Small worlds, mazes and random walks

Size: px
Start display at page:

Download "Small worlds, mazes and random walks"

Transcription

1 EUROPHYSICS LETTERS 1 July 2003 Europhys. Lett., 63 (1), pp (2003) Small worlds, mazes and random walks B. Luque 1 and O. Miramontes 2 1 Departamento Matemática Aplicada y Estadística Escuela Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid Plaza Cardenal Cisneros 3, Madrid 28040, Spain 2 Departamento de Sistemas Complejos, Instituto de Física Universidad Nacional Autónoma de México, Cd Universitaria México DF, México (received 23 December 2002; accepted in final form 2 May 2003) PACS Fb Random walks and Levy flights. PACS r Probability theory, stochastic processes, and statistics. PACS Uu Applications of Monte Carlo methods. Abstract. A parametrized family of random walks whose trajectories are easily identified as graphs is presented. This construction shows small-world like behavior but, interestingly, a power law emerges between the minimal distance L and the number of nodes N of the graph instead of the typical logarithmic scaling. We explain this peculiar finding in the light of the well-known scaling relationships in Random Walk Theory. Our model establishes a link between Complex Networks and Self-Avoiding Random Walks, a useful theoretical framework in polymer science. The Watts-Strogatz model of Small World graphs [1] efficiently interpolates between regular and random graphs thanks to a small number pn of shortcuts (long-range connections) which are superimposed on a regular graph formed by N nodes. In random graphs, the mean minimal distance or diameter between all pairs of nodes in the system scales logarithmically with the system size the so-called Small World (SW) effect while scales linearly in regular graphs. Much attention has been devoted recently to the topological properties of the Watts-Strogatz model and scale-free models (named complex networks in general) and to the effects that a network connectivity may have on the properties of dynamical systems [1 4]. The aim of this work is to show features common to complex networks and Self-Avoiding Random Walks (SAW). There are a number of papers relating Random Walks (RW) and SW phenomenon [5 14]. In [7, 8] the authors examine RW on SW networks, in particular the probability of a random walker of being at the original site at a later time. Their interest stems from the motion of excitons over polymer chains, where steps between spatially close sites can connect regions far apart along the chemical backbone. However, this model follows a standard SW network building [15]. Later, the same authors [9], considering self-avoiding constraints, assume that the probability that two sites far apart along the backbone come close together in space is approximately an inverse power law of their mutual distance. In other studies, RW have c EDP Sciences

2 B. Luque et al.: Small worlds, mazes and random walks Fig. 1 An illustrative example of shortcut by loop in the RW path or maze: (a) The path of N = 21 steps traced by a RW, can be interpreted as a maze of length N = 21. (b) To solve the maze is: to travel starting at 1, and ending at 21. One non-optimal solution is a travel of length 21. (c) At step 18 the path has a selfintersection with step 8, a loop (d) In order to optimally solve the maze, this loop should be avoided. Then, the loop acts as a shortcut in the graph version of the maze: the node 8 is connected with the node 9 and 19. (e) To efficiently solve the maze we use the minimal distance L = 10 between nodes 1 and 21: (f) Then, the length of the maze is N = 21, but using the shortcut, it is solved in L =10. been employed as dynamical nodes to study dynamical SW effects [13, 14]. Furthermore and in another context, RW on the family of SW networks have been addressed, where RW correspond to random spread of information over the network [10]. It has been demonstrated that the average access time between nodes for a SW geometry shows a crossover from regular to random behavior with increasing distance from the starting point of the RW. Average access time is important in any Markov process and is very relevant for the exploration and navigation of the WWW [11] that, as a scale-free network, also shows the SW effect. In this paper we study the properties of two dimensional complex mazes from the point of view of the SW theory. For this, it is important to explore new methods (such as the use of the properties of excitable media [16]) to find minimum-length paths in complex labyrinths. Navigational methods for solving mazes are widely applied in computer sciences for searching through data structures and the so-called depth-first search method is an example [17]. In this work, we generate a maze by using a non-reversing RW in two dimensions [18]. By non-reversing we mean that, at each step, the walker does not jump back to its latest position. Self-intersections of the RW are not avoided and so looping is permitted. Each site reached by the RW at step i is a node labeled by i. The nodes are connected in the step sequence, i.e.: i i + 1. But if a loop exists, for example i-step intersect with j-step, then we connect i j + 1. Therefore, the loops act as shortcuts in the graph. In fig. 1 we show a path constructed from a non-reversing RW. The path is the maze and solving it consists in discovering the minimum number of steps to reach both ends. Thus jumping the loops is the quickest way of reaching the exit. To generate a specific maze we fix the number N of steps of the non-reversing RW and introduce a probability p [0, 2/3]. At each step, the RW changes its direction with probability p (toward the right or the left with probability p/2), and follows forward with probability 1 p. In this manner we can construct a variety of mazes. From p = 0, that produces linear trajectories, to p = 2/3, that gives intricate trajectories with equal probability to continue straight, turn right or turn left. Obviously, the number of self-interactions grows with p, and so does the number of loops.

3 10 EUROPHYSICS LETTERS p=0.001 p=0.01 p= L/N N=512 N=1024 N=2048 N= p Fig. 2 Upper figures: three examples of mazes generated by RWs with p =0.001, p =0.01, and p =0.1 with a proper choice of the scale. Main figure: the effect of growth p on the minimal distance L normalized by N in the path graph for several sizes N and log-linear axes. For all simulations in this article, 31 points separated logarithmically between p = and p = 2/3 were considered. In all cases each point represents the mean of 1000 numerical experiments. We notice a size-effect in L similar to the one in the classic SW model that predicts a transition at p 0andN. In the upper insets of fig. 2 we show three non-reversing RW (properly rescaled) of N = 1024 steps. A very small value of p such as p =0.001 can produce a maze without any loops. A value of p =0.01 generates mazes with a moderate number of loops. Finally, a value of p = 0.1 generates intricate mazes. Because increasing p implies an increase of the number of loops or, equivalently, shortcuts as described above, we expect SW behavior in the model. Here, the SW effect means that the maze can be walked from the start to the end within much fewer steps (L) than the total number of steps N. The main plot of fig. 2 illustrates the SW effect. If the number of path-intersections are regarded as shortcuts, then the minimal distance L is dramatically reduced with small increments of p. Similarly to the crossover length in SW models, it is possible to introduce in the present context a persistence length N, defined as the mean number of steps needed for producing the first loop or shortcut. In fig. 3, a law N p 1, is observed, which can be explained by the average number of steps that a RW must perform before turning for the first time. In fig. 4, we observe that the following scaling relationship is satisfied: L p 1 F 1 (pn). (1) If p 1 is proportional to the mean number of RW steps necessary for producing one loop, F 1 (pn) can be interpreted as the mean number of loops in the system. The scaling function F 1 (x) behaves linearly for values of x<1. That is, while pn the average number of turns is less than one, there are few shortcuts and L N. When x>1 the presence of shortcuts

4 B. Luque et al.: Small worlds, mazes and random walks N = 512 N = 1024 N = 2048 N = 2048 N* τ = p Fig. 3 Log-log graph showing the scaling of the number of RW steps N that it takes to reach the first shortcut or the first loop as a function of p. The line with slope 1 is a guide for the eye. The linear fitting of the scaling region gives τ = ± has an impact and the distance L is reduced, following a power law with an exponent value α equal to 2/3. We display in fig. 5 a collapse plot of the scaling function F 2 (x) defined as L NF 2 (pn). (2) F 2 (x) can be interpreted as the reduction factor of the total length as a function of the size N and the turning rate p. Again, for values of x<1, L and N take the same value. However, as N or p increase and as soon as pn > 1, the ratio L/N decreases as a power law with an exponent value β equal to 1/3. Both results confirm that L(N,p) N, (3) Lp α = 1 α = 2/3 N = 512 N = 1024 N = 2048 N = pn Fig. 4 L/N 10-1 Fig. 5 N = 512 N = 1024 N = 2048 N = 4096 β = 1/ pn Fig. 4 Log-log graph showing the behavior of the scaling function F 1. The lines with slope 1 and slope 2/3 are a guide for the eye. The linear fitting on the scaling regions gives α =1.004 ± and α =0.668 ± for pn < 1andpN > 1, respectively. Fig. 5 Collapse of the scaling function F 2. The line with slope 1/3 isaguidefortheeye. The linear fitting of the scaling region Np > 1givesβ = ±

5 12 EUROPHYSICS LETTERS γ = 1/2 ν = 3/4 pr 10 0 pr 10 0 N = 512 N = 1024 N = 2048 N = pn Fig pl Fig. 7 N = 512 N = 1024 N = 2048 N = 4096 Fig. 6 Scaling relation between the end-to-end distance R and N, the number of the RW steps rescaled both by p. The line with slope 1/2 is a guide for the eye. The scaling exponent obtained by fitting of the scaling region is γ =0.499 ± Fig. 7 Scaling relation between the end-to-end distance R and L scaled both by p. The line with slope 3/4 is a guide for the eye. Scaling exponent obtained of the scaling region by fitting is ν =0.75±0.01. for no loops or pn < 1. On the other hand L(N,p) p 1/3 N 2/3, (4) for pn > 1, when loops appears. Let us recall that in the classic SW model, the mean distance scales as log N, while in the present system, it scales as a power law with exponent 2/3. Why the model presents this SW effect in a power law form? Usually, for a two-dimensional RW, the end-to-end distance R is defined as the mean Euclidean distance separating both ends of the RW of length N. In two dimensions, for a classical RW, R scales with N as R N 1/2 [19]. This fact holds also for a classical non-reversal RW that corresponds to our model when p =2/3. A variation of p is equivalent to a change of scale of the RW trajectory. We expect that the above scaling relationship between R and N will hold when re-scaling both variables by p. Thus pr (pn) 1/2. (5) By numerical experiments we measured R for several values of N and p in our model. In fig. 6 it is shown how pr scales with pn as a power law with exponent 1/2 as is predicted by eq. (5). This result shows that the maze model acts as a typical RW model of N steps in two dimensions, where N and R are scaled by p. Self-Avoiding Random Walks (SAW) are RW where self-intersections are avoided. In our model once the RW trajectory is finished, deleting the loops produces a SAW of length L. It is known that SAWs of L steps in two dimensions obey the scaling relationship R L 3/4 [19]. This implies, after rescaling R and L properly as pr and pl, that we can expect the following scaling relation to hold here: pr (pl) 3/4, (6) as confirmed in fig. 7. Combining eqs. (5) and (6), we recover eq. (4). The SW effect in our two-dimensional model as a power law scaling between N and L, with exponent 2/3 for values pn, is a direct consequence of a well-known exact scaling relation in classical RW and SAW models.

6 B. Luque et al.: Small worlds, mazes and random walks 13 RW were proposed 60 years ago by Kuhn for describing polymer chains [19]. Then Flory assumed that the polymer chains cannot self-intersect and proposed SAW as a more realistic model. We think that our model can have interesting applications in polymer sciences or excitonic energy problems because it links SAW and SW effect in graphs. For example, in order to solve the computational problems of SAW, other RW variants have been introduced. One is the Loop-Erased Random Walk model (LERW) discussed first by Lawler [20,21] as an approximation of a SAW more tractable analytically. In a LERW a simple RW is used, but the final non-intersecting path is obtained by erasing each loop as soon as it is formed. LERW is a model clearly related to the one introduced here and has been extremely fruitful [22]: it has been applied to problems of Laplacian SAW, q-potts model, spanning trees, Abelian sand-piles and Self-Organized Critical systems. Now, we can relate LERW to complex networks as well. We would like to thank U. Bastolla, D. Boyer, J. Erler and two anonymous referees for their valuable opinions. OMhas been supported by CONACYT (32453-E and G32723-E) and DGAPA-UNAM(IN ) and BL by CICYT BFM REFERENCES [1] Watts D. J. and Strogatz S. H., Nature, 393 (1998) 440. [2] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74 (2002) 47. [3] Strogatz S. H., Nature, 410 (2001) 268. [4] Dorogovtsev S. N. and Mendes J. F. F., Adv. Phys., 51 (2002) [5] Jasch F. and Blumen A., Phys. Rev. E, 63 (2001) [6] Lahtinen J., Kertész J. and Kaski K., Phys. Rev. E, 64 (2001) [7] Jespersen S., Sokolov I. M. and Blumen A., Phys. Rev. E, 62 (2000) [8] Jespersen S., Sokolov I. M. and Blumen A., J. Chem. Phys., 113 (2000) [9] Jespersen S. and Blumen A., Phys. Rev. E, 62 (2000) 5. [10] Pandit I. M. and Amritkar R. E., Phys. Rev. E, 63 (2001) [11] Tadic B., Eur. Phys. J. B, 23 (2001) 221. [12] Almaas E., Kulkarni R. V. and Stroud D., Phys. Rev. Lett., 88 (2002) [13] Manrubia S. C., Delgado J. and Luque B., Europhys. Lett., 54 (2001) 1. [14] Miramontes O. and Luque B., Physica D, 168 (2002) 379. [15] Moore C. and Newman M. E. J., Phys. Rev. E, 61 (2000) [16] Steinbock O., Tóth A. and Showalter A., Science, 267 (1995) 868. [17] Hofstadter D. R., Gödel, Escher, Bach: An Eternal Golden Braid (Basic Books, New York) [18] Pickover C. A., Random and Markov Approach to Provide a Mechanism for Generating Mazes in Computers, Pattern, Chaos and Beauty (Alan Sutton Publishing, UK) [19] de Gennes P. G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca) [20] Lawler G. F., J. Phys. A, 20 (1987) [21] Lawler G. F., Intersections of Random Walks (Birkhauser, Boston) [22] Dhar D., Physica A, 263 (1999) 4.

Numerical evaluation of the upper critical dimension of percolation in scale-free networks

Numerical evaluation of the upper critical dimension of percolation in scale-free networks umerical evaluation of the upper critical dimension of percolation in scale-free networks Zhenhua Wu, 1 Cecilia Lagorio, 2 Lidia A. Braunstein, 1,2 Reuven Cohen, 3 Shlomo Havlin, 3 and H. Eugene Stanley

More information

Chapter 4. RWs on Fractals and Networks.

Chapter 4. RWs on Fractals and Networks. Chapter 4. RWs on Fractals and Networks. 1. RWs on Deterministic Fractals. 2. Linear Excitation on Disordered lattice; Fracton; Spectral dimension 3. RWs on disordered lattice 4. Random Resistor Network

More information

Controlling chaos in random Boolean networks

Controlling chaos in random Boolean networks EUROPHYSICS LETTERS 20 March 1997 Europhys. Lett., 37 (9), pp. 597-602 (1997) Controlling chaos in random Boolean networks B. Luque and R. V. Solé Complex Systems Research Group, Departament de Fisica

More information

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999 Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/9909323v1 [cond-mat.stat-mech] 22 Sep 1999 B. Zheng FB Physik, Universität Halle, 06099 Halle, Germany Abstract Numerically we

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 Jun 2004

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 8 Jun 2004 Exploring complex networks by walking on them Shi-Jie Yang Department of Physics, Beijing Normal University, Beijing 100875, China (February 2, 2008) arxiv:cond-mat/0406177v1 [cond-mat.dis-nn] 8 Jun 2004

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005 APS/123-QED Scale-Free Networks Emerging from Weighted Random Graphs Tomer Kalisky, 1, Sameet Sreenivasan, 2 Lidia A. Braunstein, 2,3 arxiv:cond-mat/0503598v1 [cond-mat.dis-nn] 24 Mar 2005 Sergey V. Buldyrev,

More information

Enumeration of spanning trees in a pseudofractal scale-free web. and Shuigeng Zhou

Enumeration of spanning trees in a pseudofractal scale-free web. and Shuigeng Zhou epl draft Enumeration of spanning trees in a pseudofractal scale-free web Zhongzhi Zhang 1,2 (a), Hongxiao Liu 1,2, Bin Wu 1,2 1,2 (b) and Shuigeng Zhou 1 School of Computer Science, Fudan University,

More information

Renormalization Group Analysis of a Small-world Network Model

Renormalization Group Analysis of a Small-world Network Model Renormalization Group Analysis of a Small-world Network Model Thomas Payne December 4, 2009 A small-world network is a network where most of the nodes aren t directly connected to each other, but any node

More information

Absence of depletion zone effects for the trapping reaction in complex networks

Absence of depletion zone effects for the trapping reaction in complex networks Absence of depletion zone effects for the trapping reaction in complex networks Aristotelis Kittas* and Panos Argyrakis Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 16 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 16 Dec 1997 arxiv:cond-mat/9712183v1 [cond-mat.stat-mech] 16 Dec 1997 Sandpiles on a Sierpinski gasket Frank Daerden, Carlo Vanderzande Departement Wiskunde Natuurkunde Informatica Limburgs Universitair Centrum 3590

More information

arxiv: v1 [physics.geo-ph] 25 Mar 2010

arxiv: v1 [physics.geo-ph] 25 Mar 2010 Small-World Networks in Geophysics arxiv:03.4886v1 [physics.geo-ph] 5 Mar 0 Xin-She Yang Department of Applied Mathematics, University of Leeds, LEEDS LS 9JT, UK Abstract Many geophysical processes can

More information

Evolving network with different edges

Evolving network with different edges Evolving network with different edges Jie Sun, 1,2 Yizhi Ge, 1,3 and Sheng Li 1, * 1 Department of Physics, Shanghai Jiao Tong University, Shanghai, China 2 Department of Mathematics and Computer Science,

More information

End-to-end length of a stiff polymer

End-to-end length of a stiff polymer End-to-end length of a stiff polymer Jellie de Vries April 21st, 2005 Bachelor Thesis Supervisor: dr. G.T. Barkema Faculteit Btawetenschappen/Departement Natuur- en Sterrenkunde Institute for Theoretical

More information

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 242 246 c International Academic Publishers Vol. 42, No. 2, August 15, 2004 Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small

More information

P-adic Properties of Time in the Bernoulli Map

P-adic Properties of Time in the Bernoulli Map Apeiron, Vol. 10, No. 3, July 2003 194 P-adic Properties of Time in the Bernoulli Map Oscar Sotolongo-Costa 1, Jesus San-Martin 2 1 - Cátedra de sistemas Complejos Henri Poincaré, Fac. de Fisica, Universidad

More information

Finite data-size scaling of clustering in earthquake networks

Finite data-size scaling of clustering in earthquake networks Finite data-size scaling of clustering in earthquake networks Sumiyoshi Abe a,b, Denisse Pastén c and Norikazu Suzuki d a Department of Physical Engineering, Mie University, Mie 514-8507, Japan b Institut

More information

Exact solution of site and bond percolation. on small-world networks. Abstract

Exact solution of site and bond percolation. on small-world networks. Abstract Exact solution of site and bond percolation on small-world networks Cristopher Moore 1,2 and M. E. J. Newman 2 1 Departments of Computer Science and Physics, University of New Mexico, Albuquerque, New

More information

arxiv:cond-mat/ v1 8 Jan 2004

arxiv:cond-mat/ v1 8 Jan 2004 Multifractality and nonextensivity at the edge of chaos of unimodal maps E. Mayoral and A. Robledo arxiv:cond-mat/0401128 v1 8 Jan 2004 Instituto de Física, Universidad Nacional Autónoma de México, Apartado

More information

OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK

OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK International Journal of Modern Physics C Vol. 15, No. 1 (2004) 45 57 c World Scientific Publishing Company OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK M. C. GONZÁLEZ, A. O. SOUSA and H.

More information

Minimum spanning trees of weighted scale-free networks

Minimum spanning trees of weighted scale-free networks EUROPHYSICS LETTERS 15 October 2005 Europhys. Lett., 72 (2), pp. 308 314 (2005) DOI: 10.1209/epl/i2005-10232-x Minimum spanning trees of weighted scale-free networks P. J. Macdonald, E. Almaas and A.-L.

More information

arxiv:cond-mat/ v2 6 Aug 2002

arxiv:cond-mat/ v2 6 Aug 2002 Percolation in Directed Scale-Free Networs N. Schwartz, R. Cohen, D. ben-avraham, A.-L. Barabási and S. Havlin Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel Department

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 20 Apr 2004

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 20 Apr 2004 Dynamics of Rumor Spreading in Complex Networks arxiv:cond-mat/0312131v2 [cond-mat.stat-mech] 20 Apr 2004 Yamir Moreno, 1,2 Maziar Nekovee, 3 and Amalio F. Pacheco 1,2 1 Departamento de Física Teórica,

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

arxiv:math/ v1 [math.pr] 21 Dec 2001

arxiv:math/ v1 [math.pr] 21 Dec 2001 Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk arxiv:math/0112246v1 [math.pr] 21 Dec 2001 Tom Kennedy Departments of Mathematics and Physics University of Arizona, Tucson, AZ, 85721

More information

Stability and topology of scale-free networks under attack and defense strategies

Stability and topology of scale-free networks under attack and defense strategies Stability and topology of scale-free networks under attack and defense strategies Lazaros K. Gallos, Reuven Cohen 2, Panos Argyrakis, Armin Bunde 3, and Shlomo Havlin 2 Department of Physics, University

More information

arxiv:physics/ v1 [physics.soc-ph] 14 Dec 2006

arxiv:physics/ v1 [physics.soc-ph] 14 Dec 2006 Europhysics Letters PREPRINT Growing network with j-redirection arxiv:physics/0612148v1 [physics.soc-ph] 14 Dec 2006 R. Lambiotte 1 and M. Ausloos 1 1 SUPRATECS, Université de Liège, B5 Sart-Tilman, B-4000

More information

Desynchronization waves in small-world networks

Desynchronization waves in small-world networks PHYSICAL REVIEW E 75, 0611 007 Desynchronization waves in small-world networks Kwangho Park and Liang Huang Department of Electrical Engineering, Arizona State University, Tempe, Arizona 8587, USA Ying-Cheng

More information

Evolution of a social network: The role of cultural diversity

Evolution of a social network: The role of cultural diversity PHYSICAL REVIEW E 73, 016135 2006 Evolution of a social network: The role of cultural diversity A. Grabowski 1, * and R. A. Kosiński 1,2, 1 Central Institute for Labour Protection National Research Institute,

More information

arxiv:physics/ v2 [physics.soc-ph] 9 Feb 2007

arxiv:physics/ v2 [physics.soc-ph] 9 Feb 2007 Europhysics Letters PREPRINT Growing network with j-redirection arxiv:physics/0612148v2 [physics.soc-ph] 9 Feb 2007 R. Lambiotte 1 and M. Ausloos 1 1 GRAPES, Université de Liège, B5 Sart-Tilman, B-4000

More information

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics Complex Networks, Long-Range Interactions and Nonextensive Statistics L. R. da Silva UFRN DFTE Natal Brazil 04/05/12 1 OUR GOALS Growth of an asymptotically scale-free network including metrics. Growth

More information

Scale-free network of earthquakes

Scale-free network of earthquakes Scale-free network of earthquakes Sumiyoshi Abe 1 and Norikazu Suzuki 2 1 Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan 2 College of Science and Technology, Nihon University, Chiba

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 29 Apr 2008

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 29 Apr 2008 Self-similarity in Fractal and Non-fractal Networks arxiv:cond-mat/0605587v2 [cond-mat.stat-mech] 29 Apr 2008 J. S. Kim, B. Kahng, and D. Kim Center for Theoretical Physics & Frontier Physics Research

More information

arxiv: v1 [nlin.cd] 5 Jul 2008

arxiv: v1 [nlin.cd] 5 Jul 2008 Enhancement of spatiotemporal regularity in an optimal window of random coupling Swarup Poria Department of Mathematics, Midnapore College, Midnapore, 721 11, West Bengal, India arxiv:87.84v1 [nlin.cd]

More information

S(l) bl + c log l + d, with c 1.8k B. (2.71)

S(l) bl + c log l + d, with c 1.8k B. (2.71) 2.4 DNA structure DNA molecules come in a wide range of length scales, from roughly 50,000 monomers in a λ-phage, 6 0 9 for human, to 9 0 0 nucleotides in the lily. The latter would be around thirty meters

More information

X-ray reflectivity of Fibonacci multilayers. Abstract

X-ray reflectivity of Fibonacci multilayers. Abstract FIMAT-1/95 X-ray reflectivity of Fibonacci multilayers F. Domínguez-Adame and E. Maciá Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040 arxiv:cond-mat/9502064v1

More information

Competition and multiscaling in evolving networks

Competition and multiscaling in evolving networks EUROPHYSICS LETTERS 5 May 2 Europhys. Lett., 54 (4), pp. 436 442 (2) Competition and multiscaling in evolving networs G. Bianconi and A.-L. Barabási,2 Department of Physics, University of Notre Dame -

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Jan 2003

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 27 Jan 2003 Dynamic critical behavior of the XY model in small-world networks Kateryna Medvedyeva, 1, Petter Holme, 1 Petter Minnhagen, 2,1 and Beom Jun Kim 3 1 Department of Physics, Umeå University, 901 87 Umeå,

More information

Network skeleton for synchronization: Identifying redundant connections Cheng-Jun Zhang, An Zeng highlights Published in

Network skeleton for synchronization: Identifying redundant connections Cheng-Jun Zhang, An Zeng highlights Published in Published in which should be cited to refer to this work. Network skeleton for synchronization: Identifying redundant connections Cheng-Jun Zhang, An Zeng Institute of Information Economy, Alibaba Business

More information

Polymer Physics, Electrical Conductivity of Metals and Cosmology

Polymer Physics, Electrical Conductivity of Metals and Cosmology Polymer Physics, Electrical Conductivity of Metals and Cosmology P. R. Silva Retired associate professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com ABSTRACT

More information

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1011 1016 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

More information

Self-organized scale-free networks

Self-organized scale-free networks Self-organized scale-free networks Kwangho Park and Ying-Cheng Lai Departments of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA Nong Ye Department of Industrial Engineering,

More information

arxiv: v1 [q-fin.gn] 5 Sep 2011

arxiv: v1 [q-fin.gn] 5 Sep 2011 Collective behavior in financial market Thomas Kauê Dal Maso Peron Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense 400, Caixa Postal 369, CEP 3560-970, São Carlos,

More information

Small-world structure of earthquake network

Small-world structure of earthquake network Small-world structure of earthquake network Sumiyoshi Abe 1 and Norikazu Suzuki 2 1 Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan 2 College of Science and Technology, Nihon University,

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Oct 2005

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Oct 2005 Growing Directed Networks: Organization and Dynamics arxiv:cond-mat/0408391v2 [cond-mat.stat-mech] 3 Oct 2005 Baosheng Yuan, 1 Kan Chen, 1 and Bing-Hong Wang 1,2 1 Department of Computational cience, Faculty

More information

Self-organized Criticality in a Modified Evolution Model on Generalized Barabási Albert Scale-Free Networks

Self-organized Criticality in a Modified Evolution Model on Generalized Barabási Albert Scale-Free Networks Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 512 516 c International Academic Publishers Vol. 47, No. 3, March 15, 2007 Self-organized Criticality in a Modified Evolution Model on Generalized Barabási

More information

Scale-free random graphs and Potts model

Scale-free random graphs and Potts model PRAMAA c Indian Academy of Sciences Vol. 64, o. 6 journal of June 25 physics pp. 49 59 D-S LEE,2, -I GOH, B AHG and D IM School of Physics and Center for Theoretical Physics, Seoul ational University,

More information

arxiv: v1 [cond-mat.dis-nn] 25 Mar 2010

arxiv: v1 [cond-mat.dis-nn] 25 Mar 2010 Chaos in Small-World Networks arxiv:034940v1 [cond-matdis-nn] 25 Mar 20 Xin-She Yang Department of Applied Mathematics and Department of Fuel and Energy, University of Leeds, LEEDS LS2 9JT, UK Abstract

More information

Cover times of random searches

Cover times of random searches Cover times of random searches by Chupeau et al. NATURE PHYSICS www.nature.com/naturephysics 1 I. DEFINITIONS AND DERIVATION OF THE COVER TIME DISTRIBUTION We consider a random walker moving on a network

More information

arxiv:physics/ v1 [physics.soc-ph] 11 Mar 2005

arxiv:physics/ v1 [physics.soc-ph] 11 Mar 2005 arxiv:physics/0503099v1 [physics.soc-ph] 11 Mar 2005 Public transport systems in Poland: from Bia lystok to Zielona Góra by bus and tram using universal statistics of complex networks Julian Sienkiewicz

More information

Fractal dimensions ofpercolating networks

Fractal dimensions ofpercolating networks Available online at www.sciencedirect.com Physica A 336 (2004) 6 13 www.elsevier.com/locate/physa Fractal dimensions ofpercolating networks Reuven Cohen a;b;, Shlomo Havlin b a Department of Computer Science

More information

An evolving network model with community structure

An evolving network model with community structure INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 9741 9749 doi:10.1088/0305-4470/38/45/002 An evolving network model with community structure

More information

Topology and correlations in structured scale-free networks

Topology and correlations in structured scale-free networks Topology and correlations in structured scale-free networks Alexei Vázquez, 1 Marián Boguñá, 2 Yamir Moreno, 3 Romualdo Pastor-Satorras, 4 and Alessandro Vespignani 5 1 International School for Advanced

More information

Bridge Percolation. and H. J. Herrmann 1 Computational Physics for Engineering Materials, IfB,

Bridge Percolation. and H. J. Herrmann 1 Computational Physics for Engineering Materials, IfB, Bridge Percolation N. A. M. Araújo, 1, K. J. Schrenk, 1, J. S. Andrade, Jr., 1, 2, 1, 2, and H. J. Herrmann 1 Computational Physics for Engineering Materials, IfB, ETH Zurich, Schafmattstrasse 6, CH-893

More information

Uniform spanning trees and loop-erased random walks on Sierpinski graphs

Uniform spanning trees and loop-erased random walks on Sierpinski graphs Uniform spanning trees and loop-erased random walks on Sierpinski graphs Elmar Teufl Eberhard Karls Universität Tübingen 12 September 2011 joint work with Stephan Wagner Stellenbosch University Elmar Teufl

More information

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Niklas Fricke and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig November 29, 2013 Self-avoiding walk

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Attack Strategies on Complex Networks

Attack Strategies on Complex Networks Attack Strategies on Complex Networks Lazaros K. Gallos 1, Reuven Cohen 2, Fredrik Liljeros 3, Panos Argyrakis 1, Armin Bunde 4, and Shlomo Havlin 5 1 Department of Physics, University of Thessaloniki,

More information

Renormalization group analysis of the small-world network model

Renormalization group analysis of the small-world network model 6 December 999 Physics Letters A 63 999 34 346 www.elsevier.nlrlocaterphysleta Renormalization group analysis of the small-world network model M.E.J. Newman ), D.J. Watts Santa Fe Institute, 399 Hyde Park

More information

Fractal dimensionality of polymer chains

Fractal dimensionality of polymer chains J. Phys. A: Math. Gen. 15 (1982) L311-L316. Printed in Great Britain LEITER TO THE EDITOR Fractal dimensionality of polymer chains S Havlin and D Ben-Avraham Department of Physics, Bar-Ilan University,

More information

arxiv:nlin/ v2 [nlin.cd] 8 Feb 2005

arxiv:nlin/ v2 [nlin.cd] 8 Feb 2005 Signatures of homoclinic motion in uantum chaos D. A. Wisniacki,,2 E. Vergini,, 3 R. M. Benito, 4 and F. Borondo, Departamento de Química C IX, Universidad Autónoma de Madrid, Cantoblanco, 2849 Madrid,

More information

Geographical Embedding of Scale-Free Networks

Geographical Embedding of Scale-Free Networks Geographical Embedding of Scale-Free Networks Daniel ben-avraham a,, Alejandro F. Rozenfeld b, Reuven Cohen b, Shlomo Havlin b, a Department of Physics, Clarkson University, Potsdam, New York 13699-5820,

More information

Physics Letters A. Feigenbaum graphs at the onset of chaos. Bartolo Luque a,lucaslacasa a,albertorobledo b, article info abstract

Physics Letters A. Feigenbaum graphs at the onset of chaos. Bartolo Luque a,lucaslacasa a,albertorobledo b, article info abstract Physics Letters A 376 (2012) 3625 3629 Contents lists available at SciVerse ScienceDirect Physics Letters A www.elsevier.com/locate/pla Feigenbaum graphs at the onset of chaos Bartolo Luque a,lucaslacasa

More information

Dynamics of delayed-coupled chaotic logistic maps: Influence of network topology, connectivity and delay times

Dynamics of delayed-coupled chaotic logistic maps: Influence of network topology, connectivity and delay times PRAMANA c Indian Academy of Sciences Vol. 7, No. 6 journal of June 28 physics pp. 1 9 Dynamics of delayed-coupled chaotic logistic maps: Influence of network topology, connectivity and delay times ARTURO

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21 Cosma Shalizi 3 April 2008 Models of Networks, with Origin Myths Erdős-Rényi Encore Erdős-Rényi with Node Types Watts-Strogatz Small World Graphs Exponential-Family

More information

2.4 DNA structure. S(l) bl + c log l + d, with c 1.8k B. (2.72)

2.4 DNA structure. S(l) bl + c log l + d, with c 1.8k B. (2.72) 2.4 DNA structure DNA molecules come in a wide range of length scales, from roughly 50,000 monomers in a λ-phage, 6 0 9 for human, to 9 0 0 nucleotides in the lily. The latter would be around thirty meters

More information

arxiv:physics/ v1 9 Jun 2006

arxiv:physics/ v1 9 Jun 2006 Weighted Networ of Chinese Nature Science Basic Research Jian-Guo Liu, Zhao-Guo Xuan, Yan-Zhong Dang, Qiang Guo 2, and Zhong-Tuo Wang Institute of System Engineering, Dalian University of Technology, Dalian

More information

THRESHOLDS FOR EPIDEMIC OUTBREAKS IN FINITE SCALE-FREE NETWORKS. Dong-Uk Hwang. S. Boccaletti. Y. Moreno. (Communicated by Mingzhou Ding)

THRESHOLDS FOR EPIDEMIC OUTBREAKS IN FINITE SCALE-FREE NETWORKS. Dong-Uk Hwang. S. Boccaletti. Y. Moreno. (Communicated by Mingzhou Ding) MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/ AND ENGINEERING Volume 2, Number 2, April 25 pp. 317 327 THRESHOLDS FOR EPIDEMIC OUTBREAKS IN FINITE SCALE-FREE NETWORKS Dong-Uk Hwang Istituto Nazionale

More information

RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL

RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL Elect. Comm. in Probab. 8 (2003)6 16 ELECTRONIC COMMUNICATIONS in PROBABILITY RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL OMER ANGEL Dept. of Mathematics, Weizmann Institute of Science, Rehovot 76100,

More information

FINAL EXAM Spring 2010 TFY4235 Computational Physics

FINAL EXAM Spring 2010 TFY4235 Computational Physics FINAL EXAM Spring 2010 TFY4235 Computational Physics This exam is published on Saturday, May 29, 2010 at 09:00 hours. The solutions should be mailed to me at Alex.Hansen@ntnu.no on Tuesday, June 1 at 23:00

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c Wealth Dynamics on Complex Networks arxiv:cond-mat/0402466v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c a Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100

More information

Attractor period distribution for critical Boolean networks

Attractor period distribution for critical Boolean networks Attractor period distribution for critical Boolean networks Florian Greil Institut für Festkörperphysik, Technische Universität Darmstadt, D-64285 Darmstadt, Germany current address: Lehrstuhl für Bioinformatik,

More information

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph.

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph. Int. J. Complex Systems in Science vol. 1(2) (2011), pp. 100 106 Line graphs for directed and undirected networks: An structural and analytical comparison Regino Criado 1, Julio Flores 1, Alejandro García

More information

Visitor flow pattern of Expo 2010

Visitor flow pattern of Expo 2010 Chin. Phys. B Vol. 1, No. 7 (1) 79 Visitor flow pattern of Expo 1 Fan Chao( 樊超 ) a)b) and Guo Jin-Li( 郭进利 ) a) a) Business School, University of Shanghai for Science and Technology, Shanghai 93, China

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21: More Networks: Models and Origin Myths Cosma Shalizi 31 March 2009 New Assignment: Implement Butterfly Mode in R Real Agenda: Models of Networks, with

More information

Growing a Network on a Given Substrate

Growing a Network on a Given Substrate Growing a Network on a Given Substrate 1 Babak Fotouhi and Michael G. Rabbat Department of Electrical and Computer Engineering McGill University, Montréal, Québec, Canada Email: babak.fotouhi@mail.mcgill.ca,

More information

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Maksim Kitsak, 1 Shlomo Havlin, 1,2 Gerald Paul, 1 Massimo Riccaboni, 3 Fabio Pammolli, 1,3,4 and H.

More information

Logarithmically modified scaling of temperature structure functions in thermal convection

Logarithmically modified scaling of temperature structure functions in thermal convection EUROPHYSICS LETTERS 1 January 2005 Europhys. Lett., 69 (1), pp. 75 80 (2005) DOI: 10.1209/epl/i2004-10373-4 Logarithmically modified scaling of temperature structure functions in thermal convection A.

More information

Mean end-to-end distance of branched polymers

Mean end-to-end distance of branched polymers J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain LETTER TO THE EDITOR Mean end-to-end distance of branched polymers S Redner Department of Physics, Boston University, Boston, Mass.

More information

arxiv: v2 [cond-mat.stat-mech] 25 Nov 2011

arxiv: v2 [cond-mat.stat-mech] 25 Nov 2011 Discontinuous percolation transitions in real physical systems Y.S. Cho and B. Kahng Department of Physics and Astronomy, Seoul National University, Seoul 5-747, Korea (Dated: June 26, 28) arxiv:5.982v2

More information

Damon Centola.

Damon Centola. http://www.imedea.uib.es/physdept Konstantin Klemm Victor M. Eguíluz Raúl Toral Maxi San Miguel Damon Centola Nonequilibrium transitions in complex networks: a model of social interaction, Phys. Rev. E

More information

Existence of four-dimensional polymer collapse I. Kinetic growth trails

Existence of four-dimensional polymer collapse I. Kinetic growth trails Physica A 260 (1998) 20 30 Existence of four-dimensional polymer collapse I. Kinetic growth trails A.L. Owczarek a;, T. Prellberg b a Department of Mathematics and Statistics, The University of Melbourne,

More information

Quasi-Stationary Simulation: the Subcritical Contact Process

Quasi-Stationary Simulation: the Subcritical Contact Process Brazilian Journal of Physics, vol. 36, no. 3A, September, 6 685 Quasi-Stationary Simulation: the Subcritical Contact Process Marcelo Martins de Oliveira and Ronald Dickman Departamento de Física, ICEx,

More information

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps Chapitre 4 Transition to chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different manners

More information

Virgili, Tarragona (Spain) Roma (Italy) Zaragoza, Zaragoza (Spain)

Virgili, Tarragona (Spain) Roma (Italy) Zaragoza, Zaragoza (Spain) Int.J.Complex Systems in Science vol. 1 (2011), pp. 47 54 Probabilistic framework for epidemic spreading in complex networks Sergio Gómez 1,, Alex Arenas 1, Javier Borge-Holthoefer 1, Sandro Meloni 2,3

More information

Fractal Properties of the Schramm-Loewner Evolution (SLE)

Fractal Properties of the Schramm-Loewner Evolution (SLE) Fractal Properties of the Schramm-Loewner Evolution (SLE) Gregory F. Lawler Department of Mathematics University of Chicago 5734 S. University Ave. Chicago, IL 60637 lawler@math.uchicago.edu December 12,

More information

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004 Conservation laws for the voter model in complex networks arxiv:cond-mat/0408101v1 [cond-mat.other] 4 Aug 2004 Krzysztof Suchecki, 1,2 Víctor M. Eguíluz, 1 and Maxi San Miguel 1 1 Instituto Mediterráneo

More information

Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity

Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity LETTER TO THE EDITOR Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity T.D. Frank Center for the Ecological Study of Perception and Action,

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 7 Jan 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 7 Jan 2000 Epidemics and percolation in small-world networks Cristopher Moore 1,2 and M. E. J. Newman 1 1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 2 Departments of Computer Science and

More information

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Stefan Thurner Constantino Tsallis SFI WORKING PAPER: 5-6-6 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Universality class of triad dynamics on a triangular lattice

Universality class of triad dynamics on a triangular lattice Universality class of triad dynamics on a triangular lattice Filippo Radicchi,* Daniele Vilone, and Hildegard Meyer-Ortmanns School of Engineering and Science, International University Bremen, P. O. Box

More information

CROSS-TALK RESPONSE ANALYSIS ON A PIEZOELECTRIC ULTRASONIC MATRIX ARRAY

CROSS-TALK RESPONSE ANALYSIS ON A PIEZOELECTRIC ULTRASONIC MATRIX ARRAY CROSS-TALK RESPONSE ANALYSIS ON A PIEZOELECTRIC ULTRASONIC MATRIX ARRAY Israel Sánchez Domínguez 1,2, Pedro Acevedo Contla 2, Fabián García Nocetti 2 and Manuel Recuero López 1 1.- Escuela Técnica Superior

More information

The weighted random graph model

The weighted random graph model The weighted random graph model To cite this article: Diego Garlaschelli 2009 New J. Phys. 11 073005 View the article online for updates and enhancements. Related content - Analytical maximum-likelihood

More information

How to count trees? arxiv:cond-mat/ v3 [cond-mat.stat-mech] 7 Apr 2005

How to count trees? arxiv:cond-mat/ v3 [cond-mat.stat-mech] 7 Apr 2005 How to count trees? arxiv:cond-mat/0501594v3 [cond-mat.stat-mech] 7 Apr 2005 Sebastian Piec, Krzysztof Malarz and Krzysztof Ku lakowski AGH University of Science and Technology, Faculty of Physics and

More information

A MULTIOBJECTIVE ORIENTED NETWORK DESIGN MODEL FOR ON GROUND AIRCRAFT S ROUTING MANAGEMENT

A MULTIOBJECTIVE ORIENTED NETWORK DESIGN MODEL FOR ON GROUND AIRCRAFT S ROUTING MANAGEMENT Advanced OR and AI Methods in Transportation A MULTIOBJECTIVE ORIENTED NETWORK DESIGN MODEL FOR ON GROUND AIRCRAFT S ROUTING MANAGEMENT Esteve CODINA and Ángel MARÍN Abstract. In this paper a network design

More information

arxiv: v1 [physics.soc-ph] 23 May 2010

arxiv: v1 [physics.soc-ph] 23 May 2010 Dynamics on Spatial Networks and the Effect of Distance Coarse graining An Zeng, Dong Zhou, Yanqing Hu, Ying Fan, Zengru Di Department of Systems Science, School of Management and Center for Complexity

More information

Diffusion in Fluctuating Media: Resonant Activation

Diffusion in Fluctuating Media: Resonant Activation Diffusion in Fluctuating Media: Resonant Activation Jorge A. Revelli a Carlos. E. Budde b Horacio S. Wio a,c a Grupo de Física Estadística, Centro Atómico Bariloche (CNEA) and Instituto Balseiro (CNEA

More information

Random walks, Brownian motion, and percolation

Random walks, Brownian motion, and percolation Random walks, Brownian motion, and percolation Martin Barlow 1 Department of Mathematics, University of British Columbia PITP, St Johns College, January 14th, 2015 Two models in probability theory In this

More information

Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence

Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence PHYSICAL REVIEW E 80, 0 2009 Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence Zhongzhi Zhang,* Wenlei Xie, and Shuigeng Zhou School of

More information

Polymer Solution Thermodynamics:

Polymer Solution Thermodynamics: Polymer Solution Thermodynamics: 3. Dilute Solutions with Volume Interactions Brownian particle Polymer coil Self-Avoiding Walk Models While the Gaussian coil model is useful for describing polymer solutions

More information

Deterministic scale-free networks

Deterministic scale-free networks Physica A 299 (2001) 559 564 www.elsevier.com/locate/physa Deterministic scale-free networks Albert-Laszlo Barabasi a;, Erzsebet Ravasz a, Tamas Vicsek b a Department of Physics, College of Science, University

More information