Appendix. A.1 Painlevé-Gullstrand Coordinates for General Spherically Symmetric Metrics

Size: px
Start display at page:

Download "Appendix. A.1 Painlevé-Gullstrand Coordinates for General Spherically Symmetric Metrics"

Transcription

1 Aendix I have been imressed with the urgency of doing. Knowing is not enough; we must aly. Being willing is not enough; we must do. Leonardo da Vinci A. Painlevé-Gullstrand oordinates for General Sherically Symmetric Metrics Beginning from the metric given by Eq. (.94) and following the notations of Ref. [], we search for a new time coordinate (Painlevé-Gullstrand time). The transformation t!.t; R/ @R dr and @R dr ; which transforms the line element (.94) into ds e. M=R/.@=@t/ d e "e M ddr # dr R d./ : M=R (A.) We now imose that the new time coordinate is such that g, which imlies that Sringer International Publishing Switzerland 05 V. Faraoni, osmological and Black Hole Aarent Horizons, Lecture Notes in Physics 907, OI 0.007/

2 94 e M=R : (A.) Then, the metric comonent g 0 in the new coordinates is r g 0 e R (A.3) and the line element assumes the form (.95). A. Kodama Vector in FLRW Sace Here we comute the comonents of the Kodama vector in FLRW sace in seudo- Painlevé-Gullstrand and in comoving coordinates. A.. Pseudo-Painlevé-Gullstrand oordinates In these coordinates the -metric h ab of Eq. (.7) and its inverse are given by.h ab / 0 0 h HR.H R kr =a / kr =a HR kr =a HR kr =a kr =a A ; HR A H R kr =a by decomosing the metric (3.5). The volume form on the normal -sace is (A.4) (A.5) ab jhj.dt/ a ^.dr/ b kr =a.ı a0ı b ı a ı b0 / ; (A.6) while ab g ac g bd.ı c0ı d ı c ı d0 / kr =a h a0 h b h a h b0 kr =a :

3 A. Kodama Vector in FLRW Sace 95 The Kodama vector is h a0 K a ab h b h a h b0 r b R kr =a ı b h a0 h h a h 0 kr =a and, therefore, K 0 kr =a H R kr =a H R kr =a kr =a kr =a ; K h 0 h h h 0 kr =a 0: To conclude, we have K kr =a ;0;0;0 (seudo-painlevé-gullstrand coordinates): (A.7) A.. omoving oordinates In comoving coordinates the FLRW line element is ds dt a.t/ kr dr R d./ h ab dx a dx b R d./ ; (A.8) where R a.t/r is the areal radius. The volume form on the -sace.t; r/ has comonents ˇ jhj.dt/ ^.dr/ˇ a ı 0 ıˇ ı ıˇ0 kr while ˇ g gˇı ı a g gˇı ı 0 ı ı ı ı ı0 kr a g 0 gˇ g gˇ0 : kr

4 96 Aendix The comonents of the Kodama vector in comoving coordinates are K ˇrˇR ˇ Parıˇ0 aıˇ a Parh 0 h 0 ah 0 h Parh h 00 ah h 0 kr a ah 0 h Parh h 00 : kr Now, K 0 K a kr ah00 h a kr a kr Parh h 00 Paar kr kr a kr a ; kr a Hr kr ; and the comonents of the Kodama vector are K kr ; Hr kr ;0;0 (comoving coordinates): (A.9) The norm squared of K a is K a K a g 00.K 0 / g.k /. kr / a kr H r. kr / Pa r kr P r =rah I (A.0) it vanishes at the aarent horizon r AH Pa k : (A.) Reference. Nielsen, A.B., Visser, M.: Production and decay of evolving horizons. lass. Quantum Grav. 3, 4637 (006)

5 Index Symbols f.r/ gravity, 05, 5, 8, 83, 87, 88 A advanced time, 7, 8 anti-de Sitter, 08 anti-traed surface, 30 aarent horizon,, 4, 37 40, 47, 49, 50, 53, 59, 63, 64, 66, 69 7, 78, 79, 8 86, 9 96, 98 0, 07, 08, 7, 3 7, 33, 34, 36 38, 4, 45, 49 53, 55 58, 67, 7 76, 80 8, 84, 86 89, 96 aarent horizon tube, 56 areal radius, 5 7, 4, 47, 49, 53, 60, 6, 64, 73, 78, 84, 87, 95, 07, 0,, 8,, 7, 33, 35, 4, 4, 47 50, 55, 70, 74, 78, 80, 8, 83, 95 areal volume, 7, 95 B binary system,, 35 Boyer-Linquist coordinates, 6, 8 Brans-icke arameter, 68, 69, 7, 74, 75, 80 Brans-icke theory, 38, 68, 69, 88 auchy horizon,, 4, 39, 4 conformal anomaly, 43 conformal factor, 39 4, 43, 45, 46, 57 conformal Killing equation, 39 conformal Killing horizon, 37 conformal Killing vector, 39 conformal time, 40, 53, 55 conformal transformation, 39, 4, 43 45, 57, 76, 77 de Sitter sace,,, 6, 63, 77, 78, 8, 8, 87 9, 98, 0 deviation vector, 6, 7 dominant energy condition, 9 dragging of inertial frames, 7 dynamical horizon,,, 38, 40, 8 E Eddington-Finkelstein coordinates, 8,, 46 effective action, 3, 05 energy suly vector, 96 ergoshere, 7 event horizon,,, 5, 6, 8, 9,, 7, 33, 35 39, 43, 44, 49, 6, 70, 73 79, 8, 85, 88 9, 94, 99 0, 08,, 4 6, 4, 56, 68, 85 extremal horizon,, 4, 7, 50, 9, 5,, 4 6 F Fisher sacetime, 46 fluid-gravity duality, 08 future aarent horizon, 37 future inner traing horizon, 39 future null infinity,, 35, 36 future outer traing horizon, 39 Sringer International Publishing Switzerland 05 V. Faraoni, osmological and Black Hole Aarent Horizons, Lecture Notes in Physics 907, OI 0.007/

6 98 Index G Gauss-Bonnet gravity, 67, 68 generalized Raychaudhuri equation, 3 geodesic deviation equation, 6 geodesic equation, 5, 6, 8, 40 Gibbons-Hawking entroy, 9 H Hawking radiation,,, 34, 39, 45, 59, 93, 06, 6, 56, 67, 86 Hawking temerature, 43, 93, 4, 43, 45, 89 Hawking-Hayward quasi-local energy,, 47, 50, 68 Ho rava-lifschitz gravity, 38, 86 Horndeski theory, 67, 86, 88 Hubble horizon, 78, 7 Hubble arameter, 9, 60, 6, 63, 07,, 3, 6, 7, 4, 55 hyersherical coordinates, 6, 64, 7, 74, 76, 84 I inflation,, 0, 59, 73, 78, 00, 57 isolated horizon, 40, 46 isotroic radius, 6, 09, 0, 7,, 8 30, 33, 40, 69, 73, 83 J Jebsen-Birkhoff theorem, 68 M marginal surface, 30 marginally outer traed tube, 30 marginally traed surface, 35, 44 marginally traed tube, 40 Misner-Shar-Hernandez mass,, 46, 47, 50, 53, 63, 65, 66, 70, 7, 78, 9, 95, 98, 0, 08, 0,, 7, 34, 4, 45, 67, 68, 88 N naked singularity, 4, 7, 08, 3, 7, 5, 36, 46, 50, 5, 56 58, 7, 75, 76, 8, 86 Nolan gauge, 63 Nolan interior solution, 7 9 normal surface, 9 null curvature condition, 38 null dominant energy condition, 9 null energy condition, 9, 30, 38, 50, 0 P Painlevé-Gullstrand coordinates, 0, 46, 48, 49, 6 65, 67, 68, 70, 87, 90, 93 article creation, 43, 44 article horizon, 70, 7 76, 79, 85, 88, 00 ast inner traing horizon, 83 hantom energy, 9, 06, 3, 87 hantom field, 54 hantom fluid, 8, 00, 6, 7 hantom universe, 77, 6, 7, 3 ositive curvature condition, 8 K Kerr-Schild coordinates,, 3 Kerr-Schild metric,, 3 Kerr-Schild transformation, 57 Killing equation, 36, 43, 44, 89, 90 Killing horizon, 36, 37, 40, 43, 44, 5, 89, 90, 6, 7, 39 Killing vector, 0, 7, 34, 36, 37, 40 44, 46, 5 53, 89 9, 6 Kodama vector, 37, 4, 66, 67, 9, 93, 96, 67, 68, Kretschmann scalar, 7 Kruskal-Szekeres coordinates, 7, 8,, 4, 5, 6 L Lemaître-Tolman-Bondi model, 06, 38, 56, 58 Q quantum gravity, 40, 6, 38 R Raychaudhuri equation, 8, 9 retarded time, 7, 8 Ricci tensor, 4 Riemann tensor, 4 Rindler horizon,, 3, 30, 3 34, 5, 5, 79 Rindler observer, 3, 5 S S-curve, 5, 56, 58, 75, 76, 78, 8, 86, 88 slowly evolving horizon,, 4 sacetime singularity, 5, 6, 6, 0,, 4,, 3, 4, 47, 56, 7, 88

7 Index 99 static limit, 7 strong energy condition, 9, 77 suergravity, 6, 67 suernovae, 3 Synge aroach, 7 U uniform acceleration, 30, 3, 34, 5 Unruh effect, 33, 34 Unruh temerature, 33, 5 untraed surface, 30, 49 T thermodynamics of sacetime, 3, 5, 00 timelike membrane, 40 Tolman-Oenheimer-Volkoff equation, 9 tortoise coordinate, 7, 5 traed surface,, 5, 30 traing horizon,,, 37 39, 44, 45, 50, 70, 83, 88, 95, 05, 56, 58, 68, 88, 89 traing horizon tube, 88 V Vaidya sacetime,, 35, 38, 56 W weak energy condition, 9, 8, 95, 0, 6 white hole, 8, 9,, 37, 39, 74, 86 wormhole, 9, 37, 48, 5

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari This is a PhD level course, designed for second year PhD students in Theoretical High Energy Physics (HEP-TH)

More information

The Apparent Universe

The Apparent Universe The Apparent Universe Alexis HELOU APC - AstroParticule et Cosmologie, Paris, France alexis.helou@apc.univ-paris7.fr 11 th June 2014 Reference This presentation is based on a work by P. Binétruy & A. Helou:

More information

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and Black Hole Physics Basic Concepts and New Developments by Valeri P. Frolov Department of Physics, University of Alberta, Edmonton, Alberta, Canada and Igor D. Nbvikov Theoretical Astrophysics Center, University

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

Bibliography. Introduction to General Relativity and Cosmology Downloaded from

Bibliography. Introduction to General Relativity and Cosmology Downloaded from Bibliography Abbott, B. P. et al. (2016). Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102. Ade, P. A. R. et al. (2015). Planck 2015 results. XIII. Cosmological

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

A Project Report on Mathematica as a Tool for Solving Problems in General Relativity

A Project Report on Mathematica as a Tool for Solving Problems in General Relativity A Project Report on Mathematica as a Tool for Solving Problems in General Relativity by Tathagata Karmakar SB 1312043 under guidance of Dr. Tapobrata Sarkar Department of Physics Indian Institute of Technology,

More information

arxiv: v1 [gr-qc] 9 Nov 2007

arxiv: v1 [gr-qc] 9 Nov 2007 Dynamical surface gravity. arxiv:0711.1445v1 [gr-qc] 9 Nov 2007 1. Introduction Alex B Nielsen 1 and Jong Hyuk Yoon 2 1 Department of Physics and Astronomy, University of Canterbury, Private Bag 4800,

More information

Are naked singularities forbidden by the second law of thermodynamics?

Are naked singularities forbidden by the second law of thermodynamics? Are naked singularities forbidden by the second law of thermodynamics? Sukratu Barve and T. P. Singh Theoretical Astrophysics Group Tata Institute of Fundamental Research Homi Bhabha Road, Bombay 400 005,

More information

Black holes, Holography and Thermodynamics of Gauge Theories

Black holes, Holography and Thermodynamics of Gauge Theories Black holes, Holography and Thermodynamics of Gauge Theories N. Tetradis University of Athens Duality between a five-dimensional AdS-Schwarzschild geometry and a four-dimensional thermalized, strongly

More information

BOUNDARY STRESS TENSORS IN A TIME DEPENDENT SPACETIME

BOUNDARY STRESS TENSORS IN A TIME DEPENDENT SPACETIME BOUNDARY STRESS TENSORS IN A TIME DEPENDENT SPACETIME Hristu Culetu, Ovidius University, Dept.of Physics, B-dul Mamaia 124, 8700 Constanta, Romania, e-mail : hculetu@yahoo.com October 12, 2007 Abstract

More information

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological STATIONARY BLACK HOLES IN A GENERALIZED THREE-DIMENSIONAL THEORY OF GRAVITY Paulo M. Sa Sector de Fsica, Unidade de Ci^encias Exactas e Humanas, Universidade do Algarve, Campus de Gambelas, 8000 Faro,

More information

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution.

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 1 Ver. III. (Feb. 2014), PP 46-52 Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

arxiv: v2 [gr-qc] 4 Mar 2015

arxiv: v2 [gr-qc] 4 Mar 2015 A study of different horizons in inhomogeneous LTB cosmological model Subenoy Chakraborty a Subhajit Saha b Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India. This work

More information

Formation of Higher-dimensional Topological Black Holes

Formation of Higher-dimensional Topological Black Holes Formation of Higher-dimensional Topological Black Holes José Natário (based on arxiv:0906.3216 with Filipe Mena and Paul Tod) CAMGSD, Department of Mathematics Instituto Superior Técnico Talk at Granada,

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

arxiv: v2 [gr-qc] 6 Dec 2014

arxiv: v2 [gr-qc] 6 Dec 2014 Cosmic Matter Flux May Turn Hawking Radiation Off Javad T. Firouzjaee 1,2 1 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran George F R Ellis

More information

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 G. Kunstatter University of Winnipeg Based on PRD90,2014 and CQG-102342.R1, 2016 Collaborators: Hideki Maeda (Hokkai-Gakuen

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU A Superfluid Universe Lecture 1 General relativity and cosmology Kerson Huang MIT & IAS, NTU Lecture 1. General relativity and cosmology Mathematics and physics Big bang Dark energy Dark matter Robertson-Walker

More information

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK)

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK) Introduction to Black Hole Thermodynamics Satoshi Iso (KEK) Plan of the talk [1] Overview of BH thermodynamics causal structure of horizon Hawking radiation stringy picture of BH entropy [2] Hawking radiation

More information

Frame Dragging Anomalies for Rotating Bodies

Frame Dragging Anomalies for Rotating Bodies General Relativity and Gravitation, Vol. 36, No. 5, May 2004 ( C 2004) LETTER Frame Dragging Anomalies for Rotating Bodies Peter Collas 1 and David Klein 2 Received October 7, 2003 Examples of axially

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

arxiv: v1 [gr-qc] 18 Oct 2016

arxiv: v1 [gr-qc] 18 Oct 2016 arxiv:1610.05822v1 [gr-qc] 18 Oct 2016 Foliation dependence of black hole apparent horizons in spherical symmetry Valerio Faraoni, a George F.R. Ellis, b Javad T. Firouzjaee, c,d Alexis Helou, e and Ilia

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu GR Spring School, March 2015, Brandenburg an der Havel 1. Introduction 2. General properties of EMCS-AdS

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Dynamics of the four kinds of Trapping Horizons & Existence of Hawking Radiation

Dynamics of the four kinds of Trapping Horizons & Existence of Hawking Radiation arxiv:1505.07371v1 [gr-qc] 27 May 2015 Dynamics of the four kinds of Trapping Horizons & Existence of Hawking Radiation Alexis Helou 1 AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA,

More information

Naked strong curvature singularities in Szekeres space-times

Naked strong curvature singularities in Szekeres space-times arxiv:gr-qc/9605033v1 17 May 1996 Naked strong curvature singularities in Szekeres space-times Pankaj S. Joshi Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road,

More information

Index. Cambridge University Press A First Course in General Relativity: Second Edition Bernard F. Schutz. Index.

Index. Cambridge University Press A First Course in General Relativity: Second Edition Bernard F. Schutz. Index. accelerated particle, 41 acceleration, 46 48 absolute, 2 of the universe, 351 353 accretion disk, 317 active gravitational mass, 197, 202, 355 adiabatic, 103 affine parameter, 161, 166, 175 angular diameter

More information

Angular momentum and Killing potentials

Angular momentum and Killing potentials Angular momentum and Killing potentials E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 4809 Received 6 April 995; accepted for publication September 995 When the Penrose

More information

entropy Thermodynamics of Horizons from a Dual Quantum System Full Paper Entropy 2007, 9, ISSN c 2007 by MDPI

entropy Thermodynamics of Horizons from a Dual Quantum System Full Paper Entropy 2007, 9, ISSN c 2007 by MDPI Entropy 2007, 9, 100-107 Full Paper entropy ISSN 1099-4300 c 2007 by MDPI www.mdpi.org/entropy/ Thermodynamics of Horizons from a Dual Quantum System Sudipta Sarkar and T Padmanabhan IUCAA, Post Bag 4,

More information

Studying the cosmological apparent horizon with quasistatic coordinates

Studying the cosmological apparent horizon with quasistatic coordinates PRAMANA c Indian Academy of Sciences Vol. 80, No. journal of February 013 physics pp. 349 354 Studying the cosmological apparent horizon with quasistatic coordinates RUI-YAN YU 1, and TOWE WANG 1 School

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham Outline Basic properties of McVittie spacetimes: embedding of the Schwarzschild field in

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Evolution of Cosmological Horizons of Wormhole Cosmology. Abstract

Evolution of Cosmological Horizons of Wormhole Cosmology. Abstract Evolution of Cosmological Horizons of Wormhole Cosmology Sung-Won Kim Department of Science Education, Ewha Womans University, Seoul 03760, Korea (Dated: today) Abstract Recently we solved the Einstein

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

arxiv: v1 [gr-qc] 6 Sep 2015

arxiv: v1 [gr-qc] 6 Sep 2015 100 Years of General Relativity arxiv:1509.01772v1 [gr-qc] 6 Sep 2015 Contents George F R Ellis Mathematics Department, University of Cape Town September 8, 2015 1 The study of dynamic geometry 3 1.1 Technical

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

Black Holes and Wave Mechanics

Black Holes and Wave Mechanics Black Holes and Wave Mechanics Dr. Sam R. Dolan University College Dublin Ireland Matematicos de la Relatividad General Course Content 1. Introduction General Relativity basics Schwarzschild s solution

More information

Evolution of Evaporating Black Holes in a Higher Dimensional Inflationary Universe.

Evolution of Evaporating Black Holes in a Higher Dimensional Inflationary Universe. Evolution of Evaporating Black Holes in a Higher Dimensional Inflationary Universe. hlanasse R..~[l)ollye Physics Department, University of Michigan, Ann Arbor. Michigan ~8109 Abstract. Spherically symmetric

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 The Holographic Principal and its Interplay with Cosmology T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 What is the temperature of a Black Hole? for simplicity, use the

More information

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY & Anthony Lun Fourth Aegean Summer School on Black Holes Mytilene, Island of Lesvos 17/9/2007 CONTENTS Junction Conditions Standard approach

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

Quantum stress tensor in self-similar spherical dust collapse

Quantum stress tensor in self-similar spherical dust collapse Quantum stress tensor in self-similar spherical dust collapse Sukratu Barve* and T. P. Singh Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 00

More information

RADIAL MOTION INTO AN EINSTEIN-ROSEN BRIDGE

RADIAL MOTION INTO AN EINSTEIN-ROSEN BRIDGE Physics Letters B Vol. 687, Nos. 2-3 (2010) pp. 110 113 DOI: 10.1016/j.physletb.2010.03.029 c Elsevier B. V. RADIAL MOTION INTO AN EINSTEIN-ROSEN BRIDGE Nikodem J. Pop lawski Department of Physics, Indiana

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

An Introduction to General Relativity and Cosmology

An Introduction to General Relativity and Cosmology An Introduction to General Relativity and Cosmology Jerzy Plebariski Centro de Investigacion y de Estudios Avanzados Instituto Politecnico Nacional Apartado Postal 14-740, 07000 Mexico D.F., Mexico Andrzej

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 7 September 2016; Accepted: 1 November 2016; Published: 4 November 2016

Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 7 September 2016; Accepted: 1 November 2016; Published: 4 November 2016 universe Article A Solution of the Mitra Paradox Øyvind Grøn Oslo and Akershus University College of Applied Sciences, Faculty of Technology, Art and Sciences, PB 4 St. Olavs. Pl., NO-0130 Oslo, Norway;

More information

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time.

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. Cosmological models In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time. The expansion is described by the scale factor R(t).

More information

Excision boundary conditions for black-hole initial data

Excision boundary conditions for black-hole initial data PHYSICAL REVIEW D, VOLUME 70, 104016 Excision boundary conditions for black-hole initial data Gregory B. Cook* Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, USA Harald

More information

On the occasion of the first author s seventieth birthday

On the occasion of the first author s seventieth birthday METHODS AND APPLICATIONS OF ANALYSIS. c 2005 International Press Vol. 12, No. 4, pp. 451 464, December 2005 006 HOW INFLATIONARY SPACETIMES MIGHT EVOLVE INTO SPACETIMES OF FINITE TOTAL MASS JOEL SMOLLER

More information

arxiv: v1 [gr-qc] 15 Jan 2015

arxiv: v1 [gr-qc] 15 Jan 2015 LA-UR-15-20030 Surface Tension and Negative Pressure Interior of a Non-Singular Black Hole Pawel O. Mazur Department of Physics and Astronomy University of South Carolina Columbia, SC 29208 USA arxiv:1501.03806v1

More information

arxiv: v3 [gr-qc] 21 Jan 2019

arxiv: v3 [gr-qc] 21 Jan 2019 The marginally trapped surfaces in spheroidal spacetimes Rehana Rahim, 1,, Andrea Giusti, 1, 3, 4, 1, 3, and Roberto Casadio 1 Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46,

More information

Valeri P. Frolov, Univ. of Alberta, Edmonton. GC2018, Yukawa Institute, Kyoto, February 5, 2018

Valeri P. Frolov, Univ. of Alberta, Edmonton. GC2018, Yukawa Institute, Kyoto, February 5, 2018 Valeri P. Frolov, Univ. of Alberta, Edmonton GC018, Yukawa Institute, Kyoto, February 5, 018 Based on: "Information loss problem and a 'black hole` model with a closed apparent horizon", V.F., JHEP 1405

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Exact Fermi coordinates for a class of space-times

Exact Fermi coordinates for a class of space-times JOURNAL OF MATHEMATICAL PHYSICS 51, 022501 2010 Exact Fermi coordinates for a class of space-times David Klein 1,a and Peter Collas 2,b 1 Department of Mathematics, California State University, Northridge,

More information

Global and local problems with. Kerr s solution.

Global and local problems with. Kerr s solution. Global and local problems with Kerr s solution. Brandon Carter, Obs. Paris-Meudon, France, Presentation at Christchurch, N.Z., August, 2004. 1 Contents 1. Conclusions of Roy Kerr s PRL 11, 237 63. 2. Transformation

More information

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time Loughborough University Institutional Repository Accelerating Kerr-Newman black holes in (anti- de Sitter space-time This item was submitted to Loughborough University's Institutional Repository by the/an

More information

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley, A GENERAL RELATIVITY WORKBOOK Thomas A. Moore Pomona College University Science Books Mill Valley, California CONTENTS Preface xv 1. INTRODUCTION 1 Concept Summary 2 Homework Problems 9 General Relativity

More information

Geodesics and geodesic deviation in a two-dimensional black hole

Geodesics and geodesic deviation in a two-dimensional black hole Geodesics and geodesic deviation in a two-dimensional black hole Ratna Koley, a) Supratik Pal, b) and Sayan Kar c) Department of Physics and Meteorology and Centre for Theoretical Studies, Indian Institute

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: gemarsh@uchicago.edu

More information

On time dependent black hole solutions

On time dependent black hole solutions On time dependent black hole solutions Jianwei Mei HUST w/ Wei Xu, in progress ICTS, 5 Sep. 014 Some known examples Vaidya (51 In-falling null dust Roberts (89 Free scalar Lu & Zhang (14 Minimally coupled

More information

Stable bouncing universe in Hořava-Lifshitz Gravity

Stable bouncing universe in Hořava-Lifshitz Gravity Stable bouncing universe in Hořava-Lifshitz Gravity (Waseda Univ.) Collaborate with Yosuke MISONOH (Waseda Univ.) & Shoichiro MIYASHITA (Waseda Univ.) Based on Phys. Rev. D95 044044 (2017) 1 Inflation

More information

Non-existence of time-periodic dynamics in general relativity

Non-existence of time-periodic dynamics in general relativity Non-existence of time-periodic dynamics in general relativity Volker Schlue University of Toronto University of Miami, February 2, 2015 Outline 1 General relativity Newtonian mechanics Self-gravitating

More information

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates Chapter 21 The Kerr solution As shown in Chapter 10, the solution of Einstein s equations describing the exterior of an isolated, spherically symmetric, static object is quite simple. Indeed, the Schwarzschild

More information

Models of Non-Singular Gravitational Collapse

Models of Non-Singular Gravitational Collapse Models of Non-Singular Gravitational Collapse by Sonny Campbell (CID: 00891540) Supervisor: Prof. João Magueijo Department of Physics Imperial College London London SW7 2AZ United Kingdom Thesis submitted

More information

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] HORIBA INTERNATIONAL CONFERENCE COSMO/CosPA 2010 Hongo campus (Koshiba Hall), The University

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

2 Carter Penrose diagrams

2 Carter Penrose diagrams 2 Carter Penrose diagrams In this section Cater Penrose diagrams (conformal compactifications) are introduced. For a more detailed account in two spacetime dimensions see section 3.2 in hep-th/0204253;

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Quasilocal notions of horizons in the fluid/gravity duality

Quasilocal notions of horizons in the fluid/gravity duality Quasilocal notions of horizons in the fluid/gravity duality Michał P. Heller Institute of Physics Jagiellonian University, Cracow & Institute for Nuclear Studies, Warsaw based on work-in-progress with

More information

On the Field of a Stationary Charged Spherical Source

On the Field of a Stationary Charged Spherical Source Volume PRORESS IN PHYSICS Aril, 009 On the Field of a Stationary Charged Sherical Source Nikias Stavroulakis Solomou 35, 533 Chalandri, reece E-mail: nikias.stavroulakis@yahoo.fr The equations of gravitation

More information

Emergent Horizons in the Laboratory

Emergent Horizons in the Laboratory Emergent Horizons in the Laboratory Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Emergent Horizons in the Laboratory p.1/26 Event Horizon Collapsing matter Singularity Light cones, light

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

A Panoramic Tour in Black Holes Physics

A Panoramic Tour in Black Holes Physics Figure 1: The ergosphere of Kerr s black hole A Panoramic Tour in Black Holes Physics - A brief history of black holes The milestones of black holes physics Astronomical observations - Exact solutions

More information

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico 1. Starting from R αβµν Z ν = 2 [α β] Z µ, deduce the components of the Riemann curvature tensor in terms of the Christoffel symbols.

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

Scott A. Hughes, MIT SSI, 28 July The basic concepts and properties of black holes in general relativity

Scott A. Hughes, MIT SSI, 28 July The basic concepts and properties of black holes in general relativity The basic concepts and properties of black holes in general relativity For the duration of this talk ħ=0 Heuristic idea: object with gravity so strong that light cannot escape Key concepts from general

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Black Hole Thermodynamics and the Tunnelling Method for Particle Emission by Ryan James Kerner

Black Hole Thermodynamics and the Tunnelling Method for Particle Emission by Ryan James Kerner Black Hole Thermodynamics and the Tunnelling Method for Particle Emission by Ryan James Kerner A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of

More information

Kodama time, entropy bounds, the Raychaudhuri equation, and the quantum interest conjecture

Kodama time, entropy bounds, the Raychaudhuri equation, and the quantum interest conjecture Kodama time, entropy bounds, the Raychaudhuri equation, and the quantum interest conjecture by Gabriel Abreu A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

arxiv: v1 [physics.gen-ph] 15 Feb 2011

arxiv: v1 [physics.gen-ph] 15 Feb 2011 arxiv:2.395v [physics.gen-ph] 5 Feb 2 Black Hole evaporation in semi-classical approach Shintaro Sawayama Sawayama Cram School of Physics Atsuhara 328, Fuji-shi, Shizuoka-ken, Japan, 49-2 November 2, 28

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

Fundamental Theories of Physics in Flat and Curved Space-Time

Fundamental Theories of Physics in Flat and Curved Space-Time Fundamental Theories of Physics in Flat and Curved Space-Time Zdzislaw Musielak and John Fry Department of Physics The University of Texas at Arlington OUTLINE General Relativity Our Main Goals Basic Principles

More information

8.821/8.871 Holographic duality

8.821/8.871 Holographic duality Lecture 3 8.81/8.871 Holographic duality Fall 014 8.81/8.871 Holographic duality MIT OpenCourseWare Lecture Notes Hong Liu, Fall 014 Lecture 3 Rindler spacetime and causal structure To understand the spacetime

More information

Rampada Misra 1, Mukul Chandra Das 2

Rampada Misra 1, Mukul Chandra Das 2 2017 IJSRSET Volume 3 Issue 6 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Metric - A Review Rampada Misra 1, Mukul Chandra Das 2 1 Department of Physics (P.G.),

More information

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007 Introduction to Numerical Relativity I Erik Schnetter, Pohang, July 2007 Lectures Overview I. The Einstein Equations (Formulations and Gauge Conditions) II. Analysis Methods (Horizons and Gravitational

More information

3 Rindler Space and Hawking Radiation

3 Rindler Space and Hawking Radiation 3 Rindler Space and Hawking Radiation The next couple of lectures are on Hawking radiation. There are many good references to learn this subject, for example: Carroll s GR book Chapter 9; Townsend gr-qc/970702;

More information