arxiv: v1 [cond-mat.mtrl-sci] 23 Sep 2011

Size: px
Start display at page:

Download "arxiv: v1 [cond-mat.mtrl-sci] 23 Sep 2011"

Transcription

1 Emergence of noncentrosymmetric topological insulating phase in BiTeI under pressure M. S. Bahramy 1, B. -J. Yang 1, R. rita 1,2, and N. Nagaosa 1,2,3 arxiv: v1 [cond-mat.mtrl-sci] 23 Sep Correlated Electron Research Group (CERG), RIKEN-SI, Wako, Saitama , Japan 2 Department of pplied Physics, University of Tokyo, Tokyo , Japan 3 Cross-Correlated Materials Research Group (CMRG), RIKEN-SI, Wako, Saitama , Japan Electronic address: bahramy@riken.jp 1

2 Topological insulators (TI s) are a new state of quantum matter in which the nontrivial topological order of bulk states gives rise to the formation of gapless edge or surface states. Common to all TI materials, discovered so far, is the inversion (I) symmetry of their bulk crystal structure, dictating spin degeneracy among all the Kramer s doublets at each k-point. Without I-symmetry, such a spin degeneracy is lifted, thereby leading to many novel phenomena, such as the spin Galvanic effect and the spin Hall effect. Through a set of sophisticated firstprinciples calculations, here we show that BiTeI, a layered noncentrosymmetric compound with a giant bulk Rashba splitting turns into a TI under a reasonable pressure. It is therefore proposed as the first TI candidate lacking I-symmetry. The material is shown to exhibit several unique features, not ever seen in I- symmetric TI systems, such as (i) a highly pressure-tunable giant Rashba spin splitting, (ii) an unusual pressure-induced quantum phase transition, and more importantly (iii) the formation of strikingly different Dirac fermion states at opposite sides of the surface. Theoretical work of Kane and Mele [1] has marked a milestone in our understanding of insulating phase of matter. In their seminal work, they showed that the electronic states of solids with bulk band gap energy could be classified according to their topological order, characterizable by quantum metrics known as topological indices. When nontrivially ordered, they predicted that such topological insulators (TI s) should exhibit gapless states at their boundaries, e.g. at their edges or surface. The succeeding theoretical and experimental works [2 6] have confirmed this prediction by discovering a number of two and three dimensional TI s, e.g., HgTe, Bi 2 Se 3, Bi 2 Te 3, Sb 2 Te 3, TlBiTe 2, and TlBiSe 2. common feature among all these materials is the presence of heavy elements with reasonably large atomic spin-orbit interaction (SOI). This is because the bulk band gap in TI s should be due to SOI [7]. Such a requirement has significantly restricted the number of TI s discovered so far. s a specific limitation, all TI s reported up to date are structurally inversion (I) symmetric and, hence, the Kramer s degeneracy is protected at each k-point inside their Brilloun zone (BZ) by the combination of the time-reversal (T) symmetry and I-symmetry. The former connects the states ψ k, and ψ k,, while the latter enforces the degeneracy between ψ k, and ψ k,. Breaking I symmetry lifts the latter constraint and, hence, lets the energy bands be 2

3 spin-split at generic k-points. Rashba spin splitting (RSS) [8] well exemplifies this situation, as described by H R = p2 +ν[e (s p)] where e is the direction of the potential gradient 2m which breaks I-symmetry, s and p are the spin and momentum operators, respectively. This interaction leads to several unique phenomena, such as the spin Hall effect [9], spin Galvanic effect [1], and magneto-electric effect [11]. Furthermore, once the superconductivity occurs in the Rashba system, unusual features such as the mixtures of the singlet and triplet pairings, large upper critical field beyond the Pauli limit [12, 13], and topological superconductors with Majorana edge channels could appear[14]. Thus, finding a noncentrosymmetric TI is expected to spark a great deal of interest as it allows us to explore the interplay of spin splitting and non-trivial topology of the electronic bands, of particular importance for realization of multifunctional TI-based systems. The purpose of this work is to propose a layered polar compound, BiTeI, as the first noncentrsymmetric TI candidate. Backed by our earlier band structure calculations [15, 16], the angle resolved photoemission spectroscopy(rpes) measurements[15, 17] have revealed thatthebulkconductionandvalencestatesinbiteiaresubjecttoagiantrssoftheorderof several hundred mev, lying among the highest reported so far. In this work we further show from first principles that by applying a reasonable pressure the material turns into a TI with many interesting features, such as a nearly double enhancement in RSS accompanied with an intriguing metallic behavior at quantum phase transition. It is also demonstrated that unlike the I-symmetric TI s, the gapless Dirac states in TI phase of BiTeI have completely different shapes at Te-ended and I-ended sides of the material. BiTeI belongs to the trigonal space group of P3m1. s shown in Figs. 1-(a) and 1- (b), the crystal structure of BiTeI has a noncentrosymmetic layered structure along its crystallographic c-axis with three atoms in one unit cell. Within each unit, a Bi atom is sandwiched between one Te and one I, forming a triple layer. Due to the strong covalency and ionicity of Bi-Te and Bi-I bonds, respectively, the bulk crystal intrinsically possesses a polar axis along the z-direction. Despite the strong chemical bonding within each triple layer, the adjacent triple layers are weakly coupled via van-der Waals interaction. From our previous calculations [16], we know that around the Fermi level E F, all the bands are essentially p-type, with conduction bands dominated by Bi-6p and valence bands composed of Te-5p and I-5p states. Moreover, due to the negative crystal field splitting (CFS) of the valence bands and positive CFS of conduction bands near E F, in the absence of SOI the 3

4 top valence bands (TVB s) and bottom conduction bands (BCB s) both become p z type (to avoid any confusion, hereafter they are referred to as p z and pb z, respectively). These features make the electronic structure of BiTeI very much similar to that of the well known TI systems Bi 2 Te 3 and Bi 2 Se 3 [3]. However, here due to the absence of I-symmetry, it s not possible to assign a distinct even or odd parity to each band. It is also worth noting that in the case of BiTeI, the minimum energy gap E G is not at the Birllouin center Γ but at the hexagonal face center, point, where k x = k y = and k z = π/c, as shown in Fig. 1-(c). The latter difference is however unimportant, as the points Γ and both obey the same symmetry operations, i.e. C 3v. Introducing SOI, both spin and orbital mixings are allowed. Consequently, p z (p B z ) transforms to p,± 1 ( 2 pb,± 1 ), thereby getting 2 energetically repelled upward (downward). This accordingly closes the band gap from 1.2 ev down to.286 ev and induces a giant bulk RSS among these two sets of bands around point (see discussion in Ref. [16]). Despite such a huge reduction in E G, BiTeI remains a trivial insulator as E G still originates from atomic orbital hybridization between Bi and its neighboring Te and I atoms. The respective band diagram is shown in Fig. 1-(d). Our strategy to turn BiTeI into a TI is to modify its chemical bonds by applying an external pressure P. s schematically shown in Figs. 1-(d), 1-(e) and 1-(f), through this modification we can effectively control both CFS and SOI such that at a critical pressure P c, p,± 1 and 2 pb,± 1 become degenerate, whereas at higher pressures their energy or- 2 dering is reversed thereby forming an inverted band gap. Controlling CFS by P is rather easy to understand, because any change in Bi-Te and Bi-I bonds leads to a change in the energy splitting of p,b z and p,b x,y states. For example, our non-relativistic band structure calculations reveal that at P c, the CFS of TVB s is so enhanced that, E G is reduced by 2 mev (see the Supplementary Fig. S1). ny band gap narrowing associated with CFS modification can be further enhanced through a subsequent enhancement of RSS of p,± 1 2 and p B,± 1, states. s described in detail in Ref. [16], this is due to the fact that these two 2 states are symmetrically of the same character and hence can very effectively couple with each other through a Rashba-type hamiltonian if they are energetically close to each other. In other words, the closer they are to each other, the larger RSS would be achieved. To elucidate this mechanism, we show in Figs. 2-(a), 2-(b) and 2-(c) the electronic band dispersions of TVB s and BCB s along the high symmetry direction H L of BiTeI as hydrostatically compressed by V/V = 1, V/V =.89 and V/V =.86, where 4

5 V corresponds to the lattice volume at ambient pressure P ambient. s shown, at P ambient (V/V = 1) a comparable giant RSS can be seen for both sets of bands with an E G of 286 mev. The corresponding Rashba energy E R, defined as the energy difference between the conduction band minimum (CBM) and the conduction band crossing point, is nearly 11 mev, in perfect agreement with that observed by RPES measurements [15]. Compressing the volume down to V/V =.89, E R monotonically increases until it reaches 2 mev, astonishingly about two times larger than that at P ambient, as shown in Fig. 2-(b) (for a detailed comparison see the Supplementary Fig. S2, also). t this point, the system reaches its quantum critical point, represented by a full band gap closing along the H directions. It is worth noting that such a quantum phase transition in BiTeI differs from that in usual centrosymmetic TI s, as there it is mediated through a band gap closing at a single high symmetry k-point, e.g. Γ point [18, 19], whereas in BiTeI as will be shown shortly due to the spin splitting the band gap is closed at 6 k-points, all along H directions and two by two paired by (T) symmetry. Thus, they are describable by Dirac Hamiltonians. Further increasing P, E R starts decreasing and an inverted band gap emerges between TVB s and BCB s. thorough analysis of these bands reveals a clear change in their atomic orbital characteristics for V/V.89 such that Bi-6p orbitals now contribute much significantly to TVB s whereas the BCB s become strongly dominated by Te-5p and I-5p states, a clear indication that the system is now in TI phase (see the Supplementary Fig. S3). t this point it is worth explaining (i) as to why quantum criticality appears only at a certain P c but not for example for a range of pressures as discussed before [2, 21] and (ii) why it is associated with a gapless state along a specific direction. Grouptheory is the key to answer these questions. s already mentioned, BiTeI belongs to C 3v symmetry consisting of a three-fold rotationc 3 along z-direction and three mirror operations M: y y where y is along H directions. For spin 1/2 electrons, C 3 and M can be represented as e iσzπ/3 and iσ y, respectively, where σ x,y,z are Pauli matrices for spin degrees of freedom. dditionally T operator can be defined as iσ y K, where K is complex conjugation. We can then construct a two band Hamiltonian H c (k) for the BCB s invariant under C 3, M and T. Up to cubic terms of k it turns out to be: H c (k) = k2 x+ky 2 + (kz π/c)2 +ν 2m 2m k,c (k x σ y k y σ x )+λ c (3kx k 2 y)k 2 y σ z, where,c,c m,c and m,c are the in-plane and out-of-plane effective masses of BCB s and ν k,c = ν c (1+ α c k 2 ). Note that in a similar manner, one can construct H v (k) for TVB s. The third term in H c (k) is obviously the Rashba term allowing a cylindrical spin splitting within k x,y plane. 5

6 The fourthterm, hereafter referred to as H w (k), acts as a warping term, trigonally distorting the energy bands. Due to H w (k), near CBM [and similarly near valance band maximum (VBM) ], the outer and inner branches of the Rashba-split conduction (and valence) bands first merge together at k-points along L directions and then form six energy pockets evenly centered along each of three H directions [see Fig. 2-(e))]. Exactly at CBM (and VBM), these six pockets reduce to six points. This accordingly explains why band touching between TVB s and BCB s occurs along H directions at P c. The effect of pressure is to enhance λ for P P c such that at the band touching point one can clearly see a rather large gap as large as 4 mev along L directions where H w contribution is zero. Such a warping effect and its enhancement at quantum critical point can be well understood by comparing Figs. 2-(d), 2(e) and 2-(f), where the isocontours of energy for an arbitrary E F fixed at 2 mev above the CBM are shown at different pressures. s can be seen, at P c the inner and outer branches of Rashba-split conduction bands are just about to form the six energy pockets, whereas away from P c they form two distinct rings among which the outer one appears to be more significantly distorted by trigonal warping (For further comparison, see supplementary Fig. S4, also). Let us now address the first question, that is, why the gapless state in BiTeI can be realized only at a certain P c but not for a range of pressures. Generally, the topological phase transition in time-reversal invariant noncentrosymmetric systems can be described by using a two band Hamiltonian H 2 2 (k,p) = 3 i= f i(k,p)τ i where τ 1,2,3 are the Pauli matrices and τ is the unit matrix. The real functions f,1,2,3 depend on the three momenta k = (k x,k y,k z ) and pressure P. The topological phase transition through an accidental band touching occurs if and only if the three conditions of f 1,2,3 (k,p) = are satisfied simultaneously in the (k, P) space. ccording to the recent work by Murakami [2, 21], the band touching points, in general, form a curve in the (k, P) space because the three conditions f 1,2,3 (k,p) = cannot uniquely specify the four parameters (k, P). Therefore if the system is free of additional constraints other than the time-reversal symmetry, a gapless metallic phase is expected to appear in a finite range of P (P c1,p c2 ) between the two critical pressures P c1 and P c2. The occurrence of the single critical pressure P c in BiTeI is traced back to the fact that the band touching occurs along a particular direction in Brillouin zone on which the Hamiltonian has an additional symmetry constraint. long the H line, e.g., (k x,k z ) = (,π/c), the system is invariant under the combined operation Ω TM 6

7 of the T and M symmetries. For T = iσ y K and M = iσ y, Ω is given by K, which imposes the following reality conditions: ΩH 2 2 (k y,p)ω 1 = H2 2 (k y,p) = H 2 2 (k y,p). Because of this reality condition, f 2 (k y,p) = at all points along the H direction. Therefore the band touching can be achieved when the two conditions f 1,3 (k y,p) = are satisfied in the (k y,p) space. Since the number of conditions to be satisfied is the same as the number of parameters, a gapless phase appears only at a single critical point (k y,c,p c ). Having demonstrated the process of topological phase transition in bulk BiTeI, we next show in Fig. 3 the band structures corresponding to I- and Te-terminated sides of BiTeI. While the surface states are fully gaped at P ambient, a gapless state appears for the both sides atp c. thigherpressures, asshownforthecaseofv/v =.86,gaplesssurfacestatesappear within the bulk band gap. clear indication that BiTeI has now become a TI. Interestingly, theshapeofthediracsurfacestatesatthete-endedsideofbiteicompletely differfromthat at the I-ended one. While for the former the Dirac point is deeply buried inside the energy valley formed by the Rashba-split TVB s (resembling the Dirac surface states in Bi 2 Te 3 ), on the other side the Dirac point is energetically well above the bulk CBM. We expect this to be a characteristic feature for all noncentrosymmetric TI candidates making them distinguishable from I-symmetric TI systems. s a consequence, in a noncentrosymmetric TI, the electrons are fractionalized into nonequivalent halves on top and bottom surfaces. This would lead to some novel features and new spintronics functions. s shown in Fig. 3-(g) and 3-(h), the surface Dirac fermion has the similar spin polarization pattern at the top and bottom surfaces in sharp contrast to the centrosymmetric TI. The Dirac point traverses across the bulk band gap on going from the top to the bottom surfaces, and always crosses E F on the side surface as long as E F is within the bulk gap. Therefore, if one applies a magnetic field or dopes magnetic impurities, an insulating stripe is expected to appear on the side surface where E F lies within the gap of the surface Dirac fermion. lso the giant spin Galvanic effect is expected since the current-spin relation on top and bottom surfaces is the same. When the hybridization between the Dirac fermions at top and bottom surfaces occurs, the gap opens along the one-dimensional (nearly) circle in momentum space and the diverging density of states results. This leads to the enhanced electron correlation effect and consequent excitonic instability. These are just a few examples of the novel phenomena expected in the noncentrosymmetric TI. Finally let us briefly discuss on the extent of pressures required for topological phase 7

8 transition. Performing two sets of volume optimization calculations using the local density approximation (LD) and generalized gradient approximation (GG) and then fitting the respective free energies to the Murnaghan equation of state [22], we estimate the upper and lower limits ofbulkmodulus B ofbiteitobe 21.9GPaand 8.9GPa. Therespective LD and GG values of bulk modulus pressure derivative B are similarly found to be 7.7 and 7.8 (see methods for details). s mentioned above, our calculations indicate that at P c, [ V is compressed by 11%. Using the Murnaghan equation of state P(V) = B (V ) B 1], B V P c is expected to be in the range of 1.7 GPa to 4.1 GPa. Considering the fact that this range of pressure is rather easily affordable in laboratory, we hope this work could interest experimentalists in this field to realize and probe such an intriguing topological insulating phase in BiTeI. In conclusion, using the first-principles calculations we showed that BiTeI could turn into TI phase under a reasonable pressure. Therefore it was proposed as the first noncentrosymmetic TI candidate having many unique features, including an enhanced bulk Rashba splitting accompanied with strikingly different topological surface states on the bottom and top sides of the surface. cknowledgment This research is granted by the Japan Society for the Promotion of Science (JSPS) through the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), initiated by the council for Science and Technology Policy (CSTP). 8

9 Methods To simulate the effect of pressure, we optimized the structure of BiTeI crystal at various volumes ranging from V/V = 1 to V/V =.84, where V denotes the volume of BiTeI unitcell at ambient pressure (a = Å and c = Å). For a given volume, both the atomic positions and crystal s shape were allowed to be fully optimized until the magnitude of force on all ions became less than.5 ev/å. ll the structural optimization calculations were performed using both the LD and GG-PBE functionals as implemented in the VSP program [23, 24]. The corresponding Brillouin zone was sampled by a k-mesh. The respective upper and lower limits of Bulk modulus B was estimated by fitting the LD and GG-PBE free energies E(V) to the Murnaghan equation of state [22] [ ] E(V) = E + B V (V /V) B +1 B V, where B B 1 B 1 B is the bulk modulus pressure derivative (see supplementary Fig. S5). To relate the volume changes to pressure, we then used the [ equationp(v) = B (V ) B 1]. Within the same level of GG-PBE theory, the electronic B V structures of the optimized structures were calculated using the augmented plane wave plus atomic orbitals (PW-LO) method as implemented in WIEN2K program [25]. For this calculations, the muffin tin radii were set to R MT = 2.5 bohr for all the atoms and the maximum modulus of the reciprocal vectors K max was chosen such that R MT K max = 7.. To calculate the surface band structure, at each pressure a tight binding supercell Hamiltonian was constructed by downfolding the PW-LO Hamiltonian into an effective low-energy model using Maximally localized Wannier functions [26 28]. [1] Kane, C. L. & Mele E. J., Z 2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, (25). [2] König, M. et al., Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 318, (27). [3] Zhang, H.et al., Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface. Nature Phys. 5, (29). [4] Xia, Y. et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, (29). [5] Chen, Y. L., Single Dirac Cone Topological Surface State and Unusual Thermoelectric Prop- 9

10 erty of Compounds from a New Topological Insulator Family. Phys. Rev. Lett. 15, (21). [6] Liu, C. et al., Model Hamiltonian for topological insulators. Phys. Rev. B 82, (21). [7] Fu, L. C.& Kane, L., Topological insulators with inversion symmetry. Phys. Rev. B 76, 4532 (27). [8] Rashba, E. I., Properties of semiconductors with an extreme loop, 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Slid State 2, (196). [9] Sinova, J. et al., Universal Intrinsic Spin Hall Effect. Phys. Rev. Lett. 92, (24). [1] Ganichev, S. D. et al., Spin-galvanic effect. Nature 417, (22). [11] Chalaev, O. & Loss, D., Spin-Hall conductivity due to Rashba spin-orbit interaction in disordered systems. Phys. Rev. B 71, (25). [12] Bauer, E. et al., Heavy Fermion Superconductivity and Magnetic Order in Noncentrosymmetric CePt 3 Si. Phys. Rev. Lett. 92, 273 (24). [13] Frigeri, P.. et al., Superconductivity without Inversion Symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 971 (24). [14] Tanaka, Y., Yokoyama, T., Balatsky,. V. & Nagaosa, N., Theory of topological spin current in noncentrosymmetric superconductors. Phys. Rev. B 79, 655 (29). [15] Ishizaka, K. et al., Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater. 1, (211). [16] Bahramy, M. S., rita, R. & Nagaosa, N., Origin of giant bulk Rashba splitting: pplication to BiTeI. Phys. Rev. B 84, 4122(R) (211). [17] Wray L.. et al., Electron dynamics in topological insulator based semiconductormetal interfaces (topological p-n interface based on Bi 2 Se 3 class). preprint at < (211). [18] Xu, S. et al., Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator. Science 332, (211). [19] Sato, T. et al., Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nature Phys. doi:1.138/nphys258 [2] Murakami, S., Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (27). 1

11 [21] Murakami, S. & Kuga, S., Universal phase diagrams for the quantum spin Hall systems. Phys. Rev. B 78, (28). [22] Murnaghan, F. D., The Compressibility of Media under Extreme Pressures. Proc. Natl. cad. Sci. US 3, (1944). [23] Kresse, G. & Furthmller, J., fficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, (1996). [24] Kresse, G. et al., Vienna b initio Software Packages (VSP); available at, [25] Blaha, P. et al., WIEN2K package; available at, [26] Souza, I., et al., Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 3519 (21). [27] Mostofi,.., Yates, J. R., Lee, Y-S., Vanderbilt, D. & Marzari, N. Wannier9: tool for obtaining maximally localized Wannier functions. Comp. Phys. Commun. 178, (28). [28] Kuneš, J. et al., WIEN2WNNIER: From linearized augmented plane waves to maximally localized Wannier functions. Comp. Phys. Commun. 181, (21). 11

12 Figure captions Fig. 1: Crystal structure, Brillouin zone and schematic diagram of band splitting. (a) Crystal structure of BiTeI. triple layer with Te-Bi-I is indicated by the purple square. (b) The relative in-plane positions of Bi, Te and I as seen along the z axis. (c) The corresponding Brillouin zone. The pressure-induced evolution of BiTeI from a trivial insulator to a topological insulator is schematically drawn in (d-f). s shown in (d) below the critical pressure P c, the bulk band gap E G is trivial due to the chemical bonding. t P c, as depicted in (e) a gapless state is realized. Eventually, for pressures beyond P c, the band diagram in (f) shows a band inversion around E F, characterizing topological insulating phase in BiTeI. Here ±1/2 and ±3/2 indicate the z-component of the total angular momentum. Fig. 2: Effect of pressure on electronic dispersions of valence and conduction band. Electronic dispersions of Rashba-split bottom conduction bands (BCB s) and top valence bands (TVB s) in BiTeI as hydrostatically compressed by (a) V/V = 1, (b) V/V =.89 and (c) V/V =.86. Corresponding energy spectra of BCB s mapped into the plane (k x,k y,k z = π/c) of BiTeI at, V/V = 1, V/V =.89 and V/V =.86 are shown in (d), (e) and (f), respectively. Note that the upper limit of energy (indicated in red color) is chosen such that it corresponds to the Rashba energy E R of BCB s. The dashed lines indicate the isocontours of energy for an E w fixed at 2 mev above the corresponding CBM of each case. rrows denote the spin directions. Fig. 3: Surface states. Electronic band dispersions near the Fermi level as obtained for the I-terminated side (top panels) and Te-terminated side (bottom panels) of BiTeI, hydrostatically compressed by (a-b) V/V = 1, (c-d) V/V =.89 and (e-f) V/V =.86. The Fermi surfaces corresponding to (e) and (f) are shown in (g) and (h), respectively. s depicted schematically in the insets, for an arbitrary E F located at the middle of bulk gap, the Fermi surface at I-terminated side has a quite different shape from that of Te-terminated side, but interestingly for both sides, similar spin textures are seen. 12

13 Figure 1. y (a) (b) Bi Te I I X Bi (c) Te z x y (d) p B,± 3 2 (e) (f) B=Bi px,y B px,y,z B pz B p B,± 1 2 p B,± 1 2 p B px,y,z B x,y pz B p B,± 3 2 p B,± 1 2 p B,± 1 2 k z L Γ M k x px,y B px,y,z B H K k y p B,± 3 2 p B,± 1 2 p B z p,± 1 2 =Te,I p x,y,z pz px,y p,± 1 2 p,± 3 2 p x,y,z pz px,y p,± 1 2 p,± 3 2 p x,y,z pz px,y p B,± 1 2 p,± 3 2 p,± 1 2 p,± 1 2 p,± 1 2 P <P c P=P c P >P c Fig. 1: Crystal structure, Brillouin zone and schematic diagram of band splitting. (a) Crystal structure of BiTeI. triple layer with Te-Bi-I is indicated by the purple square. (b) The relative in-plane positions of Bi, Te and I as seen along the z axis. (c) The corresponding Brillouin zone. The pressure-induced evolution of BiTeI from a trivial insulator to a topological insulator is schematically drawn in (d-f). s shown in (d) below the critical pressure P c, the bulk band gap E G is trivial due to the chemical bonding. t P c, as depicted in (e) a gapless state is realized. Eventually, for pressures beyond P c, the band diagram in (f) shows a band inversion around E F, characterizing topological insulating phase in BiTeI. Here ±1/2 and ±3/2 indicate the z-component of the total angular momentum. 13

14 Figure 2..4 H L H L H L (a) (b) (c) E w E R k (Å 1 ) 11 _ L L.1 H.1.1 k (Å 1 ) 2 _.1 H L L (d) (e) (f).1.1 k (Å 1 ) 14 _.1 H L L ky (Å -1 ) ky (Å -1 ) ky (Å -1 ) -.5 _ -.1 H k x (Å -1 ) -.5 _ -.1 H k x (Å -1 ) -.5 _ -.1 H k x (Å -1 ) Fig. 2: Effect of pressure on electronic dispersions of valence and conduction band. Electronic dispersions of Rashba-split bottom conduction bands (BCB s) and top valence bands (TVB s) in BiTeI as hydrostatically compressed by (a) V/V = 1, (b) V/V =.89 and (c) V/V =.86. Corresponding energy spectra of BCB s mapped into the plane (k x,k y,k z = π/c) of BiTeI at, V/V = 1, V/V =.89 and V/V =.86 are shown in (d), (e) and (f), respectively. Note that the upper limit of energy (indicated in red color) is chosen such that it corresponds to the Rashba energy E R of BCB s. The dashed lines indicate the isocontours of energy for an E w fixed at 2 mev above the corresponding CBM of each case. rrows denote the spin directions. 14

15 Figure 3. M Γ M M Γ M M Γ M (a).2.2 (c).2.2 (e).2 E k y (Å 1 ) F.5 k x (Å 1 ) (g) k (Å 1 ).1.1 k (Å 1 ).1.1 k (Å 1 ) (b) (d) (f) E F k y (Å 1 ).5 k x (Å 1 ) k (Å 1 ) k (Å 1 ) k (Å 1 ) (h) -.5 Fig. 3: Surface states. Electronic band dispersions near the Fermi level as obtained for the I-terminated side (top panels) and Te-terminated side (bottom panels) of BiTeI, hydrostatically compressed by (a-b) V/V = 1, (c-d) V/V =.89 and (e-f) V/V =.86. The Fermi surfaces corresponding to (e) and (f) are shown in (g) and (h), respectively. s depicted schematically in the insets, for an arbitrary E F located at the middle of bulk gap, the Fermi surface at I-terminated side has a quite different shape from that of Te-terminated side, but interestingly for both sides, similar spin textures are seen. 15

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010 Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface arxiv:1007.5111v1 [cond-mat.mes-hall] 29 Jul 2010 Su-Yang

More information

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles Influence of tetragonal distortion on the topological electronic structure of the half-heusler compound LaPtBi from first principles X. M. Zhang, 1,3 W. H. Wang, 1, a) E. K. Liu, 1 G. D. Liu, 3 Z. Y. Liu,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Su-Yang Xu, Chang Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski,

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Weyl semimetals and topological phase transitions

Weyl semimetals and topological phase transitions Weyl semimetals and topological phase transitions Shuichi Murakami 1 Department of Physics, Tokyo Institute of Technology 2 TIES, Tokyo Institute of Technology 3 CREST, JST Collaborators: R. Okugawa (Tokyo

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator SLAC-PUB-14357 Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator Y. L. Chen 1,2,3, J.-H. Chu 1,2, J. G. Analytis 1,2, Z. K. Liu 1,2, K. Igarashi 4, H.-H. Kuo 1,2, X. L.

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Supporting Information

Supporting Information Supporting Information Yi et al..73/pnas.55728 SI Text Study of k z Dispersion Effect on Anisotropy of Fermi Surface Topology. In angle-resolved photoemission spectroscopy (ARPES), the electronic structure

More information

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Z. F. Wang 1,2,3+, Huimin Zhang 2,4+, Defa Liu 5, Chong Liu 2, Chenjia Tang 2, Canli Song 2, Yong Zhong 2, Junping Peng

More information

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) PART A: ARPES & Application Yulin Chen Oxford University / Tsinghua University www.arpes.org.uk

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

3D topological insulators and half- Heusler compounds

3D topological insulators and half- Heusler compounds 3D topological insulators and half- Heusler compounds Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of California, Santa Barbara

More information

Phonon-induced topological insulating phases in. group IV-VI semiconductors

Phonon-induced topological insulating phases in. group IV-VI semiconductors Phonon-induced topological insulating phases in group IV-VI semiconductors Jinwoong Kim and Seung-Hoon Jhi,* Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic

More information

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012 Topological protection of bound states against the hybridization Bohm-Jung Yang, 1 Mohammad Saeed Bahramy, 1 and Naoto Nagaosa 1,2,3 1 Correlated Electron Research Group (CERG), RIKEN-ASI, Wako, Saitama

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Half-Heusler ternary compounds as new multifunctional platforms for topological quantum phenomena H. Lin, L.A. Wray, Y. Xia, S.-Y. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z.

More information

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Moscow Institute of Electronics and Mathematics, Higher School of Economics Collaborators Alexander

More information

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2010

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2010 A new platform for topological quantum phenomena: Topological Insulator states in thermoelectric Heusler-related ternary compounds arxiv:1003.0155v1 [cond-mat.mes-hall] 28 Feb 2010 H. Lin, 1,2 L.A. Wray,

More information

arxiv: v3 [cond-mat.mtrl-sci] 4 Mar 2017

arxiv: v3 [cond-mat.mtrl-sci] 4 Mar 2017 Transition between strong and weak topological insulator in ZrTe 5 and HfTe 5 Zongjian Fan 1, Qi-Feng Liang 2, Y. B. Chen 3, Shu-Hua Yao 1, and Jian Zhou 1,4,* arxiv:1611.04263v3 [cond-mat.mtrl-sci] 4

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

This article is available at IRis:

This article is available at IRis: Author(s) D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dill, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan This article is available

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

arxiv: v1 [cond-mat.mtrl-sci] 9 Mar 2013

arxiv: v1 [cond-mat.mtrl-sci] 9 Mar 2013 Stacked topological insulator built from bismuth-based graphene sheet analogues Bertold Rasche 1, Anna Isaeva 1, Michael Ruck 1,2, Sergey Borisenko 3, Volodymyr Zabolotnyy 3, Bernd Büchner 3,4, Klaus Koepernik

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

arxiv: v1 [cond-mat.mes-hall] 19 Aug 2011

arxiv: v1 [cond-mat.mes-hall] 19 Aug 2011 Quantum Anomalous Hall Effect in Magnetic Topological Insulator GdBiTe 3 arxiv:1108.4857v1 [cond-mat.mes-hall] 19 Aug 2011 Hai-Jun Zhang, Xiao Zhang & Shou-Cheng Zhang 1 Department of Physics, McCullough

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/9/eaat8355/dc1 Supplementary Materials for Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi 2 O 2 Se

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Puckering and spin orbit interaction in nano-slabs

Puckering and spin orbit interaction in nano-slabs Electronic structure of monolayers of group V atoms: Puckering and spin orbit interaction in nano-slabs Dat T. Do* and Subhendra D. Mahanti* Department of Physics and Astronomy, Michigan State University,

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016 Journal of the Physical Society of Japan LETTERS Entanglement Chern Number of the ane Mele Model with Ferromagnetism Hiromu Araki, Toshikaze ariyado,, Takahiro Fukui 3, and Yasuhiro Hatsugai, Graduate

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers 1 Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers Sung Hwan Kim, 1, 2 Kyung-Hwan Jin, 2 Joonbum Park, 2 Jun Sung Kim, 2 Seung-Hoon Jhi,

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

arxiv: v2 [cond-mat.mes-hall] 15 Feb 2015

arxiv: v2 [cond-mat.mes-hall] 15 Feb 2015 Topological Insulators, Topological Crystalline Insulators, and Topological Kondo Insulators (Review Article) M. Zahid Hasan, 1,2 Su-Yang Xu, 1 and Madhab Neupane 1 1 Joseph Henry Laboratories: Department

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

E E F (ev) (a) (a) (b) (c) (d) (A ) (A ) M

E E F (ev) (a) (a) (b) (c) (d) (A ) (A ) M Pis'ma v ZhET, vol. 96, iss. 12, pp. 870 { 874 c 2012 December 25 New topological surface state in layered topological insulators: unoccupied Dirac cone S. V. Eremeev +1), I. V. Silkin, T. V. Menshchikova,

More information

Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity

Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity Supplementary Information for Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity K. Okazaki 1, Y. Ito 1, Y. Ota 1, Y. Kotani 1, T. Shimojima 1,

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Topological states of matter in correlated electron systems

Topological states of matter in correlated electron systems Seminar @ Tsinghua, Dec.5/2012 Topological states of matter in correlated electron systems Qiang-Hua Wang National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China Collaborators:Dunghai

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y)

Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y) Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y) Z. K. Liu 1,2, L. X. Yang 3, S. C. Wu 4, C. Shekhar 4, J. Jiang 1,5, H. F. Yang 6, Y. Zhang 5, S. K. Mo 5,

More information

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 663 668 Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission

More information

NOT FOR DISTRIBUTION REVIEW COPY. Na 2 IrO 3 as a molecular orbital crystal

NOT FOR DISTRIBUTION REVIEW COPY. Na 2 IrO 3 as a molecular orbital crystal Na 2 IrO 3 as a molecular orbital crystal I. I. Mazin, 1 Harald O. Jeschke, 2 Kateryna Foyevtsova, 2 Roser Valentí, 2 and D. I. Khomskii 3 1 Code 6393, Naval Research Laboratory, Washington, DC 237, USA

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Classification of topological quantum matter with reflection symmetries

Classification of topological quantum matter with reflection symmetries Classification of topological quantum matter with reflection symmetries Andreas P. Schnyder Max Planck Institute for Solid State Research, Stuttgart June 14th, 2016 SPICE Workshop on New Paradigms in Dirac-Weyl

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Non-centrosymmetric superconductivity

Non-centrosymmetric superconductivity Non-centrosymmetric superconductivity Huiqiu Yuan ( 袁辉球 ) Department of Physics, Zhejiang University 普陀 @ 拓扑, 2011.5.20-21 OUTLINE Introduction Mixture of superconducting pairing states in weak coupling

More information

Dirac Point Degenerate with Massive Bands at a Topological Quantum Critical Point

Dirac Point Degenerate with Massive Bands at a Topological Quantum Critical Point Dirac Point Degenerate with Massive Bands at a Topological Quantum Critical Point J. C. Smith, S. Banerjee, V. Pardo, and and W. E. Pickett Department of Physics, University of California Davis (Dated:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Methods Materials Synthesis The In 4 Se 3-δ crystal ingots were grown by the Bridgeman method. The In and Se elements were placed in an evacuated quartz ampoule with an excess of In (5-10

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

arxiv: v2 [cond-mat.mtrl-sci] 5 Oct 2018

arxiv: v2 [cond-mat.mtrl-sci] 5 Oct 2018 Bulk band inversion and surface Dirac cones in LaSb and LaBi : Prediction of a new topological heterostructure Urmimala Dey 1,*, Monodeep Chakraborty 1, A. Taraphder 1,2,3, and Sumanta Tewari 4 arxiv:1712.02495v2

More information

Observation of Unconventional Quantum Spin Textures in Topologically Ordered Materials

Observation of Unconventional Quantum Spin Textures in Topologically Ordered Materials www.sciencemag.org/cgi/content/full/323/5916/919/dc1 Supporting Online aterial for Observation of Unconventional Quantum Spin Textures in Topologically Ordered aterials D. Hsieh, Y. Xia, L. Wray, D. Qian,

More information

arxiv: v1 [cond-mat.mtrl-sci] 20 Jan 2015

arxiv: v1 [cond-mat.mtrl-sci] 20 Jan 2015 Quantum Spin Hall Effect in IV-VI Topological Crystalline Insulators S. Safaei, 1 M. Galicka, 1 P. Kacman, 1,2 and R. Buczko 1, 1 Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46,

More information

Symmetry Properties of Superconductors

Symmetry Properties of Superconductors Australian Journal of Basic and Applied Sciences, 6(3): 81-86, 2012 ISSN 1991-8178 Symmetry Properties of Superconductors Ekpekpo, A. Department of Physics, Delta State University, Abraka, Nigeria. Abstract:

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

Band engineering of Dirac surface states in topological insulators-based van. der Waals heterostructures

Band engineering of Dirac surface states in topological insulators-based van. der Waals heterostructures Band engineering of Dirac surface states in topological insulators-based van der Waals heterostructures Cui-Zu Chang, 1, 2 Peizhe Tang, 1 Xiao Feng, 1, 2 Kang Li, 2 Xu-Cun Ma, 1 Wenhui Duan, 1,3 Ke He,

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting

Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting Sándor Bordács, 1 Joseph G. Checkelsky, 1,2 Hiroshi Murakawa, 2 Harold Y. Hwang, 2,3 and Yoshinori

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation Phys50.nb 37 The rhombohedral and hexagonal lattice systems are not fully compatible with point group symmetries. Knowing the point group doesn t uniquely determine the lattice systems. Sometimes we can

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013 Berry phase and the unconventional quantum Hall effect in graphene Jiamin Xue Microelectronic Research Center, The University arxiv:1309.6714v1 [cond-mat.mes-hall] 26 Sep 2013 of Texas at Austin, Austin,

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information