2007 SEAUPG CONFERENCE-SAN ANTONIO, TEXAS

Size: px
Start display at page:

Download "2007 SEAUPG CONFERENCE-SAN ANTONIO, TEXAS"

Transcription

1 of HMA Mixtures to Prevent Fatigue Cracking in Flexible Pavements Fatigue Cracking NCHRP 9-38 Brian Prowell Ray Brown Photo courtesy of FHWA Flexible (Asphalt) Pavement Fatigue Top Down Fatigue Definition of for PCC (Huang) Bottom Up Fatigue Surface Surface Base -2 2 Surface Base Base Sub-base base Sub-base base Subgrade Concept of for HMA (Monismith and Mclean) Long Life Pavement (Nunn)

2 Objectives Confirm existence of Effect of Material Properties on Shortcut method to determine Suggested changes to design guide to include Dr. J. Epps ERES H. VonQuintus Team NCHRP Panel NCAT Dr. E. R. Brown Dr. B. Prowell Dr. D. Timm Dr. S. Maghsoodloo AI M. Anderson Dr. S. Carpenter UNH Dr. Daniel Defining the What is the? HMA Fatigue A level of strain below which there is minimal fatigue damage over an essentially infinite number of loading cycles, which would not lead to failure; failure being bottom-up fatigue cracking Axles loads resulting in pavement strains less than the endurance limit do not cause damage! Idealized Expected Target micro Strain Target micro Strain,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Number of Cycles to 5% Stiffness Number of Cycles to 5% Stiffness

3 Practical Definition of the Nunn defined long-life life pavement as those that last 4 years without structural strengthening Practical Definition of the Max. passenger cars per hour (65 mph) = 235 One truck replaces 2.5 cars in rolling terrain = 94 trucks/hour; 22,56 trucks/day; 329,376, trucks in 4 years 25% trucks =,52 trucks/day or 48,29,2 trucks in 4 year Class 9 vehicle 4 load repetitions (steer axle would be lighter) = 592,876,8 repetitions for 25% trucks Typically, not all trucks are loaded. Washington DOT study suggests.2 ESALs per Class 9 vehicle or 395,25,2 ESALs for % trucks in 4 years Practical Definition of the 5 million load repetitions is approximate maximum in 4 years Assumes shift factor of supported by SHRP is that laboratory strain that provides for 5 million cycles to failure Test Plan Beam Fatigue Testing Beam Fatigue AASHTO T32 Micro-strain levels: Two replicates at each strain level Test to highest strain level where both replicate survive 5 million cycles

4 NMAS 9. AC% Test Plan Granite Elastomer Optimum B B B, U B, U Opt. +.7 B, U B, U Modified testing to a maximum of 5 million cycles. Testing to be conducted at progressively lower levels until two replicates last 5 million cycles. Additional tests at intermediate strain level to better define endurance limit. B = beam fatigue, U = uniaxial tension Mix Design 9. mm NMAS used at 23 NCAT Test Track Fine-graded granite/limestone blend Optimum AC = 4.5% PG and PG binders PG 64/67-22 Binder Test Data Test Value, kpa Failure Temp. G*/sinδ Orig. at G*/sinδ RTFO at G*(sinδ) ) PAV at Data Analysis Test Results Beam Fatigue Stiffness vs Nf Goal: Accurately Exponential Model estimate fatigue Logarithmic Model life near endurance Power Model limit. Weibull Function Ratio of Dissipated Energy Uniaxial Tension Exponential Model Recommended by AASHTO T32 PG Sample 5 at 7 ms Exponential Life Comparisons Tested to Failure PG at Optimum Flexural Stiffness, MPa y = 397.6e -5E-8x R 2 =.4992 y = e -2E-8x R 2 =.4776 y = 389.5e -E-8x R 2 =.7259 Measured nf,,,,,,,,, Line of Equality 5,, 5,, 5,, 2,, 3,, 25,, 4,, 35,, 5,, 45,,,,,,,,,,, Loading Cycles 5% Initial Expon. (4.E+6) Expon. (.E+7) Expon. (To Failure) Predicted nf (exponential model)

5 Conclusions Regarding Exponential Model Good match to measured failure if sample tested to failure Tends to under-predict fatigue life when extrapolating test results Not recommended for predicting Nf near endurance limit Flexural Stiffness, MPa Logarithmic Model y = Ln(x) R 2 =.974 PG Sample 5 at 7 ms y = Ln(x) R 2 =.9763 y = -6.7Ln(x) R 2 =.98 5,,,, 5,, 3,, 25,, 2,, 4,, 35,, 5,, 45,, Loading Cycles 5% Initial Log. (4.E+6) Log. (.E+7) Log. (To Failure) Flexural Stiffness, MPa million cycles Logarithmic Model 5,, PG Sample 5 at 7 ms y = -6.7Ln(x) R 2 =.98,, 3 million cycles 5,, 2,, 25,, 3,, y = Ln(x) + 43 R 2 = ,, 4,, 45,, 5,, Conclusions Regarding Logarithmic/Power Model Extrapolation from a low number of cycles ( million or less) can result in significant overestimation of Nf When testing to 5 million cycles, important to match slope at high number of cycles May be best method of estimating fatigue life at strain levels equal to or less than the endurance limit Loading Cycles 5% Initial Log. (To Failure) Log. (E+6) Weibull Function S ( t) = exp( λ n S(t) ) = probability of survival until time t λ = scale parameter (intercept) γ = shape parameter (slope) Solved by linear regression of: ln( ln( SR )) = ln( λ) + γ ln( n) SR = stiffness/initial stiffness Applied to HMA by Tsai et al 22 γ ) Ln(-Ln(Stiffness Ratio)) Weibull Function y =.88x R 2 =.976 PG at Optimum Sample 5 at 7 ms y =.7x R 2 =.998 Weibull Function based on testing to failure lies on same line as function from million cycles y =.78x R 2 = Ln (Cycles) Linear (4E+6) Linear (.E+7) Linear (To Failure)

6 ln(-ln(sr)) Weibull Function y = 2.468x R 2 =.995 y =.438x R 2 = ln Cycles Conclusions Regarding Weibull Function Appears data can be extrapolated from a lower number of cycles Prediction of Nf generally good. Believed to underestimate Nf at strain levels less than the endurance limit Flattening of slope near endurance limit may be indicative of endurance limit. Single stage Weibull Function does not account for change in slope (resulting in lower estimate of Nf described above) Sample 2 2 ms Linear (Sample 2 2 ms) Sample 3 ms Linear (Sample 3 ms) PG at Optimum PG at Optimum Indications of the based on Stiffness micro-strain R 2 =.997 Sample 23 Sample 4 Sample 3 E+ E+2 E+4 Cycles to Failure (5% Stiffness) Measured Logarithmic Model 3-Stage Weibull Function Lower Confidence Upper Confidence Lower Prediction Upper Prediction Power (Measured) PG at Optimum PG at Optimum PG at Optimum + PG at Optimum + Sample Sample 5 micro-strain R 2 =.926 Sample 3 micro-strain y = 44.x R 2 =.8775 E+ E+2 E+4 E+6 Cycles to Failure (5% Stiffness) Measured Logarithmic Model Weibull function Lower 95% CI Upper 95% CI Lower 95% PI Upper 95% PI Power (Measured) E+8 E+ E+2 E+4 E+6 E+8 Cycles to Failure (5% Stiffness) Measured Logarithmic Weibull Power (Measured)

7 Prediction Intervals for Endurance limit for PG micro-strain = 5 million cycles 3 micro-strain million cycles Endurance limit for PG micro-strain = 5 million cycles 3 micro-strain = million cycles Visually approximately 225 microstrain,, but results more variable Slight indication of higher endurance limit for optimum plus binder content Ratio of Dissipated Energy Ratio of Dissipated Energy W RDEC = n W W n n+ x x where, RDEC = ratio of dissipated energy W n = total dissipated energy at cycle n W n+x = total dissipated energy at cycle n+x X = the number of cycles between the two data points Shen and Carpenter 25 ΔDE/DE 4.E-3 3.5E-3 3.E-3 2.5E-3 2.E-3.5E-3.E-3 5.E-4 Plateau Value (PV) Region I Region II Region III.E+,, No. of Cycles Ghuzlan and Carpenter 2 Steps to Determining PV Example of Dissipated Energy Data Predicted DE Sample 2 at 2 ms Fit power model to stiffness vs loading cycle data (for tests terminated prior to failure) Early cycles often need to be neglected Determine number of cycles to 5% stiffness Fit power model to dissipated energy vs loading cycle data Early cycles often need to be neglected Calculate RDEC at number of cycles = 5% initial stiffness Predicted DE, kpa ,,,, R^2 =.9 y =.667x ,, 2,, Legend Number Denotes Starting Cycle 25,, Measured Loading Cycles

8 Micro- Strain PG at Optimum Replicate Replicate 2 Nf PV Nf PV E E E E E+7 5.3E E+7 4.7E-9 2.E+7 6.4E-9 9.9E+7 5.4E- 3.6E+2 9.3R-5.9E+3 6.4E-6 Critical PV for long life = 8.57E-9 Plateau Value.... E-5 E-6 E-7 E-8 E-9 E- E- E-2 E-3 E-4 E-5 PV vs. Nf y =.2937x -.5 R 2 =.999 y =.287x NCAT NCHRP 9-38 Cycles to 5% Initial Stiffness Power (NCAT NCHRP 9-38) E+ E+2 E+4 Shen and Carpenter Power (Shen and Carpenter) Round Robin Test Matrix Mini Round Robin for Beam Fatigue Lab/Mix PG at Optimum PG at Optimum Plus PG at Optimum NCAT X X X Asphalt Institute X X X University of Illinois X X X VA Transportation Research Council X SEM Materials X University of California X Code Precision Estimates Average of all Labs Std. Dev. Between Cell Averages (Sx) Repeatability Standard Deviation (Sr) Reproducibility Standard Deviation (SR) Between Lab Standard Deviation of Lab Means(SL) Within- Lab Coefficient of Variation, % Between- Lab Coefficient of Variation, % PG at 8 ms 8,629 4,36 3,396 5,67 3, PG at 4 ms 37, ,965 69,47 372,52 33, PG at 8 ms 9,97 2,88 6,395 6, PG at 4 ms 55,84 34,35 364, ,572 29, Predicting Test three samples each at 4 and 8 micro-strain Transform data (log-log) log) Fit regression Calculate strain level corresponding to 95% one-sided lower prediction limit for 5 million cycles Run three beams at predicted strain level to 2 million cycles Extrapolate with Weibull Function

9 Summary of Predicted s Binder Predicted 95% One-Sided Lower Prediction Limit PG PG PG PG Optimum PG Using for Pavement Design M-E E Methods Design procedures that use equivalent axles and equivalent temperatures (DAMA) Design procedures that use equivalent temperatures but axle load distribution (PerRoad) Design procedures that calculate and use pavement temperatures at specific depths (MEPDG) PerRoad Deflections calculated based on average temperature for up to five seasons Equation to adjust HMA stiffness Uses single definition of endurance limit Uses field transfer function for loads exceeding endurance limit Probabilistic calculations (Monte Carlo Simulation) 23 Test Track Temperature Distribution Histogram 7 2% Frequency % 8% 6% 4% 2% Frequency Cumulative % % Air Temperature, F

10 What is the Effect of Predicted on Pavement Thickness? PG at Optimum AC% Predicted =82 micro- strain - Test Track perpetual thickness = 5 in. 95% One-Sided Lower Prediction Limit = 3 micro-strain Test Track perpetual thickness = 8 in. Test Track Traffic = million ESALs in 2 years Conclusions 5 million load repetitions is a practical maximum for 4 years of traffic Thus, considering a shift factor of, 5 million cycles in the lab approximates the maximum number of load repetitions The single-stage stage Weibull function offers a conservative approach to extrapolate fatigue stiffness data Conclusions (Continued) The Logarithmic model fits samples tested below the endurance limit if some early cycles are ignored The PV identified by Shen and Carpenter indicates long life, but not necessarily the endurance limit Determining the PV requires a double extrapolation Endurance limit can be extrapolated from testing to 2 million cycles Conclusions (Continued) There is an endurance limit An endurance limit of approximately 5 micro-strain was indicated for the PG mix; 225 micro-strain for the PG mix Optimum plus asphalt content may increase the endurance limit slightly Questions? New Contact Information: Brian Prowell Advanced Material Services, LLC 975 Mall Blvd., Suite 22 Auburn, AL 3683 (334) Brian.AMSLLC@CharterInternet.com

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E.

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E. Mechanistic-Empirical Pavement Design Guide: A User s Perspective Brian D. Prowell, Ph.D., P.E. Empirical Approach Based on results of experiments or experience Scientific basis not established AASHTO

More information

Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life

Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life Workshop 4PBB First Steps for the perpetual pavement design: through the analysis of the fatigue life N. Hernández & D. Suarez Introduction In Mexico, asphalt pavements often exhibit premature failures

More information

FULL-DEPTH HMA PAVEMENT DESIGN

FULL-DEPTH HMA PAVEMENT DESIGN FULL-DEPTH HMA PAVEMENT DESIGN Marshall R. Thompson Department of Civil Engineering University of Illinois @ U-C FULL-DEPTH HMA FULL QUALITY HMA IDOT & FULL-DEPTH HMA PAVEMENT (FD-HMA) BEFORE 1989 *AASHTO

More information

EVALUATION OF FATIGUE LIFE OF ASPHALT MIXTURES THROUGH THE DISSIPATED ENERGY APPROACH

EVALUATION OF FATIGUE LIFE OF ASPHALT MIXTURES THROUGH THE DISSIPATED ENERGY APPROACH Vargas-Nordcbeck, Aguiar-Moya, Leiva-Villacorta and Loría-Salazar 0 0 0 EVALUATION OF FATIGUE LIFE OF ASPHALT MIXTURES THROUGH THE DISSIPATED ENERGY APPROACH Submitted to the th Annual Meeting of the Transportation

More information

Fatigue Endurance Limits for Perpetual Pavements

Fatigue Endurance Limits for Perpetual Pavements Fatigue Endurance Limits for Perpetual Pavements By Waleed Zeiada, Ph.D. November 14, 2013 Civil, Environmental, and Sustainable Engineering Tempe, AZ 85287 5306 1 Outline Background Research Statement

More information

NCHRP. Project No. NCHRP 9-44 A. Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development

NCHRP. Project No. NCHRP 9-44 A. Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development NCHRP Project No. NCHRP 9-44 A Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development Appendix 1 Integrated Predictive Model for Healing and

More information

DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES

DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES Al-Hosain M. Ali 1, Mohamed S. Aazam 2, and Mohamed A. Alomran 3 1 Assistant Professor, Civil Engineering.

More information

Implementation of M-E PDG in Kansas

Implementation of M-E PDG in Kansas Implementation of M-E PDG in Kansas Mustaque Hossain, Ph.D.,P.E. Kansas State University 1 Projects related to the M-E Guide Implementation and Calibration Kansas HMA Fatigue and Stiffness Study Pool Fund

More information

Performance-Based Mix Design

Performance-Based Mix Design Performance-Based Mix Design Y. Richard Kim North Carolina State University Presented to the Asphalt Mixture ETG Fall River, MA September 14, 216 Integration between PBMD and PRS Same test methods and

More information

V. Mandapaka, I. Basheer, K. Sahasi & P. Vacura CalTrans, Sacramento, CA B.W. Tsai, C. L. Monismith, J. Harvey & P. Ullidtz UCPRC, UC-Davis, CA

V. Mandapaka, I. Basheer, K. Sahasi & P. Vacura CalTrans, Sacramento, CA B.W. Tsai, C. L. Monismith, J. Harvey & P. Ullidtz UCPRC, UC-Davis, CA Application of four-point bending beam fatigue test for the design and construction of a long-life asphalt concrete rehabilitation project in Northern California V. Mandapaka, I. Basheer, K. Sahasi & P.

More information

Phenomenological models for binder rutting and fatigue. University of Wisconsin Research Team

Phenomenological models for binder rutting and fatigue. University of Wisconsin Research Team Phenomenological models for binder rutting and fatigue University of Wisconsin Research Team Outline of Talk The need for measuring damage behavior Current efforts, and evolution of ideas Gaps and what

More information

Role of Binders in Pavement Performance

Role of Binders in Pavement Performance Role of Binders in Pavement Performance Presented by H. Bahia Research conducted by The University of Wisconsin-Asphalt Group The Pavement Performance Prediction Symposium Western Research Institute, Laramie,

More information

Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements

Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements 06-1012 Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements by Stefan A. Romanoschi, Nicoleta Dumitru, Octavian Dumitru and Glenn

More information

What is on the Horizon in HMA. John D AngeloD Federal Highway Administration

What is on the Horizon in HMA. John D AngeloD Federal Highway Administration What is on the Horizon in HMA John D AngeloD Federal Highway Administration Are they all the same? Internal Angle of Gyration Internal Angle of Gyration Development of the Dynamic Angle Validator (DAV)

More information

Calibration of CalME models using WesTrack Performance Data

Calibration of CalME models using WesTrack Performance Data Research Report Calibration of CalME models using WesTrack Performance Data November 2006 Per Ullidtz John Harvey Bor-Wen Tsai Carl Monismith Institute of Transportation Studies University of California,

More information

Verification of the dissipated energy based fatigue model using field data

Verification of the dissipated energy based fatigue model using field data Rowan University Rowan Digital Works Theses and Dissertations 3-2-2015 Verification of the dissipated energy based fatigue model using field data Thomas Redles Follow this and additional works at: http://rdw.rowan.edu/etd

More information

Design of Overlay for Flexible Pavement

Design of Overlay for Flexible Pavement Design of Overlay for Flexible Pavement Types of Overlays Asphalt overlay over asphalt pavements Asphalt overlays on CC pavements CC overlays on asphalt pavements CC overlays on CC pavements Steps in Design

More information

Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator

Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator 1 1 1 1 1 1 1 0 1 0 1 0 1 Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator Eliecer Arias-Barrantes 1, José Pablo Aguiar-Moya, Luis Guillermo Loría-Salazar,

More information

Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method

Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method Mn/DOT Flexible Pavement Design Mechanistic-Empirical Method Pavement Design Systems and Pavement Performance Models March 22-23, 2007 - Reykjavik, Iceland Bruce Chadbourn Assistant Pavement Design Engineer

More information

Proposed Improvements to Overlay Test for Determining Cracking Resistance of Asphalt Mixtures. Wangyu Ma

Proposed Improvements to Overlay Test for Determining Cracking Resistance of Asphalt Mixtures. Wangyu Ma Proposed Improvements to Overlay Test for Determining Cracking Resistance of Asphalt Mixtures by Wangyu Ma A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the

More information

Asphalt Pavement Response and Fatigue Performance Prediction Using. Warm Mix Asphalt

Asphalt Pavement Response and Fatigue Performance Prediction Using. Warm Mix Asphalt Asphalt Pavement Response and Fatigue Performance Prediction Using the VECD Approach ApplicationApplication to Warm Mix Asphalt Y. Richard Kim, Ph.D, P.E. North Carolina State University Presented at the

More information

NOTTINGHAM DESIGN METHOD

NOTTINGHAM DESIGN METHOD NOTTINGHAM DESIGN METHOD Dr Andrew Collop Reader in Civil Engineering University of Nottingham CONTENTS Introduction Traffic Design temperatures Material properties Allowable strains Asphalt thickness

More information

ARC Update - Binder Fatigue

ARC Update - Binder Fatigue Asphalt Binder Expert Task Group ARC Update - Binder Fatigue Carl Johnson and Hussain U. Bahia University of Wisconsin - Madison September 16, 2009 Binder Fatigue Update Background Where we left off at

More information

Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis

Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis Technical Paper ISSN 1996-6814 Int. J. Pavement Res. Technol. 6(4):379-385 Copyright @ Chinese Society of Pavement Engineering Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based

More information

Linear Amplitude Sweep Test:

Linear Amplitude Sweep Test: Binder Expert Task Group Meeting Baton Rouge, LA September16, 2014 Linear Amplitude Sweep Test: Binder Grading Specification and Field Validation Pouya Teymourpour Hussain Bahia University of Wisconsin-Madison

More information

2015 North Dakota Asphalt Conference

2015 North Dakota Asphalt Conference 2015 North Dakota Asphalt Conference NDDOT Implementation of AASHTO Flexible Pavement Design Part I ADT & ESALs Nickie Reis, P&AM Part II Structural Numbers Tom Bold, M&R March 31 - April 1, 2015 Part

More information

Evaluation of Laboratory Performance Tests for Cracking of Asphalt Pavements

Evaluation of Laboratory Performance Tests for Cracking of Asphalt Pavements Evaluation of Laboratory Performance Tests for Cracking of Asphalt Pavements 2015 FHWA Cooperative Study at Asphalt Institute Greg Harder, Asphalt Institute It all started in 1919 Asphalt Association (later

More information

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA Introduction Overview M E E Design Inputs MEPDG Where are we now MEPDG Inputs, Outputs, and Sensitivity Southeast Asphalt User Producer Group Bill Vavrik 19 November 2008 2 Implementation Timeframe DARWin

More information

2002 Design Guide Preparing for Implementation

2002 Design Guide Preparing for Implementation 2002 Preparing for Implementation By Monte Symons 2003 NCUAPG Annual Meeting Excerpts from the 2002 Guide Implementation Package 2002 Presentation Overview Need for NCHRP 1-37A - Status Guide Basics Asphalt

More information

Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep

Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep AASHTO Designation: TP 101-14 American Association of State Highway and Transportation Officials

More information

RILEM inter-laboratory test on binder rheology test methods DSR and BBR.

RILEM inter-laboratory test on binder rheology test methods DSR and BBR. RILEM inter-laboratory test on binder rheology test methods DSR and BBR. Dariusz Sybilski, IBDiM Poland Ann Vanelstrate, CRR Belgium RILEM Technical Committee 182 PEB Performance Testing and Evaluation

More information

Accelerated Loading Evaluation of Base & Sub-base Layers

Accelerated Loading Evaluation of Base & Sub-base Layers Accelerated Loading Evaluation of Base & Sub-base Layers Zhong Wu, Ph.D., P.E. Louisiana Transportation Research Center (LTRC) April 2006 What is Accelerated Loading? Accelerated loading refers to Accelerated

More information

DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS

DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS DEVELOPMENT AND EVALUATION OF AN HMA FRACTURE MECHANICS BASED MODEL TO PREDICT TOP-DOWN CRACKING IN HMA LAYERS By JIAN ZOU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN

More information

Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep

Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep Standard Method of Test for Estimating Fatigue Resistance Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep AASHTO Designation: TP 2b xx (LAST)101-1214 American Association of State

More information

FATIGUE LIFE PREDICTIONS FOR ASPHALT CONCRETE SUBJECTED TO MULTIPLE AXLE LOADINGS

FATIGUE LIFE PREDICTIONS FOR ASPHALT CONCRETE SUBJECTED TO MULTIPLE AXLE LOADINGS FATIGUE LIFE PREDICTIOS FOR ASPHALT COCRETE SUBJECTED TO MULTIPLE AXLE LOADIGS Karim Chatti, Hyungsuk Lee and Chadi El Mohtar Assistant Professor, Dept. of Civil and Environmental Engineering, Michigan

More information

October 2006 Research Report: UCPRC-RR Authors: B. Tsai, D. Jones, J. Harvey, and C. Monismith PREPARED FOR: PREPARED BY:

October 2006 Research Report: UCPRC-RR Authors: B. Tsai, D. Jones, J. Harvey, and C. Monismith PREPARED FOR: PREPARED BY: October 2006 Research Report: UCPRC-RR-2006-08 Reflective Cracking Study: First-Level Report on Laboratory Fatigue Testing Authors: B. Tsai, D. Jones, J. Harvey, and C. Monismith Partnered Pavement Research

More information

Fatigue of Asphalt Binders Measured using Parallel Plate and Torsion Cylinder Geometries

Fatigue of Asphalt Binders Measured using Parallel Plate and Torsion Cylinder Geometries Fatigue of Asphalt Binders Measured using Parallel Plate and Torsion Cylinder Geometries Report prepared for the: Binder fatigue task group TRB Binder ETG meeting September 2004, Washington, D.C. 1 Outline

More information

5 ADVANCED FRACTURE MODELS

5 ADVANCED FRACTURE MODELS Essentially, all models are wrong, but some are useful George E.P. Box, (Box and Draper, 1987) 5 ADVANCED FRACTURE MODELS In the previous chapter it was shown that the MOR parameter cannot be relied upon

More information

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE

LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE LRRB INV 828 Local Road Material Properties and Calibration for MnPAVE Task 4 Report Calibration Bruce Tanquist, Assistant Pavement Design Engineer Minnesota Department of Transportation May 23, 2008 Introduction

More information

Difference Between Fixed and Floating Reference Points AASHTO T-321

Difference Between Fixed and Floating Reference Points AASHTO T-321 Difference Between Fixed and Floating Reference Points AASHTO T-321 Fixed Reference LVDT with Target Attached to the Beam Neutral Axis (Mid-Height, Mid-Length) 2 Old ASTM D7460 Graph Improper Representation

More information

Background PG G* sinδ

Background PG G* sinδ Full-Scale Accelerated Performance Testing for Superpave & Structural Validation Outcomes - Ongoing Activities - Future APT Experiments Hilton Head Island, South Carolina November 9-12, 2009 FHWA Turner-Fairbank

More information

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model American Journal of Engineering and Applied Sciences, 2012, 5 (2), 163-169 ISSN: 1941-7020 2014 Abed and Al-Azzawi, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design

Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design Tanquist 1 Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design Submission date: August 1, 2001 Word Count: 4654 Bruce A. Tanquist Research Project Engineer Minnesota

More information

Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight

Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight Asphalt Stiffness and Fatigue Parameters from Fast Falling Weight Deflectometer (FastFWD) Tests 1 1 1 1 1 1 1 1 0 1 0 1 Sadaf Khosravifar, PhD Dynatest North America, Inc. 1 South Jefferson Street, Suite

More information

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Zhong Wu, Ph.D., P.E. Zhongjie Zhang, Bill King Louay Mohammad Outline Background Objectives

More information

Superpave Implementation Phase II: Comparison of Performance-Related Test Results

Superpave Implementation Phase II: Comparison of Performance-Related Test Results July 2014 UCPRC-RR-2015-01 Superpave Implementation Phase II: Comparison of Performance-Related Test Results Authors: J. Harvey, A. Liu, J. Zhou, J. M. Signore, E. Coleri, and Y. He Part of Partnered Pavement

More information

NEW GENERATION AIRCRAFT FLEXIBLE PAVEMENT DESIGN CHALLENGES. M. Thompson U of Urbana-Champaign

NEW GENERATION AIRCRAFT FLEXIBLE PAVEMENT DESIGN CHALLENGES. M. Thompson U of Urbana-Champaign NEW GENERATION AIRCRAFT FLEXIBLE PAVEMENT DESIGN CHALLENGES M. Thompson U of IL @ Urbana-Champaign NEW GENERATION AIRCRAFT BOEING-777 (1995) -Gross Load 632,000 lbs A380-800 800 (2006) -Gross Load 1.23

More information

Technical Report Documentation Page 2. Government Accession No. 3. Recipient's Catalog No.

Technical Report Documentation Page 2. Government Accession No. 3. Recipient's Catalog No. 1. Report No. FHWA/TX-12/0-6622-1 4. Title and Subtitle TEXAS M-E FLEXIBLE PAVEMENT DESIGN SYSTEM: LITERATURE REVIEW AND PROPOSED FRAMEWORK Technical Report Documentation Page 2. Government Accession No.

More information

Yield Energy of Asphalt Binders Using the Dynamic Shear Rheometer

Yield Energy of Asphalt Binders Using the Dynamic Shear Rheometer Standard Method of Test for Yield Energy of Asphalt Binders Using the Dynamic Shear Rheometer AASHTO Designation: T XXX-09 1. SCOPE 1.1. This test method covers the indication of asphalt binders resistance

More information

Flexible Pavement Design

Flexible Pavement Design Flexible Pavement Design The Mechanistic-Empirical Way Presented by: Keith D. Herbold, P.E. 1 Presentation Outline What s new in flexible design Example of new design Differences Capabilities Tests and

More information

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Michael I. Darter, Jag Mallela, and Leslie Titus-Glover 1 ABSTRACT Concrete overlays are increasingly being constructed

More information

Everything you ever wanted to know about HMA in 30 minutes. John D AngeloD The mouth

Everything you ever wanted to know about HMA in 30 minutes. John D AngeloD The mouth Everything you ever wanted to know about HMA in 30 minutes John D AngeloD The mouth Are they all the same? Background SHRP A-001 A Contract Development of Superpave Mix Design Procedure Gyratory Compactor

More information

TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION

TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION Authors: TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION Anthony Stubbs (Presenter), BE(Hons), Masters student, University of Canterbury. aps49@student.canterbury.ac.nz.

More information

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Zhong Wu, Ph.D., P.E. Louisiana Transportation Research Center 2007 Transportation Engineering

More information

Effect of Transient Dynamic Loading on Flexible Pavement Response

Effect of Transient Dynamic Loading on Flexible Pavement Response Effect of Transient Dynamic Loading on Flexible Pavement Response Imad L. Al-Qadi Founder Professor of Engineering Pyeong Jun Yoo Graduate Research Assistant Illinois Center for Transportation University

More information

COARSE VERSUS FINE-GRADED SUPERPAVE MIXTURES: COMPARATIVE EVALUATION OF RESISTANCE TO RUTTING

COARSE VERSUS FINE-GRADED SUPERPAVE MIXTURES: COMPARATIVE EVALUATION OF RESISTANCE TO RUTTING NCAT Report 02-02 COARSE VERSUS FINE-GRADED SUPERPAVE MIXTURES: COMPARATIVE EVALUATION OF RESISTANCE TO RUTTING By Prithvi S. Kandhal L. Allen Cooley, Jr. February 2002 277 Technology Parkway Auburn, AL

More information

AMPT Cyclic Fatigue Test

AMPT Cyclic Fatigue Test AMPT Cyclic Fatigue Test Y. Richard Kim Jimmy D. Clark Distinguished University Professor Alumni Distinguished Graduate Professor NC State University North East Asphalt User/Producer Group Meeting October

More information

Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method

Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method by Jonathan Nathan Boone A thesis presented to the University of

More information

MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS

MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS MECHANISTIC CHARACTERIZATION OF RESILIENT MODULI FOR UNBOUND PAVEMENT LAYER MATERIALS Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION

MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION MECHANISTIC-EMPIRICAL LOAD EQUIVALENCIES USING WEIGH IN MOTION Prepared By: Curtis Berthelot Ph.D., P.Eng. Dept. of Civil Engineering University of Saskatchewan Tanya Loewen Dept. of Civil Engineering

More information

USE OF BBR TEST DATA TO ENHANCE THE ACCURACY OF G* -BASED WITCZAK MODEL PREDICTIONS

USE OF BBR TEST DATA TO ENHANCE THE ACCURACY OF G* -BASED WITCZAK MODEL PREDICTIONS USE OF BBR TEST DATA TO ENHANCE THE ACCURACY OF G* -BASED WITCZAK MODEL PREDICTIONS Mekdim T. Weldegiorgis * PhD. Candidate, Department of Civil Engineering, University of New Mexico, USA * 1 University

More information

IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE By SENTHILMURUGAN THYAGARAJAN A dissertation submitted in partial fulfillment

More information

SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES

SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES Ghazi G. Al-Khateeb 1, Raghu Satyanarayana 2, and Katherine

More information

SEAUPG 2009 CONFERENCE-HILTON HEAD ISLAND, SOUTH CAROLINA

SEAUPG 2009 CONFERENCE-HILTON HEAD ISLAND, SOUTH CAROLINA SEAUPG 29 CONFERENCEHILTON HEAD ISLAND, SOUTH CAROLINA FullScale Accelerated Performance Testing for Superpave & Structural Validation Outcomes Ongoing Activities Future APT Experiments Background Superpave

More information

HIGH MODULUS PAVEMENT DESIGN USING ACCELERATED LOADING TESTING (ALT).

HIGH MODULUS PAVEMENT DESIGN USING ACCELERATED LOADING TESTING (ALT). HIGH MODULUS PAVEMENT DESIGN USING ACCELERATED LOADING TESTING (ALT). J. Perret 1, M. Ould-Henia 1, A.-G. Dumont 1 Laboratory Traffic Facilities (LAVOC), Swiss Federal Institute Technology, Lausanne (EPFL)

More information

Mechanistic-Empirical Pavement Design Guide Distress Models

Mechanistic-Empirical Pavement Design Guide Distress Models Mechanistic-Empirical Pavement Design Guide Distress Models By: Mohamed El-Basyouny Arizona State University Pavement Performance Models Symposium Laramie - Wyoming June 23, 2006 Outline Analysis Methodology

More information

INTRODUCTION TO PAVEMENT STRUCTURES

INTRODUCTION TO PAVEMENT STRUCTURES INTRODUCTION TO PAVEMENT STRUCTURES A pavement is a structure composed of structural elements, whose function is to protect the natural subgrade and to carry the traffic safety and economically. As a wheel

More information

A New Failure Criterion for Asphalt Mixtures Under Fatigue Loading

A New Failure Criterion for Asphalt Mixtures Under Fatigue Loading Technical Paper ISS 1997-1400 Int. J. Pavement Res. Technol. 8(4):76-8 Copyright @ Chinese Society of Pavement Engineering A ew Failure Criterion for Asphalt Mixtures Under Fatigue Loading Bagdat Teltayev

More information

Pavement Design Where are We? By Dr. Mofreh F. Saleh

Pavement Design Where are We? By Dr. Mofreh F. Saleh Pavement Design Where are We? By Dr. Mofreh F. Saleh Pavement Design Where are We?? State-of-Practice State-of-the-Art Empirical Mechanistic- Empirical Mechanistic Actual Current Practice?? Inputs Structure

More information

Asphalt Mix Performance Testing on Field Project on MTO Hwy 10

Asphalt Mix Performance Testing on Field Project on MTO Hwy 10 Asphalt Mix Performance Testing on Field Project on MTO Hwy 10 2 nd International Conference on Warm Mix Asphalt October 11 13, 2011, St. Louis, Missouri Acknowledgements Presenter Paolo Visconti, Iterchimica

More information

Field Performance Monitoring and Modeling of Instrumented Pavement on I-35 in McClain County ANNUAL REPORT FOR FY 2010 ODOT SPR ITEM NUMBER 2200

Field Performance Monitoring and Modeling of Instrumented Pavement on I-35 in McClain County ANNUAL REPORT FOR FY 2010 ODOT SPR ITEM NUMBER 2200 Field Performance Monitoring and Modeling of Instrumented Pavement on I-35 in McClain County ANNUAL REPORT FOR FY 2010 ODOT SPR ITEM NUMBER 2200 Submitted to: Ginger McGovern, P.E. Planning and Research

More information

Advances in performance evaluation of asphalt binders

Advances in performance evaluation of asphalt binders Advances in performance evaluation of asphalt binders Hussain U Bahia Professor University of Wisconsin, USA March 25, Lisbon, Potugal s:, design performance a, LNEC, 25 March 2010 Road Outline >Performance

More information

TECHNICAL REPORT STANDARD PAGE

TECHNICAL REPORT STANDARD PAGE TECHNICAL REPORT STANDARD PAGE 1. Report No. FHWA/LA.11/499 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle Characterization of Louisiana Asphalt Mixtures Using Simple Performance

More information

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY:

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY: April 2008 Technical Memorandum: Calibration of CalME Models Using Field Data Collected from US 101 near Redwood National Park, Humboldt County Author: Rongzong Wu Partnered Pavement Research Program (PPRC)

More information

Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement

Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement Development and Validation of Mechanistic-Empirical Design Method for Permeable Interlocking Concrete Pavement Hui Li, David Jones, Rongzong Wu, and John Harvey University of California Pavement Research

More information

Mechanistic Pavement Design

Mechanistic Pavement Design Seminar on Pavement Design System and Pavement Performance Models Reykjavik, 22. 23. March, 2007 Mechanistic Pavement Design A Road to Enhanced Understanding of Pavement Performance Sigurdur Erlingsson

More information

Global standardisation of test methods for asphalt mixtures. Andrew Cooper

Global standardisation of test methods for asphalt mixtures. Andrew Cooper Global standardisation of test methods for asphalt mixtures Andrew Cooper 1 Content Europe UK Netherlands France APT and pavement design US Observations 2 Performance tests Performance tests are used to

More information

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations ENOC 2017, June 25 30, 2017, Budapest, Hungary Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations Amal Abdelaziz *, Chun-Hsing Ho *, and Junyi Shan * *

More information

Guide for Mechanistic-Empirical Design

Guide for Mechanistic-Empirical Design Copy No. Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES FINAL DOCUMENT APPENDIX BB: DESIGN RELIABILITY NCHRP Prepared for National Cooperative Highway Research Program

More information

Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method

Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method Analyses of Laboratory and Accelerated Pavement Testing Data for Warm-Mix Asphalt Using California Mechanistic- Empirical Design Method Rongzong Wu and David Jones UCPRC Imad Basheer and Venkata Mandapaka

More information

Improvement of Cracking Resistance for the Semi-Rigid Base Layer Reinforced by Geogrid

Improvement of Cracking Resistance for the Semi-Rigid Base Layer Reinforced by Geogrid Improvement of Cracking Resistance for the Semi-Rigid Base Layer Reinforced by Geogrid Zhu Yun Sheng * Chimi Tegachouang Nathan School of Transportation, Wuhan University of Technology, # 25 Luoshi Road,

More information

Coefficient of Thermal Expansion of Concrete Pavements

Coefficient of Thermal Expansion of Concrete Pavements Coefficient of Thermal Expansion of Concrete Pavements Erwin Kohler Ramon Alvarado David Jones University of California Pavement Research Center TRB Annual Meeting, Washington D.C. January 24 th, 2007

More information

AIRPORT ENGINEERING ATR-029. Development of SUPERPAVE PG Asphalt Selection Guidelines for Canadian Airport Pavements R&D PROJECT

AIRPORT ENGINEERING ATR-029. Development of SUPERPAVE PG Asphalt Selection Guidelines for Canadian Airport Pavements R&D PROJECT Public Works and Government Services Canada Travaux publics et Services Gouvernementaux Canada AIRPORT ENGINEERING ATR-029 Development of SUPERPAVE PG Asphalt Selection Guidelines for Canadian Airport

More information

Comparison of Axial and Diametral Resilient Stiffness of Asphalt-Aggregate Mixes

Comparison of Axial and Diametral Resilient Stiffness of Asphalt-Aggregate Mixes TRANSPORTATION RESEARCH RECORD 1492 135 Comparison of Axial and Diametral Resilient Stiffness of Asphalt-Aggregate Mixes AKHTARHUSEIN A. TAYEBALI, JOHN A. DEACON, AND CARLL. MONISMITH The stiffness of

More information

ABSTRACT. The new pavement design methodology is based on mechanistic-empirical

ABSTRACT. The new pavement design methodology is based on mechanistic-empirical ABSTRACT Title of Document: CATALOG OF MATERIAL PROPERTIES FOR MECHANISTIC-EMPIRICAL PAVEMENT DESIGN Rui Li, Master of Science, 2011 Directed By: Dr. Charles W. Schwartz Department of Civil and Environmental

More information

Texas Transportation Institute The Texas A&M University System College Station, Texas

Texas Transportation Institute The Texas A&M University System College Station, Texas 1. Report No. FHWA/TX-05/0-4468-1 4. Title and Subtitle PRELIMINARY FATIGUE ANALYSIS OF A COMMON TxDOT HOT MIX ASPHALT CONCRETE MIXTURE 2. Government Accession No. 3. Recipient's Catalog No. Technical

More information

Fatigue Response of Asphalt-Aggregate Mixes

Fatigue Response of Asphalt-Aggregate Mixes SHRP-A-404 Fatigue Response of Asphalt-Aggregate Mixes Asphalt Research Program Institute of Transportation Studies University of California, Berkeley Strategic Highway Research Program National Research

More information

Al-Khateeb and Shenoy. A Distinctive Fatigue Failure Criterion. Ghazi Al-Khateeb 1 and Aroon Shenoy 2. Abstract

Al-Khateeb and Shenoy. A Distinctive Fatigue Failure Criterion. Ghazi Al-Khateeb 1 and Aroon Shenoy 2. Abstract 1 A Distinctive Fatigue Failure Criterion Ghazi Al-Khateeb 1 and Aroon Shenoy 2 Abstract This paper presents a new fatigue failure criterion for asphalt paving mixtures that is simple, unique, and distinctive.

More information

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY:

April 2008 Technical Memorandum: UCPRC-TM Author: Rongzong Wu PREPARED FOR: PREPARED BY: April 2008 Technical Memorandum: Calibration of CalME Models Using Field Data Collected from US 101 near Redwood National Park, Humboldt County Author: Rongzong Wu Partnered Pavement Research Program (PPRC)

More information

Beta Testing and. Validation of HMA PRS 1

Beta Testing and. Validation of HMA PRS 1 Beta Testing and NCHRP 9-22 WEBINAR April 27, 2009 NCHRP 9-22 Beta Testing and 1 Introduction to Project Project Team Specification Developments Materials and Method Specifications Performance Based Specifications

More information

VECD (Visco-ElasticContinuum Damage): State-of-the-art technique to evaluate fatigue damage in asphalt pavements

VECD (Visco-ElasticContinuum Damage): State-of-the-art technique to evaluate fatigue damage in asphalt pavements VECD (Visco-ElasticContinuum Damage): tate-of-the-art technique to evaluate fatigue damage in asphalt pavements M. Emin Kutay, Ph.D., P.E. Assistant Professor Michigan tate University History of the Viscoelastic

More information

AN INVESTIGATION INTO DYNAMIC MODULUS OF HOT-MIX ASPHALT AND ITS CONTRIBUTING FACTORS

AN INVESTIGATION INTO DYNAMIC MODULUS OF HOT-MIX ASPHALT AND ITS CONTRIBUTING FACTORS AN INVESTIGATION INTO DYNAMIC MODULUS OF HOT-MIX ASPHALT AND ITS CONTRIBUTING FACTORS Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration

More information

ASPHALTIC CONCRETE EVALUATION FOR MECHANISTIC PAVEMENT DESIGN

ASPHALTIC CONCRETE EVALUATION FOR MECHANISTIC PAVEMENT DESIGN International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 8, August 2018, pp. 513 521, Article ID: IJCIET_09_08_049 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=8

More information

Development and Evaluation of Performance Tests to Enhance Superpave Mix Design and Implementation in Idaho. Quarterly Progress Report QR4

Development and Evaluation of Performance Tests to Enhance Superpave Mix Design and Implementation in Idaho. Quarterly Progress Report QR4 Development and Evaluation of Performance Tests to Enhance Superpave Mix Design and Implementation in Idaho USDOT Assistance No. DTOS59-06-G-00029 (NIATT Project No. KLK479) ITD Project No. RP 181 (NIATT

More information

BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME)

BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME) BONDED CONCRETE OVERLAY OF ASPHALT PAVEMENTS MECHANISTIC-EMPIRICAL DESIGN GUIDE (BCOA-ME) THEORY MANUAL University of Pittsburgh Department of Civil and Environmental Engineering Pittsburgh, Pennsylvania

More information

Performance Characteristics of Asphalt Mixtures Incorporating Treated Ground Tire Rubber Added During the Mixing Process

Performance Characteristics of Asphalt Mixtures Incorporating Treated Ground Tire Rubber Added During the Mixing Process Innovative Research in Asphalt Pavements Performance Characteristics of Asphalt Mixtures Incorporating Treated Ground Tire Rubber Added During the Mixing Process Dr. Walaa S. Mogawer, PE, F.ASCE Director

More information

FATIGUE FAILURE TESTING IN SECTION F

FATIGUE FAILURE TESTING IN SECTION F CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 09-058 UILU-ENG-2009-2040 ISSN: 0197-9191 FATIGUE FAILURE TESTING IN SECTION F Prepared By Shannon Beranek Samuel H. Carpenter University

More information

Dynamic Modulus of Asphalt Mixtures for Development of

Dynamic Modulus of Asphalt Mixtures for Development of JOURNAL PAPER TYPE Journal of Testing and Evaluation, Sept 2002 Vol XX, No. X Paper ID: Available online at: www.astm.org Published XXXX Lee, K. 1, Kim, H. 2, Kim, N. 3, Kim, Y 4 Dynamic Modulus of Asphalt

More information

EFFECTS OF TEST VARIABILITY ON MIXTURE VOLUMETRICS AND MIX DESIGN VERIFICATION

EFFECTS OF TEST VARIABILITY ON MIXTURE VOLUMETRICS AND MIX DESIGN VERIFICATION EFFECTS OF TEST VARIABILITY ON MIXTURE VOLUMETRICS AND MIX DESIGN VERIFICATION Authors: Adam J. Hand 1 Amy L. Epps 2 December 1, 1999 Revised for Presentation and Publication 2000 Annual Meeting of the

More information