2016/21.12.2016 M.Sc. S. Seckler, M.Sc. D. Jarema Worksheet 8 Sample Solutions Ordinary

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro September 19, 2014 1 / 55 Motivation

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5.

Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5. Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5.8: 1b, 3b, 4 Burden & Faires 5.6. Multistep Methods 1. Use all the Adams-Bashforth

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Ordinary differential equations - Initial value problems

Ordinary differential equations - Initial value problems Education has produced a vast population able to read but unable to distinguish what is worth reading. G.M. TREVELYAN Chapter 6 Ordinary differential equations - Initial value problems In this chapter

More information

Downloaded 12/15/15 to Redistribution subject to SIAM license or copyright; see

Downloaded 12/15/15 to Redistribution subject to SIAM license or copyright; see SIAM J. NUMER. ANAL. Vol. 40, No. 4, pp. 56 537 c 2002 Society for Industrial and Applied Mathematics PREDICTOR-CORRECTOR METHODS OF RUNGE KUTTA TYPE FOR STOCHASTIC DIFFERENTIAL EQUATIONS KEVIN BURRAGE

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Numerical Methods Gaëtan Kerschen Space Structures & Systems Lab (S3L) Why Different Propagators? Analytic propagation: Better understanding of the perturbing forces. Useful

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 1 Dianne P. O Leary c 2008 1 The

More information

A Composite Runge Kutta Method for the Spectral Solution of Semilinear PDEs

A Composite Runge Kutta Method for the Spectral Solution of Semilinear PDEs Journal of Computational Physics 8, 57 67 (00) doi:0.006/jcph.00.77 A Composite Runge Kutta Method for the Spectral Solution of Semilinear PDEs Tobin A. Driscoll Department of Mathematical Sciences, University

More information

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1 Lectures - Week 11 General First Order ODEs & Numerical Methods for IVPs In general, nonlinear problems are much more difficult to solve than linear ones. Unfortunately many phenomena exhibit nonlinear

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations AMSC/CMSC 660 Scientific Computing I Fall 2008 UNIT 5: Numerical Solution of Ordinary Differential Equations Part 1 Dianne P. O Leary c 2008 The Plan Initial value problems (ivps) for ordinary differential

More information

THE MAGNUS METHOD FOR SOLVING OSCILLATORY LIE-TYPE ORDINARY DIFFERENTIAL EQUATIONS

THE MAGNUS METHOD FOR SOLVING OSCILLATORY LIE-TYPE ORDINARY DIFFERENTIAL EQUATIONS THE MAGNUS METHOD FOR SOLVING OSCILLATORY LIE-TYPE ORDINARY DIFFERENTIAL EQUATIONS MARIANNA KHANAMIRYAN Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,

More information

Exponential Almost Runge-Kutta Methods for Semilinear Problems

Exponential Almost Runge-Kutta Methods for Semilinear Problems Exponential Almost Runge-Kutta Methods for Semilinear Problems John Carroll Eóin O Callaghan 9 January 3 Abstract We present a new class of one-step, multi-value Exponential Integrator (EI) methods referred

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat. Numerical Methods for Engineers An Introduction with and Scientists Applications using MATLAB Third Edition Amos Gilat Vish- Subramaniam Department of Mechanical Engineering The Ohio State University Wiley

More information

A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution of Oscillatory Problems

A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution of Oscillatory Problems Applied Mathematical Sciences, Vol. 1, 16, no. 44, 157-178 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.16.64146 A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution

More information

You may not use your books, notes; calculators are highly recommended.

You may not use your books, notes; calculators are highly recommended. Math 301 Winter 2013-14 Midterm 1 02/06/2014 Time Limit: 60 Minutes Name (Print): Instructor This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

More information

Parallel Methods for ODEs

Parallel Methods for ODEs Parallel Methods for ODEs Levels of parallelism There are a number of levels of parallelism that are possible within a program to numerically solve ODEs. An obvious place to start is with manual code restructuring

More information

Spectral Collocation Method for Parabolic Partial Differential Equations with Neumann Boundary Conditions

Spectral Collocation Method for Parabolic Partial Differential Equations with Neumann Boundary Conditions Applied Mathematical Sciences, Vol. 1, 2007, no. 5, 211-218 Spectral Collocation Method for Parabolic Partial Differential Equations with Neumann Boundary Conditions M. Javidi a and A. Golbabai b a Department

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics And Differential Equations 1 Dynamics Dynamics of a material point Ideal case, but often sufficient Dynamics of a solid Including rotation, torques 2 Position, Velocity, Acceleration

More information

Differential Equations

Differential Equations Differential Equations Definitions Finite Differences Taylor Series based Methods: Euler Method Runge-Kutta Methods Improved Euler, Midpoint methods Runge Kutta (2nd, 4th order) methods Predictor-Corrector

More information

9.6 Predictor-Corrector Methods

9.6 Predictor-Corrector Methods SEC. 9.6 PREDICTOR-CORRECTOR METHODS 505 Adams-Bashforth-Moulton Method 9.6 Predictor-Corrector Methods The methods of Euler, Heun, Taylor, and Runge-Kutta are called single-step methods because they use

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

4.4 Computing π, ln 2 and e

4.4 Computing π, ln 2 and e 252 4.4 Computing π, ln 2 and e The approximations π 3.1415927, ln 2 0.69314718, e 2.7182818 can be obtained by numerical methods applied to the following initial value problems: (1) y = 4, 1 + x2 y(0)

More information

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods L. Ferracina and M. N. Spijker 2007, June 4 Abstract. This paper deals with the numerical solution of initial value problems, for systems

More information

Introduction to the Numerical Solution of IVP for ODE

Introduction to the Numerical Solution of IVP for ODE Introduction to the Numerical Solution of IVP for ODE 45 Introduction to the Numerical Solution of IVP for ODE Consider the IVP: DE x = f(t, x), IC x(a) = x a. For simplicity, we will assume here that

More information

On interval predictor-corrector methods

On interval predictor-corrector methods DOI 10.1007/s11075-016-0220-x ORIGINAL PAPER On interval predictor-corrector methods Andrzej Marcinia 1,2 Malgorzata A. Janowsa 3 Tomasz Hoffmann 4 Received: 26 March 2016 / Accepted: 3 October 2016 The

More information

Checking the Radioactive Decay Euler Algorithm

Checking the Radioactive Decay Euler Algorithm Lecture 2: Checking Numerical Results Review of the first example: radioactive decay The radioactive decay equation dn/dt = N τ has a well known solution in terms of the initial number of nuclei present

More information

Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation

Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. (8) 7-77 ISSN - Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation T.V. Triantafyllidis,

More information

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems KYUNGPOOK Math. J. 52(2012), 167-177 http://dx.doi.org/10.5666/kmj.2012.52.2.167 Exponentially Fitted Error Correction Methods for Solving Initial Value Problems Sangdong Kim and Philsu Kim Department

More information

The Simple Double Pendulum

The Simple Double Pendulum The Simple Double Pendulum Austin Graf December 13, 2013 Abstract The double pendulum is a dynamic system that exhibits sensitive dependence upon initial conditions. This project explores the motion of

More information

Modeling & Simulation 2018 Lecture 12. Simulations

Modeling & Simulation 2018 Lecture 12. Simulations Modeling & Simulation 2018 Lecture 12. Simulations Claudio Altafini Automatic Control, ISY Linköping University, Sweden Summary of lecture 7-11 1 / 32 Models of complex systems physical interconnections,

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method

Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method Najmuddin Ahmad, Shiv Charan,Vimal Partap Singh Department of Mathematics, Integral University, Lucknow Abstract : We have

More information

5. Ordinary Differential Equations. Indispensable for many technical applications!

5. Ordinary Differential Equations. Indispensable for many technical applications! Indispensable for many technical applications! Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 30 5.1. Introduction Differential Equations One of the most important fields of application of

More information

Non-Differentiable Embedding of Lagrangian structures

Non-Differentiable Embedding of Lagrangian structures Non-Differentiable Embedding of Lagrangian structures Isabelle Greff Joint work with J. Cresson Université de Pau et des Pays de l Adour CNAM, Paris, April, 22nd 2010 Position of the problem 1. Example

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Runge-Kutta and Collocation Methods Florian Landis

Runge-Kutta and Collocation Methods Florian Landis Runge-Kutta and Collocation Methods Florian Landis Geometrical Numetric Integration p.1 Overview Define Runge-Kutta methods. Introduce collocation methods. Identify collocation methods as Runge-Kutta methods.

More information