RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS

Size: px
Start display at page:

Download "RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS"

Transcription

1 ultbody Dyamcs Lecture Uversty of okyo, Japa Dec. 8, 25 RECURSIVE FORULAION FOR ULIODY DYNAICS Lecturer: Sug-Soo m Professor, Dept. of echatrocs Egeerg, orea Vstg Professor, Ceter for Collaboratve Research Uversty of okyo sookm@cu.ac.kr el:

2 Cotets ematcs of a rgd body Dyamcs of a rgd body ultbody Dyamcs - Cartesa Coordate Formulato - Relatve Jot Coordate Formulato Recursve ematc relatoshp Recursve formulato I for S Recursve formulato II for S Subsystem sythess method 2

3 ULIODY DYNAICS 3

4 Defto of ultbody Systems ad S dyamcs formulatos Defto of S: ultbody systems cosst of collectos of bodes that are costraed to move relatve to oe aother by kematc coectos (Jots betwee bodes. here are two coordate systems maly used for multbody dyamcs formulatos. Oe s Cartesa Coordate formulato ad the other s relatve ot coordate formulato. Cartesa coordate Relatve Jot coordate 4

5 Cartesa coordates formulato I each body, posto ad oretato coordates are assged to descrbe the moto of a multbody system, thus we may choose Cartesa posto ad Euler parameter oretato coordates. I the formulato, we wll use xed ketc-kematc equatos. z r ody z x s y s x ody z y q r,,,, b p 7 r y x he composte vector of Cartesa geeralzed coordates for the multbody system s b 7 b q q, q, q ( + 5

6 Costrat Equatos for ematc Coectos (Jots ematc coecto betwee two bodes must be modeled usg assged Cartesa coordate system Sphercal costrat: S Φ ( P, P r + A s - r - A s Dot costrat: d Φ (a,a a a Φ d (a,a a A A a Dot 2 costrat: d2 Φ (a,d a d 6

7 Costrat Equatos for ematc Coectos (Jots Example: Costrat Equatos for Revolute ots S Φ ( P, P d Φ (h,f d Φ (h,g Pot P the body ad Pot P the body must be cocde durg the moto. Z axs of ot referece frame ad Z axs of ot referece frame must be parallel. 7

8 Costrat Equatos for ematc Coectos (Jots Computg Jacoba matrx for costrat equatos S δφ ( P, P δr δ δ δ As π r + As π δφ d (a,a a A A a δπ a A A a δπ Costrat velocty equatos Φ Φ r +Φ ω +Φ r +Φ ω r π r π Costrat accelerato equatos Φ Φ r +Φ ω +Φ r +Φ ω r π r π (Φ r +Φ r +Φ ω +Φ ω γ r r π π 8

9 Force Elemet betwee wo bodes Example: Sprg Damper ad Actuator Forces f k( l l + cl + F( l, l d r + A s - r - A s l d d 2 l d ( (r + A s - r - A s l d ( (r + - Asω - r Asω l hus, the magtude of the force the sprg-damper-actuator, wth teso take as postve s Vrtual work of ths force s δ A W f δl 9

10 Force Elemet betwee wo bodes he varatoal relatoshp betwee vrtual legth ad varato of Cartesa coordates s d δl ( ( δr δ + - Asω - r Asω l A f δ W d δ δ + ( r - Asω - r Asω l f d f d [ δr, δπ ]{ } + [ δr, δπ ]{- } l s l A d s A d δ Z Q + δ Z Q A A hus, geeralzed force due to sprg-damper-actuator are f d f d A A Q, Q - l s l A d s A d

11 Equatos of moto of costraed spatal systems Revew a sgle rgd body equatos of moto varatoal form where m r F [δ r,δ π ] Jc ω c ω Jω c δz Y - Q ( δr r m F δ Z,,, δ Y Q π ω Jc c ω Jω c For multbody system cosst of + bodes, varatoal form of equatos moto ca be obtaed by addg vrtual work form of each body equatos of moto as ( + ( + + ( δz Y - Q δz Y - Q... δz Y - Q δz where (,, must be cosstet wth costrat,.e., kematcally admssble vrtual dsplacemet vectors, so must be satsfy wth followg equatos δφ Φz δ Z + Φz δ Z Φz δ Z

12 Equatos of moto of costraed spatal systems y the Lagrage ultpler heorem, there are Lagrage multplers, such that δz δz Y - Q Φ λ δz Y - Q Φ λ ( ( Z Z δz Y - Q + Φ λ ( Z For (,, beg arbtrary. hus, by the orthogoalty theorem, S equatos of moto are obtaed as; Y - Q Φ λ + Z Y - Q Φ λ... Y - Q + Φ λ + Z Above equatos of moto have more ukows tha o. of equatos, thus costrat accelerato equatos must be augmeted. Z 2

13 Equatos of moto of costraed spatal systems Y - Q Φ λ + Z Y - Q Φ λ... Y - Q + Φ λ + Z Φ Φ Y + Φ Y Φ Y γ z z z Φ Y + Φ Y Φ Y z z z Z Φ Z Y Q ΦZ λ γ where Y [ Y, Y,..., Y ] Q [ Q, Q,..., Q ] Φ [ Φ, Φ,... Φ ] z z z z... Sce erta matrx s costat due to usg local vector of agular velocty, effectve soluto method for Augmeted atrx could be as follows; λ Φ Φ Φ Q ( ( Z Z ( Z γ Y Q ΦZλ 3

14 RECURSIVE INEAIC RELAIONSHIP 4

15 RECURSIVE INEAICS Oretato relatoshp C A A C A " ( q s the orthogoal trasformato matrx " " " from the x y z frame to the frame. " A x y z s the orthogoal trasformato matrx from the x y z frame to the x y z frame. " " " Posto relatoshp r r + s + d r + A s + A C d " ( q Fg. A par of coected bodes 5

16 RECURSIVE INEAICS Agular velocty relatoshp ω ω + ω ω + H ( A,q q ω s the relatve agular velocty of the body wth respect to the body, ad s also fucto of ot q relatve coordate ad ot relatve velocty. Velocty relatoshp d r r +ω (r - r + d r + rω r + rω + ( + r H q q q q q H s the ut vector of the ot rotatoal axs. d r r + s + d r + ω s + (ACd (q dt d d r + ω s + ω d + q r + ω ( s + d + q q q d r + rω r + + rω rh + q ω ω H q 6

17 RECURSIVE INEAICS Velocty State vector Represetato r + rω r + + rω rh + q ω ω H r + rω ω Y ω Y r + rω the velocty state vectors of bodes ad, respectvely d d + r H q H q I order to have more compact form of the equatos, the composte state vector otato ca be employed Y Y + velocty trasformato matrx from the ot space to the state vector space q Vrtual dsplacemet State vector Represetato δ Z δ Z + δq 7

18 RECURSIVE INEAICS Cartesa Velocty ad Velocty State vector Relatoshp where Y Accelerato state vector represetato Y Y Y + + q q + + D Accelerato state vector ad the Cartesa accelerato vector relatoshp Y I r I Y r ω Y Y + Y Y R δ Z q δ Z Z δπ δ δ r + r δπ δ Z δr δπ 8

19 RECURSIVE INEAICS SUARY A A C A " Posto & Oretato A r " r r A C A + s + A s Velocty Relatoshp Y Y + + d + A C q d ( q Forward kematcs q q Accelerato Relatoshp Y Y Y + + q q + + D q q 9

20 RECURSIVE DYNAICS 2

21 NON CENROIDAL EO FOR A RIGID ODY δ r { mr + m ω ( F d } + δπ (m r+ Jω +ωjω rw m mrw ( r F d [δ r,δ π ] m rw J ω ω Jω rw ω A ωa ρ c A ρca δπ δπ A A(ω +ωω(ω +ωωa J A JA m mrw ( r F d [δ r,δ π ] mrw J ω ωjω where m m ρ, d mωωρ rw c c 2

22 SAE VECOR FOR OF EQ FOR A RIGID ODY m m ρ ( m r F ωωρ c c [δ r,δ π ] m ρ c J ω ωjω ( δz Y - Q δ Z δ Z δr m m ρ r ( F mωωρ δ Z, δ,, π m Y Q ρ c J ω ωjω c c Y Y + Y Y R ( δz Y Q I r I c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Proof s gve U. of Iowa Ph.D hess, F.sa, Automated ethods for Hgh Speed Smulato of ultbody Dyamc Systems,

23 RECURSIVE FORULAION FOR OPEN LOOP SYSES + body ope cha system equatos of moto vrtual work form wth state vector otato δz ( Y Q 23

24 RECURSIVE FORULAION I 24

25 Recursve I Formulato (reducto procedure -2-2 δz ( Y Q +δz ( Y Q +δz ( Y Q δ Z δ Z + δq [ + δz ( Y Q +δz ( Y Q ( Y Q ] +δq ( Y Q δz ( Y Q Y Y + q + D +δz [ - (-Y- Q - + (Y + q (Q D ] ( +δq Y + q (Q D - Sce δqs arbtrary, coeffcet of δq must be zero. { Y + q (Q D } Solve for q - - q -( { Y (Q D } - Substtutg expresso q to the remag vrtual work form equatos of moto yelds 25

26 Recursve I Formulato (reducto procedure where 3 - δz ( Y - Q +δz ( Y - Q +δz ( Y - L ( - - L - (Q - D - ( (Q - D L Q + L δz ( Y - L Q L If we apply ths procedure cotually from body - to, the we wll get the base body equatos of moto ad backward recurrece formula as follows; If the base body s ot costraed, the δz s arbtrary We have Y L atrx sze of s always 6x6 26

27 Recursve I Formulato (reducto procedure ackward Recurrece formula for body L Q for body ( for body,,, L - L - D - - ( (L - D fo r b o d y,,, for body,, L Q + L for body,, Jot accelerato for ot - q ( - { Y (L D } - 27

28 Recursve algorthm I Step : Gve ot coordates, compute posto ad oretato alog the forward path from body to body A " r r + s + d r + A s + A C d ( q Step 2: Gve ot velocty, compute velocty state ad Cartesa veloctes of each body alog the forward path from body to body Y Y + q Step 3: Usg Cartesa postos, oretatos ad veloctes of bodes, compute state mass matrces ad state force vectors c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Step 4: Compute velocty couplg terms for each ots D q A C A 28

29 Recursve algorthm I Step 5: Compute composte erta ad force alog the backward path from body to body ( for body,,, L - L - D - - ( (L - D fo r b o d y,,, for body,, L Q + L for body,, Ad save followg terms - s -( - s -( ( D - L 2 Step 6: Solve for state accelerato of the base body Y L Step 7: Compute ot acceleratos ad accelerato state of each body alog the forward path from body to body q sy + s2 Y Y + q + D for,2,, - Step 8: Itegrate ot veloctes ad ot acceleratos for ext step Step 9: Go to Step utl the smulato edg tme s reached 29

30 RECURSIVE FORULAION II 3

31 Recursve II Formulato (reducto procedure -2-2 δz (Y Q +δz -(-Y- Q -+δz (Y Q δ Z δ Z + δq [ + ] δz ( Y Q +δz ( Y Q ( Y Q +δq ( Y Q δz ( Y Q Y Y + q + D +δz [ - (-Y- Q - + (Y + q (Q D ] ( +δq Y + q (Q D - Sce δq s arbtrary, coeffcet of δq must be zero. Y + q (Q D - 3

32 Recursve II Formulato (reducto procedure δz ( Y Q +δz [( + Y + q { Q + (Q D }] δz ( Y Q +, L Q + ( L + + D +, L Q δz ( Y Q +δz [ Y + q L ] δ Z δ Z + δq Y Y + q + D 2 2 +δz -2[ ( Y q + q ( Q-2 + ( L -D ] ( +δq Y + q + q ( L D Sce δq s arbtrary, coeffcet of δq must be zero. Y + q + q ( L D

33 Recursve II Formulato (reducto procedure 3 - δz ( Y Q +δz [( + Y + q + q ( Q + ( L D ] L Q + ( L D [ δz ( Y Q +δz Y + q + q L ] ackward recurrece formula +,, 2,,, + L L Q Q + ( L +, 2,,, + D + 33

34 Recursve II Formulato (reducto procedure Y - + q (Q D Y + q + q ( L D Y Y + q + D Y + ( q + D 2 k k k k Y + ( q + D k k k k Y q + q (L D + k k k k k Y + kq k + q + q L D k k k ( If we apply ths procedure cotually from body -2 to, the we wll get a system of equatos of moto ot space. 34

35 Recursve II Formulato (reducto procedure Equato of oto Jot Space. where q P symm q [ q, q,, q, q, Ẏ ] 2 P ( L D ( L D 2 2 ( L 2 2 D ( L D L ackward recurrece formula +,, 2,,, + L Q L Q + ( L D, 2,,,

36 Recursve algorthm II Step : Gve ot coordates, compute posto ad oretato alog the forward path from body to body A " r r + s + d r + A s + A C d ( q Step 2: Gve ot velocty, compute velocty state ad Cartesa veloctes of each body alog the forward path from body to body Y Y + q Step 3: Usg Cartesa postos, oretatos ad veloctes of bodes, compute state mass matrces ad state force vectors c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Step 4: Compute velocty couplg terms for each ots D q A C A 36

37 Recursve algorthm II Dk Step 5: Compute composte couplg term alog the forward path k from body to body Step 6: Compute composte erta ad composte force L alog the backward path from body to body +,, 2,,, + L Q L Q + ( L D, 2,,, Step 7: Costruct etres of system matrx ad RHS vector P symm ( L D ( L D P 2 2 ( L 2 2 D ( L D Step 8: Solve for ot acceleratos q P L Step 9: Recoverg accelerato state ad Cartesa accelerato of each body alog the forward path from body to body, f ecessary Step : Itegrate ot veloctes ad ot acceleratos for ext step Step: Go to Step utl the smulato edg tme s reached 37

38 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE 38

39 39 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE (,,, Φ r A r A ( ( ( λ Φ Z Q Y Z λ Φ Z Q Y Z Q Y Z z z δ δ δ δ δ o apply recursve formulato, closed loop system must be ope by cut ot. Cut ot model s represeted as costrat equatos Usg Lagrage multpler theorem, followg equatos are obtaed he recursve formula ca be appled to each brach.

40 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE Covertg Cartesa costrat Jacoba matrces to those Jot space Φ ( r, A, r, A δφ Φ δr + Φ δπ + Φ δr + Φ δπ r π r π Φ δz + Φ δz z z δz δz + δq δz + δq + δq : 2 δz + k δq k δz δz δq + k k k k δφ Φ Τδz z δz Τδz + Φ Τ δz z Φ δz + Φ δz z z 4

41 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE z δφ Φ δz + δq + Φ δz + δq k k z k k k k ( Φ + Φ δz + Φ δq + Φ δq z z z k k z k k k k δq : : [ ] δq Φz Φ z Φz Φ z δq : : δq Φδq q Φ [ Φ Φ Φ Φ ] q z z z z [ Φ Φ ] q l q r δq δq : : δq δq : : δq 4

42 42 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE r l r l r rr r l ll l r l P P P λ q q Y Φ Φ q q ( ( ( λ Φ Z Q Y Z λ Φ Z Q Y Z Q Y Z z z δ δ δ δ δ for rght brach, for rght brach: (,( 2,, for left brach, 2,, + + Cartesa Vrtual work form of EQ for a closed loop system Apply Recursve II formulato to Cartesa Vrtual work form EQ for rght brach (, for left brach:, 2,, for rght brach: (,( 2,, L Q L Q L D

43 43 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE + + ( ( D L D L Q P + + [ ] l 2 2 [ ] 2 2 r ll symm rr symm [ ] z z z l Φ Φ Φ Φ q 2 [ ] 2 z z z r Φ Φ Φ Φ q [ ] l q q q 2 q [ ] r q q q 2 q ( ( ( l D L D L D L P ( ( ( r D L D L D L P r l r l r rr r l ll l r l P P P λ q q Y Φ Φ q q Above EQ has more ukwos tha equatos, eed more equatos

44 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE Augmeted DAE system s obtaed by addg costrat accelerato equatos as; Y yy yq Py Φ q yq qq q Pq Φq λ γ Φ Φ Y + Φ Y + Φ Y z z + Φ where z Φ Y + Φ Y [ ] γ yq l r Costrat accelerato equatos ot space z z z Y yy Φ q [ Φ Φ ] ql qr ll qq P P P q q [ ] l [ ] r q l q r rr Φ ql q l Y Y + ( q + D k k k k Y Y + ( q + D k k k k + Φ q qr r γ Φz D Φz D γ 44

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department Mapulator Dyamcs mrkabr Uversty of echology omputer Egeerg formato echology Departmet troducto obot arm dyamcs deals wth the mathematcal formulatos of the equatos of robot arm moto. hey are useful as:

More information

ON THE MOTION OF PLANAR BARS SYSTEMS WITH CLEARANCES IN JOINTS

ON THE MOTION OF PLANAR BARS SYSTEMS WITH CLEARANCES IN JOINTS ON THE MOTION OF PLANAR BARS SYSTEMS WITH CLEARANCES IN JOINTS Şl uv dr g Ja-Crsta GRIGORE, Uverstatea d Pteşt, strtîrgu dvale Nr Prof uv dr g Ncolae PANDREA, Uverstatea d Pteşt, strtîrgu dvale Nr Cof

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Physics 114 Exam 2 Fall Name:

Physics 114 Exam 2 Fall Name: Physcs 114 Exam Fall 015 Name: For gradg purposes (do ot wrte here): Questo 1. 1... 3. 3. Problem Aswer each of the followg questos. Pots for each questo are dcated red. Uless otherwse dcated, the amout

More information

Ahmed Elgamal. MDOF Systems & Modal Analysis

Ahmed Elgamal. MDOF Systems & Modal Analysis DOF Systems & odal Aalyss odal Aalyss (hese otes cover sectos from Ch. 0, Dyamcs of Structures, Al Chopra, Pretce Hall, 995). Refereces Dyamcs of Structures, Al K. Chopra, Pretce Hall, New Jersey, ISBN

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law Module : The equato of cotuty Lecture 5: Coservato of Mass for each speces & Fck s Law NPTEL, IIT Kharagpur, Prof. Sakat Chakraborty, Departmet of Chemcal Egeerg 2 Basc Deftos I Mass Trasfer, we usually

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

A Method for Determining the Number of Dependent Constraints Using Transformation Parameters of Coordinate Systems Korganbay Sholanov1, a*

A Method for Determining the Number of Dependent Constraints Using Transformation Parameters of Coordinate Systems Korganbay Sholanov1, a* Iteratoal Coferece o Mechacs, Materals ad Structural Egeerg (ICMMSE 206) A Method for Determg the Number of Depedet Costrats Usg Trasformato Parameters of Coordate Systems Korgabay Sholaov, a* Karagada

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Carbonyl Groups. University of Chemical Technology, Beijing , PR China;

Carbonyl Groups. University of Chemical Technology, Beijing , PR China; Electroc Supplemetary Materal (ESI) for Physcal Chemstry Chemcal Physcs Ths joural s The Ower Socetes 0 Supportg Iformato A Theoretcal Study of Structure-Solublty Correlatos of Carbo Doxde Polymers Cotag

More information

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10, PHYS Look over Chapter 9 Sectos - Eamples:, 4, 5, 6, 7, 8, 9, 0, PHYS Look over Chapter 7 Sectos -8 8, 0 eamples, 3, 4, 6, 7, 8,9, 0 ad How To ake Phscs Pa We wll ow look at a wa of calculatg where the

More information

Hamilton s principle for non-holonomic systems

Hamilton s principle for non-holonomic systems Das Hamltosche Przp be chtholoome Systeme, Math. A. (935), pp. 94-97. Hamlto s prcple for o-holoomc systems by Georg Hamel Berl Traslate by: D. H. Delphech I the paper Le prcpe e Hamlto et l holoomsme,

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices. 4.3 - Modal Aalyss Physcal coordates are ot always the easest to work Egevectors provde a coveet trasformato to modal coordates Modal coordates are lear combato of physcal coordates Say we have physcal

More information

( ) Two-Dimensional Experimental Kinematics. Notes_05_02 1 of 9. Digitize locations of landmarks { r } Pk

( ) Two-Dimensional Experimental Kinematics. Notes_05_02 1 of 9. Digitize locations of landmarks { r } Pk Notes_05_0 o 9 Two-Dmesoal Expermetal Kematcs Dgtze locatos o ladmarks { r } o body or pots to at gve tme t ll pots must be attached to body Use ladmark weghtg actor = pot k s avalable at tme t. Use =

More information

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD Jural Karya Asl Loreka Ahl Matematk Vol 8 o 205 Page 084-088 Jural Karya Asl Loreka Ahl Matematk LIEARLY COSTRAIED MIIMIZATIO BY USIG EWTO S METHOD Yosza B Dasrl, a Ismal B Moh 2 Faculty Electrocs a Computer

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

A unified matrix representation for degree reduction of Bézier curves

A unified matrix representation for degree reduction of Bézier curves Computer Aded Geometrc Desg 21 2004 151 164 wwwelsevercom/locate/cagd A ufed matrx represetato for degree reducto of Bézer curves Hask Suwoo a,,1, Namyog Lee b a Departmet of Mathematcs, Kokuk Uversty,

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

CH E 374 Computational Methods in Engineering Fall 2007

CH E 374 Computational Methods in Engineering Fall 2007 CH E 7 Computatoal Methods Egeerg Fall 007 Sample Soluto 5. The data o the varato of the rato of stagato pressure to statc pressure (r ) wth Mach umber ( M ) for the flow through a duct are as follows:

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Long blade vibration model for turbine-generator shafts torsional vibration analysis

Long blade vibration model for turbine-generator shafts torsional vibration analysis Avalable ole www.ocpr.co Joural of Checal ad Pharaceutcal Research, 05, 7(3):39-333 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 Log blade vbrato odel for turbe-geerator shafts torsoal vbrato aalyss

More information

Engineering Vibration 1. Introduction

Engineering Vibration 1. Introduction Egeerg Vbrato. Itroducto he study of the moto of physcal systems resultg from the appled forces s referred to as dyamcs. Oe type of dyamcs of physcal systems s vbrato, whch the system oscllates about certa

More information

The conformations of linear polymers

The conformations of linear polymers The coformatos of lear polymers Marc R. Roussel Departmet of Chemstry ad Bochemstry Uversty of Lethbrdge February 19, 9 Polymer scece s a rch source of problems appled statstcs ad statstcal mechacs. I

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point Mapulato smatc Jot Revolute Jot Kematcs Base Lks: movg lk fed lk Ed-Effecto Jots: Revolute ( DOF) smatc ( DOF) Geealzed Coodates Opeatoal Coodates O : Opeatoal pot 5 costats 6 paametes { postos oetatos

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

DYNAMICS. Systems of Particles VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Systems of Particles VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Ferdad P. eer E. Russell Johsto, Jr. Systes of Partcles Lecture Notes: J. Walt Oler Texas Tech Uersty 003 The Mcraw-Hll Copaes, Ic. ll rghts resered.

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

DEMONSTRATION AND METHOD FOR CALCULATING THE EFFICIENCY OF DIFFERENTIAL MECHANISM

DEMONSTRATION AND METHOD FOR CALCULATING THE EFFICIENCY OF DIFFERENTIAL MECHANISM DEMONSTRATION AND METHOD FOR CALCULATING THE EFFICIENCY OF DIFFERENTIAL MECHANISM Assoc. Prof. Barbu PLOSCEANU, PhD, POLITEHNICA Uversty of Bucharest, Assst. Prof. Ovdu VASILE, PhD, POLITEHNICA Uversty

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

On the Boundedness Property of the Inertia Matrix and Skew-Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator Systems

On the Boundedness Property of the Inertia Matrix and Skew-Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator Systems O the Boudedess Property of the Ierta Matrx ad Skew-Symmetrc Property of the Corols Matrx for Vehcle-Mapulator Systems Pål Joha From Departmet Mathematcal Sceces ad echology, Norwega Uversty of Lfe Sceces,

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION Bars Erkus, 4 March 007 Itroducto Ths docuet provdes a revew of fudaetal cocepts structural dyacs ad soe applcatos hua-duced vbrato aalyss ad tgato of

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Harley Flanders Differential Forms with Applications to the Physical Sciences. Dover, 1989 (1962) Contents FOREWORD

Harley Flanders Differential Forms with Applications to the Physical Sciences. Dover, 1989 (1962) Contents FOREWORD Harley Fladers Dfferetal Forms wth Applcatos to the Physcal Sceces FORWORD Dover, 989 (962) Cotets PRFAC TO TH DOVR DITION PRFAC TO TH FIRST DITION.. xteror Dfferetal Forms.2. Comparso wth Tesors 2.. The

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Comparison of Analytical and Numerical Results in Modal Analysis of Multispan Continuous Beams with LS-DYNA

Comparison of Analytical and Numerical Results in Modal Analysis of Multispan Continuous Beams with LS-DYNA th Iteratoal S-N Users oferece Smulato Techology omparso of alytcal ad Numercal Results Modal alyss of Multspa otuous eams wth S-N bht Mahapatra ad vk hatteree etral Mechacal Egeerg Research Isttute, urgapur

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix Moto Estmato Based o Ut Qatero Decomposto of the Rotato Matrx Hag Y Ya Baozog (Isttte of Iformato Scece orther Jaotog Uversty Bejg 00044 PR Cha Abstract Based o the t qatero decomposto of rotato matrx

More information

Newton s Power Flow algorithm

Newton s Power Flow algorithm Power Egeerg - Egll Beedt Hresso ewto s Power Flow algorthm Power Egeerg - Egll Beedt Hresso The ewto s Method of Power Flow 2 Calculatos. For the referece bus #, we set : V = p.u. ad δ = 0 For all other

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Quantization in Dynamic Smarandache Multi-Space

Quantization in Dynamic Smarandache Multi-Space Quatzato Dyamc Smaradache Mult-Space Fu Yuhua Cha Offshore Ol Research Ceter, Beg, 7, Cha (E-mal: fuyh@cooc.com.c ) Abstract: Dscussg the applcatos of Dyamc Smaradache Mult-Space (DSMS) Theory. Supposg

More information

HOOKE'S LAW. THE RATE OR SPRING CONSTANT k.

HOOKE'S LAW. THE RATE OR SPRING CONSTANT k. Practces Group Sesso Date Phscs Departmet Mechacs Laborator Studets who made the practce Stamp cotrol Deadle Date HOOKE'S LAW. THE RATE OR SPRING CONSTANT k. IMPORTANT: Iclude uts ad errors all measuremets

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Dynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load

Dynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load Dyamc Aalyss of Axally Beam o Vsco - Elastc Foudato wth Elastc Supports uder Movg oad Saeed Mohammadzadeh, Seyed Al Mosayeb * Abstract: For dyamc aalyses of ralway track structures, the algorthm of soluto

More information

The hypersingular boundary element method revisited

The hypersingular boundary element method revisited Boudary Elemets ad Other Mesh Reducto Methods XXXVII 7 The hypersgular boudary elemet method revsted N. A. Dumot Cvl Egeerg Departmet, Potfcal Catholc Uversty of Ro de Jaero, Brazl Abstract Ths s the sequel

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures CPM 2006 Geometrc Suffx ree: A New Idex Structure for Prote 3-D Structures etsuo Shbuya Huma Geome Ceter, Isttute of Medcal Scece, Uversty of okyo oday's alk Backgrouds Prote structures Suffx rees Geometrc

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Desg for sesmc ad clmate chages Lecture 08: Sesmc aalyss of elastc MDOF systems Aurel Strata, Poltehca Uversty of Tmsoara 06/04/2017 Europea Erasmus Mudus Master Course Sustaable Costructos uder atural

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

A NEW FINITE ELEMENT CONSIDERING SHEAR LAG

A NEW FINITE ELEMENT CONSIDERING SHEAR LAG Bullet of the raslvaa Uversty of Braşov CIBv 204 Vol. 7 (56) Specal Issue No. - 204 A NEW FINIE EEMEN CONSIDERING SHEAR AG A. PROIC M. VOJNIC PURCAR D. UIC Abstract: A ew model of descrbg the shear lag

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i CHEMICAL EQUILIBRIA The Thermodyamc Equlbrum Costat Cosder a reversble reacto of the type 1 A 1 + 2 A 2 + W m A m + m+1 A m+1 + Assgg postve values to the stochometrc coeffcets o the rght had sde ad egatve

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information