MODEL TESTING OF RIDGE KEEL LOADS ON STRUCTURES PART IV: PRELIMINARY RESULTS OF FREEZE BOND SHEAR STRENGTH EXPERIMENTS

Size: px
Start display at page:

Download "MODEL TESTING OF RIDGE KEEL LOADS ON STRUCTURES PART IV: PRELIMINARY RESULTS OF FREEZE BOND SHEAR STRENGTH EXPERIMENTS"

Transcription

1 POAC 09 Luleå, Sweden Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-12, 2009 Luleå, Sweden POAC09-68 MODEL TESTING OF RIDGE KEEL LOADS ON STRUCTURES PART IV: PRELIMINARY RESULTS OF FREEZE BOND SHEAR STRENGTH EXPERIMENTS Ada H. V. Repetto-Llamazares 1, Peter Jochmann 2, Karl-Ulrich Evers 2 and Knut V. Høyland 1 Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY 2 Hamburg Ship Model Basin (HSVA), Hamburg, GERMANY ABSTRACT A series of experiments intended to study freeze-bond strength in model ice were performed in the Hamburg Ship Model Basin (HSVA) during November The ice used in the experiments was the same model ice used to build the model ridges described in Part II of the publications. Freeze-bond strength in direct shear was measured as a function of initial ice temperature, available time to develop the freeze-bond and normal stress applied to the freeze bond samples. Freeze-bond strength was also measured in rafted layers from the model ice ridges. A total of 58 experiments divided into four series were performed. The results from the controlled experiments and the freeze-bonds from the model ridges indicate that the former are representative of the actual phenomena happening in the model ridges. A decreasing tendency of the freeze-bond strength versus increasing submersion time was found, which agrees with previous results from full scale tests. A slightly decreasing tendency of freeze-bond strength with decreasing initial ice temperature was found. This does not agree with previous observations. The variation of freezebond strength versus normal stress showed an increasing tendency with increasing normal stress until a normal load of 1200 Pa where the freeze-bond strength decreases. 1. INTRODUCTION Ice ridges may represent the design load for ships, coastal, and offshore structures in many arctic and subarctic marine waters. Different approaches to calculate the ridge loads on structures are being used. The methods can be classified into three groups (Timco et al., 2000): model tests, analytical models and numerical models. No matter which approach is chosen, the confidence on the obtained results is affected by the fact that the ridge-structure interaction process is not well understood. And a great part of the uncertainties have their root in the lack of knowledge about the physical properties of the ridges and their evolution with the thermal and mechanical history of the ridge. Choosing model tests to estimate ridge loads on structures adds the uncertainty of the model ridges physical properties and their evolution with time. The scaling method, which is the mathematical way in which the model scale ridges properties are related with the full scale ridges properties is not well understood either (Høyland, 2007). Several authors argue that the initial failure of ice rubble is reached when freeze bonds between ice blocks fail (Ettema and Urroz, 1989, Surkov and Truskov, 1993, Surkov et al., 2001, Shafrova et al., 2004 and Liferov, 2005). Moreover Liferov and Bonnemaire (2005) discuss that this initial

2 failure of the rubble may correspond to the peak load. Thereafter, the study of freeze bonds is of vital importance when dealing with ice ridge loads on structures. This paper presents preliminary results from experiments where the strength of artificially created freeze-bonds made from model ice was tested on direct shear. The objective of the experiment was to study the dependence of the freeze bond shear strength on three parameters: the initial temperature of the ice, the normal stress applied to the freeze-bonds while they are being formed and tested, and the submersion time available for the freeze-bond to form. The experiments were performed during November 2008 in the Hamburg Ship Model Basin (HSVA) as part of a set of experiments intended to study the characteristics of the model ridges used for ridge-subsea structure interaction testing (Serré et al., 2009a, Serré et al., 2009b and Repetto-Llamazares et al. 2009). The paper presents preliminary results of the tests. 2. EXPERIMENTAL SET UP The experiments described in this paper were done using the same ice used to build the ridges presented in Repetto-Llamazares et al. (2009), Serré et al. (2009a) and Serré et al. (2009b). The bonded samples were tested in direct shear and the force at which failure occur (F c ) divided by the initial surface area (A) of the ice block was defined as the shear capacity (τ c ) of the freeze bond or the freeze-bond strength Direct Shear Testing Device A direct shear testing device was designed based on the experimental set-up proposed by Ettema and Schaefer (1986). Figure 1 depicts the basic design. It consists of two wooden frames that hold the freeze bond on its top and bottom. The bottom frame is fixed to a wooden table where a hydraulic piston is mounted. The piston pulls at constant velocity the upper frame until the ice specimen fails. Connected to the piston there is a load cell (sensitivity 1 kn/mv/v, accuracy of 0,12 N and a range of 2kN) and a displacement sensor. Both of them are connected to an amplifier, analog filter and AD converter. Data is recorded using DIAdem software as the computer interface. The hydraulic system was built by Friesecke and Hoepfner and allows for a maximum load of 10 kn, maximum displacement of 100 mm and maximum velocity of 100 mm/s. The velocity used during all the experiments was set to 0,7 mm/s, which lies in between the velocities interval used in Ettema and Schaefer (1986) (they found no variation of shear capacity of the ice between velocities in the range of 0.44 mm/s and 0.84 mm/s). (a) Pulling Piston σ Weight (Confinment) (b) Bottom Frame Detail 170 mm Bonded Ice Blocks 150 mm Movable end Fixed Frame Freeze Bond Area (15 ~ 20) mm 100 mm Screw Small rail Figure 1. (a) Basic design of the direct shear testing device. (b) Detail on the movable end of the bottom (fixed) frame.

3 2.2. Experimental Procedure The experimental procedure is described in Figure 2. Samples with dimensions around 160 mm by 160 mm in plane and with a thickness equal to the ice-sheet ice thickness (h i ) were cut from the ice-sheet using a hand saw, placed in plastic bags and put inside freezers until the ice samples reached the desired initial temperature (T i ). The ice thickness was between 31 mm to 34 mm with few samples of 40 mm. The air temperature of the cold room (T air ) was set to be the similar to T i. When the samples reached T i, they were taken out of the freezers and cut with a band saw to the desired final size of 140 mm by 140 mm (the thickness was left untouched). The freeze bonds were made by putting two ice pieces in contact (in the air), placing a wooden plate on top of them and adding metal weights until reaching the desired confinement (normal stress, σ) (See Figure 3). The wooden plate was intended to redistribute the weight along the totality of the surface area of the upper ice block. The complete set of ice, plate and weight were immediately placed in a secondary basin containing water with similar salinity and temperature (T w ) as in the large ice tank. The water salinity of the secondary basin (S sb ) increased from 7 ppt to 13 ppt during the experiments (Table 1). The dimensions of the tank were 1430 mm long, 940 mm wide and 800 mm deep. It was provided with wooden shelves so that it was easy to submerge the samples and to take them out for testing (Figure 3). After a certain submersion time (Δt) the samples were taken out of the water and tested in the direct shear testing device using the same weight that was used during the submersion cm HSVA model ice Experimental Procedure Freeze-Bond Strength Experiments 5 14 cm σ h i 2 σ 4 T = T i T water Δt 3 Figure 2. Basic description of the experimental procedure used to perform the freeze bond strength experiments. A total of 58 experiments separated in four series were performed. The parameters varied during the experiments were T i, σ and Δt. Table 1 presents their values in each experiment. Series were performed while leaving T i and Δt constant and varying σ. Three to four samples were prepared with each σ. Series were done at constant T i and σ while varying Δt, and again, three to four samples were prepared for each Δt in order to be able to obtain average values of shear capacities. While testing, some samples were broken or tested in a failure mode that was not expected, so the number of samples (n) actually used with each σ and each Δt is given in

4 Table 1. Samples corresponding to experiments and were taken from rafted layers of ice found in model ice ridges 3000 and 4000 described in Repetto-Llamazares et al. (2009). Table 1. Parameters used in each experiment: initial temperature of the ice (T i ), air temperature when making and testing the freeze bonds (T air ), normal stress applied while making the freeze-bond and while testing them (σ), number of samples used (n), time of submersion of the samples (Δt), salinity (S sb ) and temperature (T w ) of the water where the samples were submerged Test # T i ( o C ) T air ( o C ) σ (Pa) n Δt (hr) S sb (ppt) T w ( o C) Ridge Ridge Selection of parameters Normal Stress - Confinement The normal stresses used during the experiments were selected according to the procedure presented in Ettema and Schaefer (1986) and Mellor (1980) to calculate the vertical component of the internal stresses exerted by floating ice rubble at a certain depth inside a rubble field. Ettema and Schaefer (1986) calculated a maximum normal stress of 4000 Pa for a 10 m depth full scale rubble field, which is a good estimation of a full scale ridge keel. For a model scale ridge of

5 keel depth around 50 cm, the vertical component of the internal stresses would be around 600 Pa. So a range of normal stresses was selected to resemble both full scale and model scale situations. The maximum normal stress was selected to be 2000 Pa instead of 4000 Pa due to practical reasons related with the experimental set-up. The minimum confining stress was selected assuming a rubble field of just two rafted ice blocks. Two intermediate stresses then chosen. The force balance performed to calculate the needed weights to achieve the desired normal stresses is depicted in Figure 3 and expressed in Equation 1. Water Level Wooden Shelf Sample F load F b Weight (Load) F wp Wooden plate F wi N Shelf of basin Figure 3. Scheme of how the ice blocks were loaded during submersion in the secondary basin and the forces involved. Where F load + F wi + F wp F b = N (1) F load = Force exerted by the weight on top of the ice. F wi = Weight of the two pieces of ice. F wp = Weight of the wooden plate. F b = Buoyancy force generated when submerging completely the ice blocks. N = Normal force (reaction of the shelf). The set up was such that the sample was almost completely submerged when using only the wooden plate on top of the freeze-bond. That is why the following approximations presented in Equation 2 and 3 are valid. F wi + F wp F b ~ 0 (2) F load ~ N = σ A (3) In the case of the minimum loads selected, the ice blocks were just placed in the water with the wooden plate on top and no extra weight. Thus in the force balance N = 0, leaving F b as responsible for the normal stress (σ = F b /A). Consequently, the calculation is inverted and by knowing the density of the water and the volume of the ice-blocks the buoyancy force can be calculated and hence the normal stress applied to the ice blocks (it could have been done by other methods, such as weighting each sample and wooden plate before submerging it or using ice density and ice volume). For those samples where only the wooden plate on top the calculation of the buoyancy includes the uncertainty corresponding to the calculation of the sample volume. The uncertainty arises from the method used to estimate ρ i. The ice density was calculated as the

6 average between the values measured before submerging the samples to create the freeze-bond and after taking it from the freezers. This was done just for three samples, assuming a similar value for all the experiments. Nevertheless, the interest of these experiments is to have a first approach on how the freeze-bond strength varies with normal stress, so the uncertainty is not relevant. The normal stress and the surface area used for series and during submersion was not controlled since the blocks were extracted from the ridges after the model tests had been performed. After the blocks were taken out of the water, they were cut squared-shaped with side dimension depending on each sample original size, varying between 95 mm to 140 mm. The weight applied to the freeze-bond during testing was recorded and afterwards the normal stress applied during testing was calculated. This is the load reported in Table Temperatures Two extreme temperatures were selected to have as much separation between the measured points as possible. The warmer temperature was selected to be close to the ice temperature used to build the model ridges (T i = -1.6 o C) and the coldest one was set at -14 o C which was easily reached and maintained by the refrigeration system of the cold room. An intermediate temperature was then selected to be able to evaluate better any possible trend in the data. The initial temperature of the ice used in the experiments #10410 and #10510 is approximately known and is taken as the ice-sheet temperature measurement at 20 mm depth before the ridge was built (See Repetto-Llamazares et al. (2009) for more details). It is reported in Table Submersion Time The scaling of time in a small scale freeze bond experiment is not completely understood (Shafrova and Høyland, 2008). Thus the approach was to perform preliminary tests to asses the shortest submersion time at which the freeze-bond was strong enough to take it out of the water and handle it to test in the direct shear device. It was found that for ice at T i = -14 o C, freezebonding was present after 1 min of submersion. Unfortunately it was not possible to measure its strength with our experimental set-up. The movable end of the bottom frame was not pressing hard enough so the two bonded ice blocks were tilted by the piston moment applied in the upper frame instead of failing the freeze bond (See Figure 4). A submersion time of 5 minutes was also tested, but the ice remained to be too strong. After that, it was decided to set the smallest Δt using warmer ice. When using ice of T i = -3 o C, freeze bonding was not observed until Δt = 1 hr. Consequently this was the minimum submersion time selected for the experiments (Table 1). The longest time was selected to be similar to the life-time of the model ridges (time between ridge building and ridge-structure interaction test, Repetto-Llamazares et al., 2009). The submersion time of experiments #10410 and #10510 is calculated as the interval of time between ridge building (See Repetto-Llamazares et al. (2009) for more detail) and freeze-bond testing. It is reported in Table 1.

7 Figure 4.Two bonded ice blocks tilted by the piston moment applied in the upper frame instead of failing in the freeze-bond. 3. RESULTS Figure 5 shows two representative plots of the curves obtained when testing the freeze-bonds in the direct shear device. Two distinct failures mode have been observed, referenced as Failure mode A (Figure 5 (a)) and B (Figure 5 (b)). Approximately 25 % of the samples failed in mode A Figure 5 (a) while the remaining 75 % failed in mode B (Figure 5 (b)). (a) 120 Test = 1205 Pa - Sample #2 F C 100 (b) 28 Test = 637 Pa - Sample #1 F C Force (N) Force (N) 50 0 Force (N) Force (N) tim e (s) time (s) time (s) time (s) Figure 5. Representative plots of the curves obtained when testing the freeze-bonds in the direct shear device. (a) Failure mode A. (b) Failure mode B. The freeze-bond shear capacity (τ c ) was obtained from the curves by selecting the maximum value of the force before failure (F c as shown in Figure 5) and dividing it by the surface area of the ice-blocks. A total of 58 curves similar to the ones presented in Figure 5 have been analyzed to obtain the shear capacity of the freeze bonds for each experiment. Figure 6 summarizes the results of series #10100 and #10200 by a plot of τ c vs. Δt (Figure 6 (a)) and τ c vs. σ (Figure 6 (b)). Each point was calculated as an average of the n measurements available and the error bar corresponds to two standard deviations.

8 (a) (b) Submersion time variation Avg T ~ -7 C Avg T ~ -14 C Normal Stress Variation Avg T ~ -1,2 C Avg T ~ -7 C 3500 Avg T ~ -14 C c (Pa) c (Pa) t (hr) (Pa) Figure 6. Summary of the obtained results: shear capacity of the freeze-bonds as function of the (a) submersion time (b) normal stress. The results obtained for series #10400 and #10500 are showed in Figure 7 (Figure 7 (a) is also presented in Part II of the publications (Repetto Llamazares et al., 2009) (a) (b) Pa 141 Pa c (Pa) Ridge 3000 c avg = (192 +/- 52) Pa Ridge 4000 c avg = (148 +/- 56) Pa (Pa) c (Pa) Pa 21 Pa 21 Pa Ridge 3000 Ridge Pa 19 Pa 37 Pa t (hr) Figure 7. Shear capacity from experiments #10410 and #10510 as function of (a) normal stress (b) submersion time (the number on the side of each point correspond to the normal stress applied while the freeze bond was being tested).

9 4. DISCUSSION 4.1 Data Trends Failure Mode A (Figure 5 (a)) was associated with higher shear capacities than the ones registered for ductile-like behavior. At the moment, the character of the curve at failure does not seem to be related with any particular parameter of the experiments. The failure mode of the samples appeared to be random. Figure 6 (a) shows a slightly decreasing tendency of the shear capacity of the freeze-bonds when Δt increases. Shafrova and Høyland (2008) suggest that the freeze-bond strength increases with the submersion time until a certain Δt critical where it starts to decrease. It seems that the Δt used in the experiments were long enough to be in the last part of the curve, where the variation of the strength of the freeze-bonds is small and of decreasing tendency. Both Figures 6 (a) and (b) show a tendency to have weaker freeze-bonds when the initial temperature of the ice decreases. This is opposite of what was expected but it can be due to the several experimental uncertainties discussed below (section 4.1). Colder samples will develop a shear capacity faster and can be more sensitive to the submersion time. Figure 6 (b) shows a slightly increase of τ c for the two smaller normal stresses used (147 Pa and 637 Pa) while it increases faster for 1205 Pa, decreasing again for 2040 Pa. This change in behavior with normal stress (from increasing to decreasing) was not expected. It is thought to be related with the small number of samples tested. It appears to be certain randomness in weather the sample fails in mode A or B (the former having associated higher freeze-bond shear capacities). When testing the freeze-bonds made using normal stresses of 1205 Pa, most of the specimens failed in mode A. Thus the average value for their shear capacity was higher. Testing more samples under each normal stress would help to understand this aspect better. A detailed discussion of Figure 7 (a) is presented in Repetto-Llamazares et al. (2009). The analysis in this paper is restricted to show that the values obtained from the controlled experiments and the values obtained from rafted layers in model ice ridges are consistent. This gives certain insight into the validity of the controlled experiments to represent the freeze-bonds present in model ridges. Figure 7 (b) shows an increasing tendency of the shear capacity of the freeze-bonds with increasing Δt. This is opposite to what was found in the controlled experiments. Most likely, the discrepancy is due to the sampling process from the model ridges: only rafted layers were sampled since they were the only pieces with freeze-bonds of sizes big enough to be tested in the direct shear device. Thus, there was not randomness in the sampling process. 4.1 Experimental Uncertainties There are several parameters that are expected to influence the shear capacity of a freeze-bond. Besides the ones used as control parameters during these experiments (initial temperature of the ice, normal stress and submersion time), it can be mentioned for example, the real contact area between ice blocks (which will be affected by the surface roughness) and ice properties (ice density, salinity, porosity, thickness, etc). The selection of the control parameters of our experiments was done by identifying the parameters we expected to be the ones dominating the freeze-bonds strength, based in previous publications (Ettema and Schaefer (1986) and Shafrova and Høyland, 2008) and available experimental conditions. From the large scatter in the data, we

10 realize that some of the other parameters must have a considerable effect on the freeze-bond strength. Related with these parameters, some observations were made while testing: The ice surface was uneven, varying greatly between samples. There were samples with higher air content than the other ones. Top and bottom of the ice sheet was used randomly when samples were put together to form the freeze bond. Measurements of density and salinity were only done for very few representative samples. So the density, salinity and air content of each sample is not known. The ice thickness of the block used to prepare the freeze-bonds varied between 30 and 40 mm We think that the dominating effect generating the spread in the data is probably the one coming from the quality of the initial contact surface of the ice blocks. On the other hand the experimental set-up was not optimal. The system used to fix the movable end of the bottom frame was not the optimum one, so there were occasions in which the complete freeze-bond sample was tilted due to the moment applied by the piston and the lack of good fixing of the bottom frame (Figure 4). In some situations we were able to stop the experiment, press the bottom frame harder into the ice and test it again. But in other cases, the freeze-bond failed before the piston could be stopped. In the later case, the ice failed in a different mode than shear. If the tilting was small, the values of shear capacity were close to the properly measured ones, and in those cases the measured values were averaged with the others. When the tilting was large, the difference of the shear capacity was up to 300% different from the properly measured values. Thus those measurements were not used to calculate the average shear capacity. For future experiments, improvements on the experimental method should include either a better control over the initial contact area of the ice-blocks or a higher repetition of the experiments under the same set of control parameters to get a better estimation of the probability distribution of the freeze-bond shear capacity. Regarding the experimental set up, it is important to have a better fixing system for the bottom frame of the direct shear device to be sure that high shear capacities are not being left out due to an experimental limitation in their measurements. It is also of interest to measure the shear capacity of the intact ice to be able to compare with the freezebond shear capacity. 5. CONCLUSIONS Freeze-bond strength tests have been performed in the Hamburg Ship Model Basin during November 2008 using a direct shear device design especially for this purpose. A total of 4 series of experiments were done while varying initial temperature of the ice, normal stress and submersion time of the bonded ice blocks. Two of the series were done by measuring freezebonds from rafted layers of two model ice ridges. The results from the controlled experiments and the actual freeze-bonds present in the model ice ridges indicate that the controlled experiments are representative of the phenomena occurring in the ridges. A decreasing tendency of the freeze-bond strength versus increasing submersion time was found, which agrees with previous results from full scale tests. A slightly decreasing tendency of the freeze-bond strength with decreasing initial ice temperature was found. The

11 variation of freeze-bond strength versus normal stress showed an increasing tendency with increasing normal stress until a confinement of 1205 Pa where the freeze-bond strength decreases. The reason for this behavior is not clear and has to be investigated in more detail. The results were a good starting point in the study of the freeze bond shear capacity of ice as function of key parameters. Some drawbacks of the experimental set up were identified and possible solutions have been proposed. ACKNOWLEDGMENTS The work described in this publication was supported by the European Community's Sixth Framework Programme through the grant to the budget of the Integrated Infrastructure Initiative HYDRALAB III, Contract no (RII3). The author(s) would like to thank the Hamburg Ship Model Basin (HSVA), especially the ice tank crew, for the hospitality, technical and scientific support and the professional execution of the test programme in the Research Infrastructure ARCTECLAB The authors furthermore gratefully acknowledge the PETROMAKS programme, the Research Council of Norway, PetroArctic and StatoilHydro for funding this study and thanks to Hanne Hagen, Andrea Haase, Christian Lønøy and Vegard Asknes for their help during the model tests. REFERENCES Ettema and Schaefer (1986) Experiments on freeze-bonding between ice blocks in floating ice rubble. Journal of Glaciology, Vol. 32, No. 112, pp Ettema, R. and Urroz, G.E. (1989). On internal friction and cohesion in unconsolidated ice rubble. Cold Regions Science and Technology, No. 16: Liferov, P. (2005). Review of ice rubble behaviour and strength, Part II: Modelling. Cold Regions Science and Technology, (41): Liferov, P. and Bonnemaire, B., (2005). Review of ice rubble behaviour and strength, Part I: Testing and interpretation of the results. Cold Regions Science and Technology, No. 41: Mellor M. (1980). Ship resistance in thick brash ice. Cold Regions Science and Technology, Vol. 3, No. 4, pp Repetto-Llamazares A. H. V., Høyland K. V., Serré N., Evers K-U and Jochman P, Model testing of ice ridge loads on structures part ii: ridge building and physical properties. Submitted to Port and Ocean Engineering under Arctic Conditions (POAC) 2009, Luleå, Sweden. Serré N., Pavel L. and Evers K-U. 2009a. Model testing of ridge keel loads on structures part I: Test set up and main results, submitted to Port and Ocean Engineering under Arctic Conditions (POAC) 2009, Luleå, Sweden. Serré N., Pavel L. and Jochmann P. 2009b. Model testing of ridge keel loads on structures part III: Investigation of model ice rubble mechanical properties., submitted to Port and Ocean Engineering under Arctic Conditions (POAC) 2009, Luleå, Sweden. Shafrova, S., Liferov, P., and Shkhinek, K. N. (2004). Modelling ice rubble with a pseudodiscrete continuum model. In Proc. of the 17th Int. Symp. on Ice (IAHR), Saint-Petersburg, Russia, pp

12 Shafrova S. and Høyland K. V (2008). The freeze-bond strength in first-year ice ridges. Smallscale field laboratory experiments. Cold Regions Science and Technology, Volume 54, Issue 1, September 2008, pp Surkov, G.A. and Truskov, P.A. (1993). Method for evaluation of the First-Year Ice hummock strength. In Proc. of the 3rd Int. Offshore and Polar Engineering Conference (ISOPE), Singapore; Vol. 2, pp Surkov, G.A., Astaf'yev, V.N., Polomoshnov, A.M., Zemlyuk, S.V., Truskov, P.A. (2001). Strength characteristics of hummock formations. In Proc. of the 11th Int. Offshore and Polar Engineering Conference (ISOPE), Stavanger, Norway, Vol. 1: pp

ON ANALYSIS OF PUNCH TESTS ON ICE RUBBLE

ON ANALYSIS OF PUNCH TESTS ON ICE RUBBLE Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research ON ANALYSIS

More information

MEDIUM SCALE MODELLING OF ICE RIDGE SCOURING OF THE SEABED, PART II: CONSOLIDATION AND PHYSICAL PROPERTIES

MEDIUM SCALE MODELLING OF ICE RIDGE SCOURING OF THE SEABED, PART II: CONSOLIDATION AND PHYSICAL PROPERTIES Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research MEDIUM SCALE

More information

The Rate- and State- Dependence of Sea Ice Friction

The Rate- and State- Dependence of Sea Ice Friction POAC09-66 POAC 09 Luleå, Sweden Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-12, 2009 Luleå, Sweden The Rate- and State- Dependence of Sea

More information

COLD REGION SCIENCE AND MARINE TECHNOLOGY - Ice Ridge Characteristics And Engineering Concerns Regarding Ice Ridges - Knut Vilhelm Høyland

COLD REGION SCIENCE AND MARINE TECHNOLOGY - Ice Ridge Characteristics And Engineering Concerns Regarding Ice Ridges - Knut Vilhelm Høyland ICE RIDGE CHARACTERISTICS AND ENGINEERING CONCERNS REGARDING ICE RIDGES Knut Vilhelm Høyland Norwegian University of Science and Technology, Trondheim, Norway. Keywords: ice ridges, ice ridge action, geometry,

More information

ANALYSIS OF FIRST-YEAR AND OLD ICE RIDGE CHARACTERISTICS

ANALYSIS OF FIRST-YEAR AND OLD ICE RIDGE CHARACTERISTICS POAC 11 Montréal, Canada Proceedings of the 21 st International Conference on Port and Ocean Engineering under Arctic Conditions July 1-14, 211 Montréal, Canada POAC11-164 ANALYSIS OF FIRST-YEAR AND OLD

More information

Numerical modelling of ice & ice-structure interactions

Numerical modelling of ice & ice-structure interactions Numerical modelling as defined in Encyclopædia Britannica: A computer generated description of a mathematical system to represent the behaviour of a real or proposed system that uses a set of equations

More information

A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE

A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE Li Feng 1, Yue Qianjin 1, Karl N. Shkhinek 2, Tuomo Kärnä 3 1 Dalian University of Technology, China 2 St. Petersburg State

More information

AIRBORNE EM SEA-ICE THICHNESS PROFILING OVER BRACKISH BALTIC SEA WATER

AIRBORNE EM SEA-ICE THICHNESS PROFILING OVER BRACKISH BALTIC SEA WATER 17th International Symposium on Ice Saint Petersburg, Russia, 21-25 June 2004 International Association of Hydraulic Engineering and Research AIRBORNE EM SEA-ICE THICHNESS PROFILING OVER BRACKISH BALTIC

More information

Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail UNESCO-EOLSS

Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail UNESCO-EOLSS ICE RIDGE FORMATION Jukka Tuhkuri Aalto University, Department of Applied Mechanics, Finland Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail

More information

FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE

FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE Proceedings oh the th IAHR International Symposium on Ice () FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE Mohamed O. ElSeify and Thomas G. Brown University of Calgary,

More information

MEDIUM SCALE MODELLING OF ICE RIDGE SCOURING OF THE SEABED, PART 1: EXPERIMENTAL SET-UP AND BASIC RESULTS

MEDIUM SCALE MODELLING OF ICE RIDGE SCOURING OF THE SEABED, PART 1: EXPERIMENTAL SET-UP AND BASIC RESULTS Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research MEDIUM SCALE

More information

COLD REGIONS SCIENCE AND MARINE TECHNOLOGY Vol II - Ice Breaking And Ship Modelling - Karl-Heinz Rupp

COLD REGIONS SCIENCE AND MARINE TECHNOLOGY Vol II - Ice Breaking And Ship Modelling - Karl-Heinz Rupp ICE BREAKING AND SHIP MODELLING Karl-Heinz Rupp Hamburg, Germany Keywords: Ice breaking, Hull shape, Ice thickness, Friction, Resistance astern, Stability control, Ice floes, ice cake, brash ice, Rafted

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE

Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE Jani Paavilainen, Jukka Tuhkuri and Arttu Polojärvi Helsinki University of Technology, Laboratory for Mechanics of Materials, Finland

More information

MEASUREMENT OF LOADS EXERTED BY SEA ICE ON THE QUAY AT KAPP AMSTERDAM ON SVALBARD

MEASUREMENT OF LOADS EXERTED BY SEA ICE ON THE QUAY AT KAPP AMSTERDAM ON SVALBARD POAC 15 Trondheim, Norway Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions June 14-18, 2015 Trondheim, Norway MEASUREMENT OF LOADS EXERTED BY SEA ICE

More information

HOW WELL CAN WE PREDICT ICE LOADS?

HOW WELL CAN WE PREDICT ICE LOADS? HOW WELL CAN WE PREDICT ICE LOADS? G.W. Timco 1 and K.R. Croasdale 2 1 Canadian Hydraulics Centre, National Research Council, Ottawa, ON, K1A R6 Canada 2 K.R. Croasdale & Assoc., Calgary, AL, T2R 1M5 Canada

More information

SIGNIFICANCE OF TIDAL CHANGE ON ABRASION AREA OF STRUCTURES DUE TO SEA ICE MOVEMENT

SIGNIFICANCE OF TIDAL CHANGE ON ABRASION AREA OF STRUCTURES DUE TO SEA ICE MOVEMENT SIGNIFICANCE OF TIDAL CHANGE ON ABRASION AREA OF STRUCTURES DUE TO SEA ICE MOVEMENT Takahiro Takeuchi, Shinji Kioka and Hiroshi Saeki 3 Hachinohe Institute of Technology, Hachinohe, Japan Civil Engineering

More information

arxiv:cond-mat/ v1 25 Feb 1994

arxiv:cond-mat/ v1 25 Feb 1994 A Model for Fracture in Fibrous Materials A. T. Bernardes Departamento de Física - ICEB arxiv:cond-mat/9402110v1 25 Feb 1994 Universidade Federal de Ouro Preto Campus do Morro do Cruzeiro 35410-000 Ouro

More information

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements 1 Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements Biao Su Department of Marine Technology, NTNU January 7 th, 2013 Author CeSOS Centre for Ships and

More information

Lilja, Ville-Pekka; Polojärvi, Arttu; Tuhkuri, Jukka; Paavilainen, Jani A three-dimensional FEM-DEM model of an ice sheet

Lilja, Ville-Pekka; Polojärvi, Arttu; Tuhkuri, Jukka; Paavilainen, Jani A three-dimensional FEM-DEM model of an ice sheet Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Lilja, Ville-Pekka; Polojärvi, Arttu;

More information

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are 11.1 Ocean Basins The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are w the Pacific w the Atlantic w the Indian w the Southern w the Arctic The

More information

Matter, Atoms & Molecules

Matter, Atoms & Molecules Matter, Atoms & Molecules Matter is anything that has mass and takes up space. All matter is made of tiny particles called atoms, which are too small to see with the naked eye. Matter Matter is anything

More information

ESS 431 Principles of Glaciology ESS 505 The Cryosphere

ESS 431 Principles of Glaciology ESS 505 The Cryosphere MID-TERM November 9, 2015 ESS 431 Principles of Glaciology ESS 505 The Cryosphere Instructions: Please answer the following 5 questions. [The actual 5 questions will be selected from these 12 questions

More information

A FIELD RESEARCH PROGRAMME TO ADDRESS ICE ENGINEERING ISSUES FOR THE NORTH CASPIAN SEA

A FIELD RESEARCH PROGRAMME TO ADDRESS ICE ENGINEERING ISSUES FOR THE NORTH CASPIAN SEA 17th International Symposium on Ice Saint Petersburg, Russia, 21-25 June 2004 International Association of Hydraulic Engineering and Research Session G A FIELD RESEARCH PROGRAMME TO ADDRESS ICE ENGINEERING

More information

Grade 8 Science. Unit 1: Water Systems on Earth Chapter 2

Grade 8 Science. Unit 1: Water Systems on Earth Chapter 2 Grade 8 Science Unit 1: Water Systems on Earth Chapter 2 Oceans are important... 1. Primary water source for the water cycle 2. Control weather 3. Support diverse life 4. Provides humans with food, minerals,

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE

MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE Devinder S. Sodhi 1 1 Retired from CRREL, Hanover, NH, USA ABSTRACT After presenting a brief review of the ductile and brittle modes

More information

Consolidation of first-year sea ice ridges

Consolidation of first-year sea ice ridges JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C6, 3062, 10.1029/2000JC000526, 2002 Consolidation of first-year sea ice ridges Knut V. Høyland 1 The University Courses on Svalbard, Longyearbyen, Norway

More information

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Pullout Tests of Geogrids Embedded in Non-cohesive Soil Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

More information

RESPONSE OF TWO PIERS ON CONFEDERATION BRIDGE TO ICE LOADING EVENT OF APRIL 4, 2003

RESPONSE OF TWO PIERS ON CONFEDERATION BRIDGE TO ICE LOADING EVENT OF APRIL 4, 2003 RESPONSE OF TWO PIERS ON CONFEDERATION BRIDGE TO ICE LOADING EVENT OF APRIL 4, 23 R. Frederking 1, I. Kubat 1 and S. Prinsenberg 2 1 National Research Council, Canadian Hydraulics Centre, Ottawa, ON, Canada

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Factors Influencing the Coefficient of Friction between Sea Ice and Various Materials Takashi Terashima & Naoki Nakazawa Pacific Consultants, Co., Ltd., New Stage Sapporo Bldg., 2-6, Kita-7 Nishi-1, Kita-ku

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water) ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

More information

Graphing Sea Ice Extent in the Arctic and Antarctic

Graphing Sea Ice Extent in the Arctic and Antarctic Graphing Sea Ice Extent in the Arctic and Antarctic 1. Large amounts of ice form in some seasons in the oceans near the North Pole and the South Pole (the Arctic Ocean and the Southern Ocean). This ice,

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

The Sandbox Experiment

The Sandbox Experiment Geological Sciences 101 Lab #7 - Introduction to Deformation Some of the most dramatic evidence that great forces have shaped the Earth are the rocks that one finds deformed in mountain belts. Rocks can

More information

ICE PRESSURE RIDGE IMPACTS ON OIL SPILLS IN THE ALASKAN OCS

ICE PRESSURE RIDGE IMPACTS ON OIL SPILLS IN THE ALASKAN OCS Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research ICE PRESSURE

More information

Application of Three Dimensional Failure Criteria on High-Porosity Chalk

Application of Three Dimensional Failure Criteria on High-Porosity Chalk , 5-6 May 00, Trondheim, Norway Nordic Energy Research Programme Norwegian U. of Science and Technology Application of Three Dimensional Failure Criteria on High-Porosity Chalk Roar Egil Flatebø and Rasmus

More information

The Thermal Challenge

The Thermal Challenge The Thermal Challenge Benefits of thermal interface materials (TIM) especially dedicated to power electronics The enhancements of semiconductors throughout the last decades targeted the improvement of

More information

Available online at ScienceDirect. Procedia Engineering 136 (2016 )

Available online at   ScienceDirect. Procedia Engineering 136 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 136 (2016 ) 275 279 The 20 th International Conference: Machine Modeling and Simulations, MMS 2015 Investigation of internal

More information

Advanced numerical modelling methods of rock bolt performance in underground mines

Advanced numerical modelling methods of rock bolt performance in underground mines University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2010 Advanced numerical modelling methods of rock bolt performance in underground mines

More information

UNCERTAINTIES FOR PRESSURE-TIME EFFICIENCY MEASUREMENTS

UNCERTAINTIES FOR PRESSURE-TIME EFFICIENCY MEASUREMENTS UNCERTAINTIES FOR PRESSURE-TIME EFFICIENCY MEASUREMENTS ABSTRACT Jørgen Ramdal Norwegian University of Science and Technology Pontus P. Jonsson Luleå University of Technology Ole Gunnar Dahlhaug Norwegian

More information

AMME2261: Fluid Mechanics 1 Course Notes

AMME2261: Fluid Mechanics 1 Course Notes Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

More information

Effects of Ice Loads on the Confederation Bridge

Effects of Ice Loads on the Confederation Bridge PT-13: Coastal and Ocean Engineering ENGI.8751 Undergraduate Student Forum Faculty of Engineering and Applied Science, Memorial University, St. john s, NL, Canada MARCH, 13 Paper Code. (PT-13 - Campbell)

More information

Dynamic behaviour of electronics package and impact reliability of BGA solder joints

Dynamic behaviour of electronics package and impact reliability of BGA solder joints Dynamic behaviour of electronics package and impact reliability of BGA solder joints Q YU1, H Kikuchil, S Ikedal, M Shiratoril, M Kakino2, N Fujiwara2 Department of Mechanical Engineering and Material

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO NPL Report CMMT(A)81 Project PAJ2 Dynamic Performance of Adhesively Bonded Joints Report No. 3 August 1997 Proposed Draft for the Revision of ISO 11003-2 Adhesives - Determination of Shear Behaviour of

More information

RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING -

RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING - RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING - L.Guillaumat 1 1 LA.M.E.F.-E.N.S.A.M. Esplanade des Arts et Métiers 33405 Talence Cedex - FRANCE SUMMARY: This paper deals with a method to study

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

Full-scale Test of Uplift Resistance of Trenched Pipes

Full-scale Test of Uplift Resistance of Trenched Pipes International Journal of Offshore and Polar Engineering (ISSN 1053-5381) Copyright by The International Society of Offshore and Polar Engineers Vol. 23, No. 4, December 2013, pp. 298 306 http://www.isope.org/publications

More information

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION IMEKO 22 nd TC3, 15 th TC5 and 3 rd TC22 International Conferences 3 to 5 February, 2014, Cape Town, Republic of South Africa PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION R. Kumme

More information

The Deep Circulation of the Ocean

The Deep Circulation of the Ocean Activity 2 The Deep Circulation of the Ocean Activity 2 The Deep Circulation of the Ocean Goals In this activity you will: Understand how water temperature affects circulation within a body of water. Understand

More information

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates EPJ Web of Conferences 94, 01080 (2015) DOI: 10.1051/epjconf/20159401080 c Owned by the authors, published by EDP Sciences, 2015 A rate-dependent Hosford-Coulomb model for predicting ductile fracture at

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Terra-Mechanical Simulation Using Distinct Element Method

Terra-Mechanical Simulation Using Distinct Element Method Shinya Kanou Masaharu Amano Yuji Terasaka Norihisa Matsumoto Tatsuo Wada To our company that designs and manufactures equipment for handling soil and rock, analyzing the interaction or contact between

More information

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #: PHYSICS 221 Fall 2016 EXAM 2: November 02, 2016 8:15pm 10:15pm Name (printed): Recitation Instructor: Section #: INSTRUCTIONS: This exam contains 25 multiple-choice questions, plus 2 extra-credit questions,

More information

Concepts in Physics. Wednesday, November 04th

Concepts in Physics. Wednesday, November 04th 1206 - Concepts in Physics Wednesday, November 04th Request from Mark Brown Those of you who will miss the LAB tomorrow, please let Mark B. know - either stopping by or a quick email will be fine. State

More information

YEAR 9 SCIENCE EXAMINATION Semester 1, 2016 WRITTEN QUESTION AND ANSWER BOOKLET 2

YEAR 9 SCIENCE EXAMINATION Semester 1, 2016 WRITTEN QUESTION AND ANSWER BOOKLET 2 YEAR 9 SCIENCE EXAMINATION Semester 1, 2016 WRITTEN QUESTION AND ANSWER BOOKLET 2 STUDENT NAME: TEACHER NAME: DATE: TIME ALLOWED FOR THIS PAPER: Reading time before commencing work: Working time for this

More information

THE COLLISION OF CONE SHAPE ICE SAMPLES AGAINST STEEL PLATES OF VARYING SURFACE ROUGHNESS. Dragt, R.C. 1, Bruneau S.E. 2

THE COLLISION OF CONE SHAPE ICE SAMPLES AGAINST STEEL PLATES OF VARYING SURFACE ROUGHNESS. Dragt, R.C. 1, Bruneau S.E. 2 POAC 13 Espoo, Finland Proceedings of the 22 nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2013 Espoo, Finland THE COLLISION OF CONE SHAPE ICE SAMPLES AGAINST

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

INTERACTION OF LEVEL ICE WITH UPWARD BREAKING CONICAL STRUCTURES AT TWO SCALES

INTERACTION OF LEVEL ICE WITH UPWARD BREAKING CONICAL STRUCTURES AT TWO SCALES Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research INTERACTION

More information

Modelling brash ice growth in ports

Modelling brash ice growth in ports 22 nd IAHR International Symposium on Ice Singapore, August 11 to 15, 2014 Modelling brash ice growth in ports Kaj Riska 1, Rodolphe Blouquin 2, Edmond Coche 1, Sergey Shumovskiy 3, Dmitry Boreysha 3 1

More information

Section 2.1 Ocean Basins. - Has helped determine where ocean basins are located. - Tectonic plates move changing the position of the continents.

Section 2.1 Ocean Basins. - Has helped determine where ocean basins are located. - Tectonic plates move changing the position of the continents. Science 8 Unit 1: Water Systems on Earth Chapter 2: Oceans Control the Water Cycle Section 2.1 Ocean Basins Oceans are important because: 1. Primary water source for the water cycle 2. Control weather

More information

EQUILIBRIUM OBJECTIVES PRE-LECTURE

EQUILIBRIUM OBJECTIVES PRE-LECTURE 27 FE3 EQUILIBRIUM Aims OBJECTIVES In this chapter you will learn the concepts and principles needed to understand mechanical equilibrium. You should be able to demonstrate your understanding by analysing

More information

2. Governing Equations

2. Governing Equations 1. Introduction Submarine pipeline, unlike any other hydraulic structures that are vertically erected, are laid horizontally on the bed of oceans and rivers. Hence, the design of submarine pipelines associated

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

SEA ICE STRENGTH DURING THE MELT SEASON

SEA ICE STRENGTH DURING THE MELT SEASON Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 22 International Association of Hydraulic Engineering and Research SEA ICE STRENGTH

More information

REDUCTION OF UNCERTAINTY IN CALIBRATION OF GAUGE BLOCKS

REDUCTION OF UNCERTAINTY IN CALIBRATION OF GAUGE BLOCKS Vienna, AUSTRIA, 000, September 5-8 RDUCTION OF UNCRTAINTY IN CALIBRATION OF GAUG BLOCKS B. Acko, A. Sostar and A. Gusel Laboratory for Production Measurement Faculty of Mechanical ngineering University

More information

EXTENDED BALTIC MODEL OF GLOBAL ICE FORCES

EXTENDED BALTIC MODEL OF GLOBAL ICE FORCES EXTENDED BALTIC MODEL OF GLOBAL ICE FORCES Tuomo Kärnä,, Yan Qu 3 and QianjinYue 3 Karna Research and Consulting, Helsinki, Finland Formely VTT Technical Research Centre of Finland 3 Dalian University

More information

Lesson 14: Friction. a) Fill in the table that follows by constructing a force diagram for the block (the system) for these five situations.

Lesson 14: Friction. a) Fill in the table that follows by constructing a force diagram for the block (the system) for these five situations. Lesson 14: Friction 14.1 Observe and Find a Pattern Perform the following experiment: Rest a wooden block (or some other object, like your shoe) on a table. Attach a large spring scale to a string attached

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

Earthquake Investigation

Earthquake Investigation Exploration A Earthquake Investigation 1. Obtain a piece of plastic putty and knead it into a rectangular shape. 2. Push the ends of the putty toward the middle. Draw and describe what it looks like below.

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet Institute of Earth Physics, CNRS UMR 751, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G. van Maarseveen,

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

Name :   Applied Physics II Exam One Winter Multiple Choice ( 7 Points ): Name : e-mail: Applied Physics II Exam One Winter 2006-2007 Multiple Choice ( 7 Points ): 1. Pure nitrogen gas is contained in a sealed tank containing a movable piston. The initial volume, pressure and

More information

Archimedes Principle

Archimedes Principle Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

More information

FORM 3 PHYSICS TIME: 1 hr 30 min

FORM 3 PHYSICS TIME: 1 hr 30 min DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management Educational Assessment Unit Annual Examinations for Secondary Schools 2015 Track 2 FORM 3 PHYSICS TIME: 1 hr 30 min

More information

The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables

The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables Ryan Wopschall 5 September 2013 Oceanology International China, Shanghai Fugro

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet CNRS UMR 7516, School and Observatory of Earth Sciences, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G.

More information

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION As a student at NJIT I, will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code. I also understand that

More information

Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA

Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA INTRODUCTION: Ocean currents are like huge rivers in the sea. They carry drifting organisms, vital dissolved chemical nutrients and

More information

Interaction of Ships while Opposing Navigation among Small Ice Floes

Interaction of Ships while Opposing Navigation among Small Ice Floes ARCTIC OI RECOVERY EXERCISE 05 KEMI ARCTIC 05 Conference Interaction of Ships while Opposing Navigation among Small Ice Floes Vadim K. Goncharov Professor Department of Oceantechnics and Marine Technology

More information

Unit 1: Water Systems on Earth Chapter 2

Unit 1: Water Systems on Earth Chapter 2 Unit 1: Water Systems on Earth Chapter 2 Create a mind map with the driving question, Why are Oceans Important? Remember: Why are oceans so important? Why are oceans so important? Primary water source

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

Engineering Design for Ocean and Ice Environments Engineering Sea Ice Engineering

Engineering Design for Ocean and Ice Environments Engineering Sea Ice Engineering Engineering 867 - Design for Ocean and Ice Environments Engineering 9096 - Sea Ice Engineering MID-TERM EXAMINATION With Solutions Date: Fri., Feb. 6, 009 Time: 1:00-1:50 pm Professor: Dr. C. Daley Answer

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION

DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION B. Zhu 1,2*, T.X. Yu 1, X.M. Tao 2 1 Department of Mechanical Engineering, Hong Kong University of Science

More information

Shape Earth. Plate Boundaries. Building. Building

Shape Earth. Plate Boundaries. Building. Building Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Forces That Shape Earth Landforms at Plate Boundaries Mountain Building Continent Building How is Earth s surface shaped by plate

More information

Shown is the supercontinent Pangaea before it broke up and the continents drifted.

Shown is the supercontinent Pangaea before it broke up and the continents drifted. Has anyone ever told you to sit still? Did you know you can never really sit still? You have probably already learned that Earth is constantly moving through space, but did you know that the ground beneath

More information

S.E.Bruneau, B.Colbourne Memorial University Newfoundland St. John s, Newfoundland, Canada

S.E.Bruneau, B.Colbourne Memorial University Newfoundland St. John s, Newfoundland, Canada Use of thermal imagery to assess temperature variation in ice collision processes Jochen N.W.Tijsen Memorial University Newfoundland St. John s, Newfoundland, Canada j.n.w.tijsen@gmail.com S.E.Bruneau,

More information

CHAPTER 3 EXPERIMENTAL STUDY

CHAPTER 3 EXPERIMENTAL STUDY Experimental Study 42 CHAPTER 3 EXPERIMENTAL STUDY 3.1. INTRODUCTION The experimental study that has been carried out in this thesis has two main objectives: 1. Characterise the concrete behaviour in mode

More information

AVOIDING FRACTURE INSTABILITY IN WEDGE SPLITTING TESTS BY MEANS OF NUMERICAL SIMULATIONS

AVOIDING FRACTURE INSTABILITY IN WEDGE SPLITTING TESTS BY MEANS OF NUMERICAL SIMULATIONS Damage, Avoiding fracture Fracture instability and Fatigue in wedge splitting tests by means of numerical simulations XIV International Conference on Computational Plasticity. Fundamentals and Applications

More information

MS20 Laboratory Seawater Salinity and Density

MS20 Laboratory Seawater Salinity and Density MS20 Laboratory Seawater Salinity and Density Introduction As you perform these experiments, pay particular attention to the results different methods produce different levels of precision and accuracy.

More information

ME-B41 Lab 1: Hydrostatics. Experimental Procedures

ME-B41 Lab 1: Hydrostatics. Experimental Procedures ME-B41 Lab 1: Hydrostatics In this lab you will do four brief experiments related to the following topics: manometry, buoyancy, forces on submerged planes, and hydraulics (a hydraulic jack). Each experiment

More information

STUDY OF IMPACTED COMPOSITE STRUCTURES BY MEANS OF THE RESPONSE SURFACE METHODOLOGY.

STUDY OF IMPACTED COMPOSITE STRUCTURES BY MEANS OF THE RESPONSE SURFACE METHODOLOGY. STUDY OF IMPACTED COMPOSITE STRUCTURES BY MEANS OF THE RESPONSE SURFACE METHODOLOGY. F. Collombet 1, L. Guillaumat 1, J.L. Lataillade 1, P. Davies 2 and A. Torres-Marques 3 1 LA.M.E.F.I.P.-E.N.S.A.M.,

More information

6-3 Particle model of matter Physics

6-3 Particle model of matter Physics 6-3 Particle model of matter Physics.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

24. Ocean Basins p

24. Ocean Basins p 24. Ocean Basins p. 350-372 Background The majority of the planet is covered by ocean- about %. So the majority of the Earth s crust is. This crust is hidden from view beneath the water so it is not as

More information

Modelling of surface to basal hydrology across the Russell Glacier Catchment

Modelling of surface to basal hydrology across the Russell Glacier Catchment Modelling of surface to basal hydrology across the Russell Glacier Catchment Sam GAP Modelling Workshop, Toronto November 2010 Collaborators Alun Hubbard Centre for Glaciology Institute of Geography and

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information