Adaptive Finite Element Methods for Elliptic Optimal Control Problems

Size: px
Start display at page:

Download "Adaptive Finite Element Methods for Elliptic Optimal Control Problems"

Transcription

1 Adaptive Finite Element Methods for Elliptic Optimal Control Problems Ronald H.W. Hoppe 1,2 1 2 Institute of Mathematics, University of Augsburg Summer School Optimal Control of PDEs Cortona, July 12-17, 2010

2 Books on Adaptive Finite Element Methods M. Ainsworth and J.T. Oden; A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester, I. Babuska and T. Strouboulis; The Finite Element Method and its Reliability. Clarendon Press, Oxford, W. Bangerth and R. Rannacher; Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel, K. Eriksson, D. Estep, P. Hansbo, and C. Johnson; Computational Differential Equations. Cambridge University Press, Cambridge, P. Neittaanmäki and S. Repin; Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York, R. Verfürth; A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York, Stuttgart, 1996.

3 Adaptive Finite Element Methods for Optimal Control Problems R. Becker, H. Kapp, and R. Rannacher; Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim., 39, , O. Benedix and B. Vexler; A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Computational Optimization and Applications 44, 3-25, A. Gaevskaya, R.H.W. Hoppe, Y. Iliash, and M. Kieweg; Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. Proc. Conf. Optimal Control for PDEs, Oberwolfach, Germany (G. Leugering et al.; eds.), Birkhäuser, Basel, 2006.

4 Adaptive Finite Element Methods for Optimal Control Problems A. Gaevskaya, R.H.W. Hoppe, and S. Repin; Functional approach to a posteriori error estimation for elliptic optimal control problems with distributed control. Journal of Math. Sciences 144, , A. Günther and M. Hinze; A posteriori error control of a state constrained elliptic control problem. J. Numer. Math., 16, , M. Hintermüller and R.H.W. Hoppe; Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, , 2008.

5 Adaptive Finite Element Methods for Optimal Control Problems M. Hintermüller, R.H.W. Hoppe, Y. Iliash, and M. Kieweg; An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control, Optimisation and Calculus of Variations 14, , R.H.W. Hoppe, Y. Iliash, C. Iyyunni, and N. Sweilam; A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Math. 14, 57 82, R.H.W. Hoppe and M. Kieweg; A posteriori error estimation of finite element approximations of pointwise state constrained distributed parameter problems. J. Numer. Math. 17, , 2009.

6 Adaptive Finite Element Methods for Optimal Control Problems R. Li, W. Liu, H. Ma, and T. Tang; Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim., 41, , A. Schiela and A. Günther; Interior point methods in function space for state state constraints - inexact Newton and adaptivity. ZIB-Report 09-01, Konrad-Zuse-Zentrum für Informationstechnik Berlin, B. Vexler and W. Wollner; Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim., 47, , 2008

7 Adaptive Finite Element Methods for Control Constrained Optimal Elliptic Control Problems Ronald H.W. Hoppe 1,2 1 2 Institute of Mathematics, University of Augsburg Summer School Optimal Control of PDEs Cortona, July 12-17, 2010

8 AFEM for Control Constrained Elliptic Optimal Control Problems Review of the a posteriori error analysis of adaptive finite element methods Distributed optimal control problem with control constraints Residual-type a posteriori error estimator Reliability and discrete local efficiency

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 Discrete Local Efficiency

31 Discrete Local Efficiency of the Error Estimator Theorem Suppose that T T H (Ω) is a refined element and that (y H,p H,u H, σ H ) and (y h,p h,u h, σ h ) are the finite element approximations w.r.t. the triangulations T H (Ω) and T h (Ω). Then there holds η 2 y,t y H y h 2 1,T + h2 T u H u h 2 0,T + osc2 T (f), (η (1) p,t )2 p H p h 2 1,T + y H y h 2 1,T + osc2 T (yd ). Proof: Let ϕ a h V h be a nodal basis function associated with an interior point a N H (T). Then, with z h := (f T + u H )ϕ a h there holds ( ) ( ) η 2 y,t h 2 T(f+u h,z h ) 0,T + h 2 T u H u h 0,T +osc T (y d ) z h 0,T + osc 2 T(f). Since z h is an admissible test function, we have a T (y h,z h ) = (f + u h,z h ) 0,T. Moreover, Green s formula reveals a T (y H,z h ) = 0, and hence h 2 T(f + u h,z h ) 0,T = h 2 T a(y h y H,z h ) h 2 T y h y H 1,T z h 1,T. Inserting into ( ) and using Young s inequality, gives the assertion.

32 Discrete Local Efficiency of the Error Estimator Theorem Suppose that T T H (Ω) is a refined element and that (y H,p H,u H, σ H ) and (y h,p h,u h, σ h ) are the finite element approximations w.r.t. the triangulations T H (Ω) and T h (Ω). Then there holds M H p H p H 0,T p H p h 1,T + α u H u h 0,T + σ H σ h 0,T + α u d H ud h 0,T. Proof: The result follows readily by means of M H p H M h p h = α (u h u H ) + α (u d H ud h ) + σ H σ h and M h p H p H 0,T ρ M H p H p H 0,T, where 0 < ρ < 1 only depends on the shape regularity of the triangulation.

33 Discrete Local Efficiency of the Error Estimator Theorem Suppose that E E H (Ω) is a refined edge and that (y H,p H,u H, σ H ) and (y h,p h,u h, σ h ) are the finite element approximations w.r.t. the triangulations T H (Ω) and T h (Ω). Let further ω E := T 1 T 2, where T ν E H (Ω),1 ν 2, such that E = T 1 T 2. Then there holds Proof: Let ϕ mid E h η 2 y,e y H y h 2 1,ω E + h 2 T u H u h 2 0,ω E + η 2 y,ω, η 2 p,e p H p h 2 1,ω E + y H y h 2 1,ω E + η 2 p,e. V h be the nodal basis function associated with mid(e) N h (Ω). Then, the function z h := [ν E y H ]ϕ mid E h satisfies [ν E y H ] 2 0,E ([ν E y H ],z h ) 0,T, z h 0,E h 1/2 E [ν E y H ] 0,ω E, z h 1,T h 1/2 E [ν E y H ] 0,ω E. Since z h is an admissible test function, we have a ω E (y h,z h ) = (f + u h,z h ) 0,ω E, and hence η 2 y,e = h E [ν E y H ] 2 0,E h E ([ν E y H ],z h ) 0,E = h E ( a ω E (y H y h,z h ) + (u H u h,z h ) 0,ω E + (f+u H,z h ) 0,ω E ) h 1/2 E [ν E y H ] 0,E ( y H y h 1,ω E + h T u H u h 0,ω E + η y,ω E ).

34 Discrete Local Efficiency of the Error Estimator Theorem Let (y H,p H,u H, σ H ) and (y h,p h,u h, σ h ) be the finite element approximations with respect to the triangulations T H (Ω) and T h (Ω), respectively. Then, for T A H (u H ) there holds ( ) (σ H, ψ ψ H ) 0,T p H p h 2 1,T + u H u h 2 0,T + σ H σ h 2 0,T + µ 2 T (ud ) +µ T (ψ). Proof: Since ψ H = u H for T A H (u H ), it follows that (σ H, ψ ψ H ) 0,T = (σ H, ψ u H ) 0,T = (σ H, ψ u h ) 0,T + (σ H,u h u H ) 0,T. Using (σ h,u h ψ h ) 0,T = 0, for the first term on the right-hand side we obtain (σ H, ψ u h ) 0,T = (σ H, ψ ψ H ) 0,T + (σ H,u h u H ) 0,T. (σ H,u h u H ) 0,T = α (u d H u d h,u h u H ) 0,T + (σ h,u h u H ) 0,T + (M H p H M h p h,u h u H ) 0,T + α u h u H 2 0,T. On the other hand, for the second term we have (σ H, ψ u h ) 0,T = (σ H, ψ u H ) 0,T }{{} = (σ H,ψ ψ H ) 0,T (σ H,u h u H ) 0,T.

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 Adaptive Finite Element Methods for State Constrained Optimal Elliptic Control Problems Ronald H.W. Hoppe 1,2 1 2 Institute of Mathematics, University of Augsburg Summer School Optimal Control of PDEs Cortona, July 12-17, 2010

54 C O N T E N T S I. State Constrained Optimal Control of Elliptic PDEs Optimality conditions and finite element discretization II. Residual-Type a posteriori error estimators Element/edge residuals, data oscillations, and consistency error Reliabilty and local efficiency of the error estimator Lavrentiev regularization: Mixed control-state constraints III. Goal Oriented Dual Weighted Approach Primal-dual weighted error terms in the state and the adjoint state Consistency error and the structure of the Lagrange multiplier

55 Literature on State-Constrained Optimal Control Problems M. Bergounioux, K. Ito, and K. Kunisch (1999) M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch (2000) M. Bergounioux and K. Kunisch (2002) E. Casas (1986) E. Casas and M. Mateos (2002) E. Casas, F. Tröltzsch, and A. Unger (2000) K. Deckelnick and M. Hinze (2006) M. Hintermüller and K. Kunisch (2007) K. Kunisch and A. Rösch (2002) C. Meyer and F. Tröltzsch (2006) C. Meyer, U. Prüfert, and F. Tröltzsch (2005) U. Prüfert, F. Tröltzsch, and M. Weiser (2004) A. Rösch and F. Tröltzsch (2006)

56 Model Problem (Distributed Elliptic Control Problem with State Constraints) Let Ω lr 2 be a bounded domain with boundary Γ = Γ D Γ N, Γ D Γ N =, and let A : V H 1 (Ω), V := {v H 1 (Ω) v Γd = 0}, be the linear second order elliptic differential operator Ay := y + cy, c 0, with c > 0 or meas(γ D ) > 0. Assume that Ω is such that for each v L 2 (Ω) the solution y of Ay = u satisfies y W 1,r (Ω) V for some r > 2. Moreover, let u d,y d L 2 (Ω), and ψ W 1,r (Ω) such that ψ ΓD > 0 be given functions and let α > 0 be a regularization parameter. Consider the state constrained distributed elliptic control problem Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω, subject to Ay = u in Ω, y = 0 on Γ D, ν y = 0 on Γ N, Iy K := {v C(Ω) v(x) ψ(x), x Ω}. where I stands for the embedding operator W 1,r (Ω) C(Ω).

57 We introduce the control-to-state map The Reduced Optimal Control Problem G : L 2 (Ω) C(Ω), y = Gu solves Ay + cy = u. We assume that the following Slater condition is satisfied (S) There exists v 0 L 2 (Ω) such that Gv 0 int(k). Substituting y = Gu allows to consider the reduced control problem inf u U ad J red (u) := 1 2 Gu yd 2 0,Ω + α 2 u ud 2 0,Ω, U ad := {v L 2 (Ω) (Gv)(x) ψ(x), x Ω}. Theorem (Existence and uniqueness). The state constrained optimal control problem admits a unique solution y W 1,r (Ω) K.

58 Optimality Conditions for the State Constrained Optimal Control Problem Theorem. There exists an adjoint state p V s := {v W 1,s (Ω) v ΓD = 0}, where 1/r + 1/s = 1, and a multiplier σ M + (Ω) such that ( y, v) 0,Ω + (cy,v) 0,Ω = (u,v) 0,Ω, v V, ( p, w) 0,Ω + (cp,w) 0,Ω = (y y d,w) 0,Ω + σ,x, w V r, p + α(u u d ) = 0, σ,y ψ = 0.

59 Proof: The reduced problem can be written in unconstrained form as inf Ĵ(v) := J red (v) + (I K G)(v), v L 2 (Ω) where I K stands for the indicator function of the constraint set K. The Slater condition and subdifferential calculus give rise to the optimality condition 0 Ĵ(u) = J red(u) + (I K G)(u) = J red(u) + G I K (Gu). Hence, there exists σ I K (Gu) such that (y(u) y d,y(v)) 0,Ω + α(u u d,v) 0,Ω + (G σ,v) 0,Ω = 0, v L 2 (Ω). We define σ := G σ as a regularization of σ and introduce p V as the solution of ( p, v) 0,Ω + (c p,v) 0,Ω = (y(u) y d,v) 0,Ω, v V. We set p := p + σ. Since σ M(Ω), we have σ V s [Casas;1986] whence p V s.

60 Finite Element Approximation Let T l (Ω) be a simplicial triangulation of Ω and let V l := { v l C(Ω) v l T P 1 (T), T T l (Ω), v l ΓD = 0 } be the FE space of continuous, piecewise linear functions. Let u d l V l be some approximation of ud, and let ψ l be the V l -interpoland of ψ. Consider the following FE Approximation of the state constrained control problem Minimize J l (y l,u l ) := 1 2 y l yd 2 0,Ω + α 2 u l ud l 2 0,Ω, over (y l,u l ) V l V l, subject to ( y l, v l ) 0,Ω + (cy l,v l ) 0,Ω = (u l,v l ) 0,Ω, v l V l, y l K l := {v l V l v l (x) ψ l (x), x Ω}. Since the constraints are point constraints associated with the nodal points, the discrete multipliers are chosen from M l := {µ l M(Ω) µ l = a N l (Ω Γ N ) κ a δ a, κ a lr}.

61 Optimality Conditions for the FE Discretized Optimal Control Problem Theorem 2. There exists a discrete adjoint state p l V l, and a discrete multiplier σ l with σ l M l M + (Ω) such that ( y l, v l ) 0,Ω + (cy l,v l ) 0,Ω = (u l,v l ) 0,Ω, v l V l, ( p l, w l ) 0,Ω + (cp l,w l ) 0,Ω = (y l y d,w l ) 0,Ω + σ l,w l, w l V l, p l + α(u l u d l ) = 0, σ l,y l ψ l = 0. We introduce a regularized discrete multiplier σ l V l according to ( σ l, v l ) 0,Ω + (c σ l,v l ) 0,Ω = σ l,v l ) 0,Ω, v l V l, and a regularized discrete adjoint state p l V l as the solution of ( p l, w l ) 0,Ω + (c p l,w l ) 0,Ω = (y l y d,w l ) 0,Ω, w l V l. As in the continuous regime, we have p l = p l + σ l.

62 Residual Type A Posteriori Error Estimator The error estimator η l := η l (y) + η l (p) consists of element and edge residuals for the state and the modified adjoint state: η l (y) := ( η 2 T(y) + T T l (Ω) η 2 E(y)) 1/2, η l (p) := ( ((η 2 l (p) + E E l (Ω) T T l (Ω) E E l (Ω) η 2 E(p)) 1/2 (i) Element and edge residuals for the state y η T (y) := h T cy l u l 0,T }{{} element residuals, T T l (Ω), η E (y) := h 1/2 E ν E [ y l ] 0,E }{{} edge residuals, E E l (Ω) (ii) Element and edge residuals for the modified adjoint state p η T (p) := h T cp l (y l y d ) 0,T }{{} element residuals, T T l (Ω), η E (p) := h 1/2 E ν E [ p l ] 0,E, E E }{{} l (Ω). edge residuals

63 Data Oscillations in the Data u d and y d Data oscillations occur in the shift control u d and in the desired state y d : osc l := (osc 2 l (ud ) + osc 2 l (yd )) 1/2 (i) Low order data oscillations in u d osc l (u d ) := ( osc T (u d ) 2 ) 1/2, osc T (u d ) := u d u d l T T l (Ω) 0,T (ii) Higher order data oscillations in y d osc l (y d ) := ( osc T (y d ) 2 ) 1/2, osc T (y d ) := h T y d yh d 0,T T T l (Ω)

64 Bulk Criteria and Refinement Strategy Given universal constants Θ i, 1 i 4, choose a set of edges Mη,E E l (Ω) and sets of elements Mη,T, M osc,y d, M osc,u d T l (Ω) such that Θ 1 E E l (Ω) (η 2 y,e + η 2 p,e) E Mη,E (η 2 y,e + η 2 p,e), Θ 3 Θ 2 T T l (Ω) osc 2 T(y d ) T T l (Ω) (η 2 y,t + η 2 p,t) E M osc,y d E Mη,T osc 2 T(y d ), Θ 4 (η 2 y,t + η 2 p,t), T T l (Ω) osc 2 T(u d ) E M osc,u d osc 2 T(u d ). We set M T := Mη,T M osc,y d M osc,u d and refine an element T T l (Ω) by bisection, if T M T. An element E E l (Ω) is refined by bisection, if E Mη,E. Moreover, all elements T T l (Ω) that share at least one edge with the discrete free boundary are refined by bisection.

65 Auxiliary States and Consistency Error The error analysis involves an auxiliary state y(u l ) V and an auxiliary adjoint state p(y l ) V which are given as follows ( y(u l ), v) 0,Ω + (cy(u l ),v) 0,Ω = (u l,v) 0,Ω, v V, ( p(y l ), v) 0,Ω + (c p(y l,v) 0,Ω = (y l yd,v) 0,Ω, v V. We also introduce an auxiliary discrete state y l (u) V l according to ( y l (u), v l ) 0,Ω + (cy l (u),v l ) 0,Ω = (u,v l ) 0,Ω, v l V l. In general, neither y(u l ) K nor y l (u) K l. Therefore, there is a consistency error e c (u,u l ) := max( σ l,y l (u) ψ l + σ,y(u l ) ψ,0). Since e c (u,u l ) = 0 for u = u l, we define ẽ c (u,u l ) := e c (u,u l )/ u u l 0,Ω, u u l 0, u = u l.

66 Reliability of the A Posteriori Error Estimator Theorem. For the errors e y := y y l in the state, e p := p p l, e p := p p l in the adjoint and modified adjoint state, and e u := u u l in the control there holds e y 1,Ω + e p 1,Ω + e p 0,Ω + e u 0,Ω η l + osc l (ud ) + ẽ c (u,u l ). Proof: We will show that for e y,e p and e u there holds e y 1,Ω + e p 1,Ω + e u 0,Ω η l + osc l (ud ) + ẽ c (u,u l ). Since p + α(u u d ) = 0 and p l + α(u l u d l ), we have e p = α((u d u d l ) e u) whence e p 0,Ω e u 0,Ω + osc l (ud )).

67 Reliability of the A Posteriori Error Estimator (Cont d) Lemma. For the errors e y := y y l in the state, e p := p p l in the modified adjoint state, and e u := u u l in the control there holds e y 1,Ω + e p 1,Ω + e u 0,Ω η l + osc l (ud ) + ẽ c (u,u l ). Proof: Straightforward estimation from above results in e y 1,Ω y y(u l ) 1,Ω + y(u l ) y l 1,Ω }{{} η l (y), e p 1,Ω p p(y l ) 1,Ω + p(y l ) p l 1,Ω }{{} η l ( p). On the other hand, using the ellipticity of the differential operator y y(u l 1,Ω e u 0,Ω, p p(y l ) 1,Ω e u 0,Ω + y(u l ) y l 1,Ω }{{} η l (y). Hence, it remains to estimate the L 2 -error e u 0,Ω in the control.

68 Reliability of the A Posteriori Error Estimator (Cont d) Proof (Cont d): Using p = α(u d u) and p l = α(u d l u l ) as well as p = p + σ and p l = p l + σ l e u 2 0,Ω = (e u,u d u d l ) 0,Ω }{{} =: I + α 1 (e u, p l p(y l ) 0,Ω }{{} =: II By Young s inequality, for the two first terms we obtain + α 1 (e u, p(y l ) p) 0,Ω }{{} =: III + α 1 (e u, σ l σ) 0,Ω }{{} =:IV. I 1 8 e u 2 0,Ω + 2 osc2 l (ud ), II α 8 e u 2 0,Ω + 2 α p l p(y l ) 2 1,Ω }{{} η l ( p). For the third term, we use the duality between the state and the auxiliary adjoint state equations in the continuous and discrete regime. Setting v := p(y l ) p and v = y(u l ) y: III = (e u, p(y l ) p) 0,Ω = (y y l,y(u l ) y) 0,Ω = y y(u l ) 2 0,Ω + (y(u l ) y l,y(u l ) y) 0,Ω y(u l ) y l 1,Ω y y(u l 1,Ω C y(u l ) y l 1,Ω e u 0,Ω α 8 e u 2 0,Ω + 2C2 α η2 l (y).

69 Reliability of the A Posteriori Error Estimator (Cont d) Proof (Cont d): The estimate of the fourth term essential relies on the complementary conditions and results in the consistency error due to the mismatch between the continuous and discrete free boundaries. Using the auxiliary states y(u l ) and y l (u), we obtain (e u, σ l σ) 0,Ω = ( (y l (u) y l, σ l ) 0,Ω + (c(y l (u) y l ), σ l ) 0,Ω = σ l,y l (u) ψ l + σ l,, ψ l y l }{{} = 0 ( (y y(u l ), σ) 0,Ω (c(y y(u l )), σ) 0,Ω = + σ,y(u l ) ψ + σ, ψ y }{{} = 0 e u 0,Ω ẽ c (u,u l ) α 8 e u 2 0,Ω + 2 α ẽ2 c(u,u l ). Collecting the estimates for terms I IV gives the assertion.

70 Efficiency of the A Posteriori Error Estimator Theorem. For the errors e y := y y l in the state, e p := p p l in the regularized adjoint state, and e u := u u l in the control there holds η l osc l (y d ) e y 1,Ω + e p 1,Ω + e u 0,Ω. Proof: The assertion follows by standard arguments from the a posteriori error analysis of adaptive finite element methods.

71 Numerical Results: Distributed Control Problem with State Constraints I Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω over (y,u) H 1 0(Ω) L 2 (Ω) subject to y = u in Ω, y K := {v H 1 0(Ω) v ψ a.e. in Ω} Data: Ω := ( 2, +2) 2, y d (r) := y(r) + p(r) + σ(r), u d (r) := u(r) + α 1 p(r), ψ := 0, α := 0.1, where y(r),u(r),p(r), σ(r) is the solution of the problem: y(r) := r 4/3 + γ 1 (r), u(r) = y(r), p(r) = γ 2 (r) + r r r2, σ(r) :=, γ 1 := γ 2 := 1, r < (r 0.25) (r 0.25) 4 80(r 0.25) 3 + 1, 0.25 < r < , otherwise { 1, r < , otherwise. { 0.0, r < , otherwise,

72 Numerical Results: Distributed Control Problem with State Constraints I Optimal state (left) and optimal control (right)

73 Numerical Results: Distributed Control Problem with State Constraints I Optimal adjoint state (left) and regularized adjoint state (right)

74 Numerical Results: Distributed Control Problem with State Constraints I Adaptively refined grid after 12(left) and 14 (right) iterations

75 Numerical Results: Distributed Control Problem with State Constraints I l N dof z z l y y l 1 u u l 0 p p l 0 p p l e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-02 Total error, errors in the state, control, and adjoint state (Θ i = 0.7)

76 Numerical Results: Distributed Control Problem with State Constraints I l N dof η l (y) η l (p) osc l (u d ) osc l (y d ) ẽ c (u,u l ) e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e+00 Components of the error estimator, data oscillations, and the consistency error

77 Numerical Results: Distributed Control Problem with State Constraints I l N dof M fb,t Mη,E Mη,T M osc,y d M osc,u d Percentages of elements/edges marked by the bulk criteria

78 Numerical Results: Distributed Control Problem with State Constraints II Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω over (y,u) H 1 (Ω) L 2 (Ω) subject to y + cy = u in Ω, y K := {v H 1 (Ω) v ψ a.e. in Ω} Data: Ω = B(0,1) := {x = (x 1,x 2 ) T x x 2 2 < 1}, y d (r) := π 1 4π r π ln(r), u d (r) := π r2 1 ln(r), ψ := 4 + r, α := 1. 2π The solution y(r),u(r),p(r), σ(r) of the problem is given by y(r) 4, u(r) 4, p(r) = 1 4π r2 1 2π ln(r), σ(r) = δ 0.

79 Numerical Results: Distributed Control Problem with State Constraints II Optimal state (left) and optimal control (right)

80 Numerical Results: Distributed Control Problem with State Constraints II Optimal adjoint state (left) and regularized adjoint state (right)

81 Numerical Results: Distributed Control Problem with State Constraints II l N dof z z l y y l 1 u u l 0 p p l 0 p p l e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-04 Total error, errors in the state, control, and adjoint state (Θ i = 0.7)

82 Numerical Results: Distributed Control Problem with State Constraints II l N dof η l (y) η l (p) osc l (u d ) osc l (y d ) ẽ c (u,u l ) e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e+00 Components of the error estimator, data oscillations, and the consistency error

83 Numerical Results: Distributed Control Problem with State Constraints II l N dof M fb,t Mη,E Mη,T M osc,y d M osc,u d Percentages of elements/edges marked by the bulk criteria

84 Lavrentiev Regularization: Mixed Control-State Constraints Introduce a regularization parameter ε > 0 and consider the mixed controlstate constrained optimal control problem Minimize J(y ε,u ε ) := 1 2 yε y d 2 0,Ω + α 2 uε u d 2 0,Ω, subject to Ay ε = u ε in Ω, y ε = 0 on Γ D, ν y ε = 0 on Γ N, εu ε + y ε K := {v L 2 (Ω) v(x) ψ(x), f.a.a. x Ω}. Theorem (Optimality conditions). The optimal solution (y ε,u ε ) V L 2 (Ω) is characterized by the existence of an adjoint state p ε V and a multiplier σ ε L 2 +(Ω) such that ( y ε, v) 0,Ω + (cyε,v) 0,Ω = (uε,v) 0,Ω, v V, ( p ε, v) 0,Ω + (cpε,v) 0,Ω = (yε y d,v) 0,Ω + (σε,v) 0,Ω, v V, p ε + α (u ε u d ) + εσ ε = 0, (σ ε, εu ε + y ε ψ) 0,Ω = 0.

85 Features of the Lavrentiev Regularization Since the Lavrentiev regularization formally represents a control constrained optimal control problem, numerical solution techniques for the control constrained case can be employed. Does this also hold true for the a posteriori error estimation? Apply the a posteriori error estimator from [Hintermüller/H./Iliash/Kieweg] to the mixed control-state constrained problem: η T (y ε ) = h T cy ε l uε l 0,T, η T (p ε ) = h T cp ε l (yε l yd ) σ ε l 0,T, η E (y ε ) = h 1/2 E ν E [ y ε l ] 0,E, η E (p ε ) = h T ν E [ p ε l ] 0,E. Since we are interested in the approximation of the solution (y,u,p) of the state-constrained problem by (y ε,u ε,p ε ) as ε 0, but p lacks smoothness and σ / L 2 +(Ω), we have to proceed by appropriate regularizations.

86 Regularization of the Multiplier and of the Adjoint State We define a regularized multiplier σ ε V and a regularized adjoint state p ε V as the solution of ( σ ε, v) 0,Ω + (c σε,v) 0,Ω = (σε,v) 0,Ω, v V, ( p ε, v) 0,Ω + (c pε,v) 0,Ω = (yε y d,v) 0,Ω, v V. In the discrete regime, we define σ ε l V l and pε l V l analogously. This gives rise to the following element and edge residuals η T (y ε ) = h T cy ε l uε l 0,T, η T ( p ε ) = h T c p ε l (yε l yd ) 0,T, η E (y ε ) = h 1/2 E ν E [ y ε l ] 0,E, η E ( p ε ) = h T ν E [ p ε l ] 0,E.

87 Error Analysis of the Mixed Control-State Optimal Control Problem Theorem (Reliability of the Estimator). For the errors e(y ε ) := y ε y ε l in the state, e( p ε ) := p ε p ε l in the regularized adjoint state, and e(uε ) := u ε u ε l in the control there holds uniformly in ε > 0 e(y ε ) 1,Ω + e(uε ) 0,Ω + e( pε ) 1,Ω η l + osc l (y d ) + osc l (u d ) + osc l (ψ) + ẽ c (u ε,u ε l ) + ẽ c(ψ, ψ l ). Compared to the case of pure state constraints, the error analysis involves data oscillations in ψ and an additional consistency error osc T (ψ) := ψ ψ l 0,T, ẽ c (ψ, ψ l ) := e c (ψ, ψ l )/ ψ ψ l 0,Ω, ψ ψ l, 0, ψ = ψ l e c (ψ, ψ l ) := max((σ ε σ ε l, ψ ψ l ) 0,Ω,0).

88 Numerical Results: Mixed Control-State Constraints II l N dof y y l 1 u u l 0 p p l 0 Mη,E Mη,T M osc1,t M osc2,t e e e e e e e e e e e e e e e e e e e e e e e e Errors in the state, control, and adjoint state (ε = 10 4, Θ i = 0.7)

89 Goal-Oriented Adaptivity in State Constrained Optimal Control Problems Under the same assumptions as before, consider the state constrained distributed elliptic control problem Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u 2 0,Ω, subject to Ay = u in Ω, y = 0 on Γ D, ν y = 0 on Γ N, Iy K := {v C(Ω) v(x) ψ(x), x Ω}. and its finite element approximation with respect to a shape regular family of simplicial triangulations T l (Ω) of the computational domain Ω. The goal is to provide a reliable error estimate in a quantity of interest which is chosen here as the objective functional J(y,u).

90 Error Representation in Goal-Oriented Adaptivity We introduce the Lagrangian L : V r L 2 (Ω) V s M + ( Ω) lr according to L(y,u,p, σ) := J(y,u) + ( y, p) 0,Ω (u,p) 0,Ω + σ,y ψ, and refer to L l : V l V l V l (M l M + ( Ω)) lr as its discrete counterpart. Theorem. Let (x, σ) X M + ( Ω),x := (y,u,p) X := V r L 2 (Ω) V s, and (x l, σ l ) X l (M l M + ( Ω)),x l := (y l,u l,p l ) X l := V l V l V l, be the solutions of the continuous and discrete problem, respectively. Then, we have J(y,u) J l (y l,u l ) = 1 2 xxl(x l x,x l x) + σ,y l ψ + osc (1) l (x l ), where the oscillation term osc (1) l (x l ) is given by osc (1) l (x l ) := (y l yd,yl d yd ) 0,Ω + osc2 l (yd ).

91 Error Representation in Goal-Oriented Adaptivity (Cont d) Remark 1: In the unconstrained case, i.e., σ = σ l = 0, the error representation reduces to J(y,u) J l (y l,u l ) = = x L(x l, σ l )(x x l x l ) (yd y d l,y y l ) 0,Ω + osc l (x l ), which corresponds to Proposition 4.1 in [Becker/Kapp/Rannacher]. Remark 2: The contribution σ,y l ψ can be rewritten as σ,y l ψ = σ,y l ψ l + σ, ψ l ψ and thus represents the primal-dual weighted mismatch in complementarity and due to the approximation of ψ by ψ l.

92 Error Representation in Goal-Oriented Adaptivity (Cont d) Theorem. With interpolation operators I l p : Vp V l,1 < p < there holds J(y,u) J l (y l,u l ) = = 1 2 { ( p l, (Ir l y y)) 0,Ω + (cp l (y l yd l ), Ir l y y) 0,Ω σ l, Ir l y y + + ( y l, (Il s p p)) 0,Ω + (cy l u l, Ir l p p) 0,Ω } + + [ σ,y l ψ + σ l, ψ l y ] }{{} primal-dual mismatch (yd y d l,y y l ) 0,Ω + osc(1) l (x l ) }{{} =: osc (2) l (x l). We note that the terms in brackets { } represent the primal-dual residuals.

93 Goal Oriented Dual Weighted Residuals for Control and State Constrained Optimal Elliptic Control Problems Ronald H.W. Hoppe 1,2 1 2 Institute of Mathematics, University of Augsburg Summer School Optimal Control of PDEs Cortona, July 12-17, 2010

94 The work has been partially supported by the NSF under Grants No. DMS , DMS and by the FWF

95 The Loop in Adaptive Finite Element Methods (AFEM) Adaptive Finite Element Methods (AFEM) consist of successive loops of the cycle SOLVE: SOLVE = ESTIMATE = MARK = REFINE Numerical solution of the FE discretized problem ESTIMATE: Residual and hierarchical a posteriori error estimators Error estimators based on local averaging Goal oriented weighted dual approach Functional type a posteriori error bounds MARK: REFINE: Strategies based on the max. error or the averaged error Bulk criterion for AFEMs Bisection or red/green refinement or combinations thereof

96 C O N T E N T S Representation of the error in the quantity of interest Primal-Dual Weighted Residuals Primal-Dual Mismatch in Complementarity Primal-Dual Weighted Data Oscillations Numerical Results

97 State Constrained Elliptic Control Problems

98 Literature on State-Constrained Optimal Control Problems M. Bergounioux, K. Ito, and K. Kunisch (1999) M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch (2000) M. Bergounioux and K. Kunisch (2002) E. Casas (1986) E. Casas and M. Mateos (2002) J.-P. Raymond and F. Tröltzsch (2000) K. Deckelnick and M. Hinze (2006) M. Hintermüller and K. Kunisch (2007) K. Kunisch and A. Rösch (2002) C. Meyer and F. Tröltzsch (2006) C. Meyer, U. Prüfert, and F. Tröltzsch (2005) U. Prüfert, F. Tröltzsch, and M. Weiser (2004) H./M. Kieweg (2007) A. Günther, M. Hinze (2007) O. Benedix, B. Vexler (2008) M. Hintermüller/H. (2008) W. Liu, W. Gong and N. Yan (2008)

99 Model Problem (Distributed Elliptic Control Problem with State Constraints) Let Ω lr 2 be a bounded domain with boundary Γ = Γ D Γ N, Γ D Γ N =, and let A : V H 1 (Ω), V := {v H 1 (Ω) v Γd = 0}, be the linear second order elliptic differential operator Ay := y + cy, c 0, with c > 0 or meas(γ D ) > 0. Assume that Ω is such that for each v L 2 (Ω) the solution y of Ay = u satisfies y W 1,r (Ω) V for some r > 2. Moreover, let u d,y d L 2 (Ω), and ψ W 1,r (Ω) such that ψ ΓD > 0 be given functions and let α > 0 be a regularization parameter. Consider the state constrained distributed elliptic control problem Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω, subject to Ay = u in Ω, y = 0 on Γ D, ν y = 0 on Γ N, Iy K := {v C(Ω) v(x) ψ(x), x Ω}. where I stands for the embedding operator W 1,r (Ω) C(Ω).

100 We introduce the control-to-state map The Reduced Optimal Control Problem G : L 2 (Ω) C(Ω), y = Gu solves Ay + cy = u. We assume that the following Slater condition is satisfied (S) There exists v 0 L 2 (Ω) such that Gv 0 int(k). Substituting y = Gu allows to consider the reduced control problem inf u U ad J red (u) := 1 2 Gu yd 2 0,Ω + α 2 u ud 2 0,Ω, U ad := {v L 2 (Ω) (Gv)(x) ψ(x), x Ω}. Theorem (Existence and uniqueness). The state constrained optimal control problem admits a unique solution y W 1,r (Ω) K.

101 Optimality Conditions for the State Constrained Optimal Control Problem Theorem. There exists an adjoint state p V s := {v W 1,s (Ω) v ΓD = 0}, where 1/r + 1/s = 1, and a multiplier σ M + (Ω) such that ( y, v) 0,Ω + (cy,v) 0,Ω = (u,v) 0,Ω, v V s, ( p, w) 0,Ω + (cp,w) 0,Ω = (y y d,w) 0,Ω + σ,w, w Vr, p + α(u u d ) = 0, σ,y ψ = 0.

102 Proof. The reduced problem can be written in unconstrained form as inf Ĵ(v) := J red (v) + (I K G)(u) v L 2 (Ω) where I K stands for the indicator function of the constraint set K. The Slater condition and and subdifferential calculus tell us ( ) I K G (u) = G I K (Gu). The optimality condition then reads 0 Ĵ(u) = J red (u) + G I K (Gu). Hence, there exists σ I K (Gu) such that ( ) G (Gu y d + σ) +α(u u }{{} d ),v = 0, v 0,Ω L2 (Ω). =: p Since σ M(Ω), PDE regularity theory implies p W 1,s (Ω),1/s + 1/r = 1.

103 Finite Element Approximation Let T l (Ω) be a simplicial triangulation of Ω and let V l := { v l C(Ω) v l T P 1 (T), T T l (Ω), v l ΓD = 0 } be the FE space of continuous, piecewise linear functions. Let u d l V l be some approximation of ud, and let ψ l be the V l -interpoland of ψ. Consider the following FE Approximation of the state constrained control problem Minimize J l (y l,u l ) := 1 2 y l yd 2 0,Ω + α 2 u l ud l 2 0,Ω, over (y l,u l ) V l V l, subject to ( y l, v l ) 0,Ω + (cy l,v l ) 0,Ω = (u l,v l ) 0,Ω, v l V l, y l K l := {v l V l v l (x) ψ l (x), x Ω}. Since the constraints are point constraints associated with the nodal points, the discrete multipliers are chosen from M l := {µ l M(Ω) µ l = a N l (Ω Γ N ) κ a δ a, κ a lr}.

104 Representation of the Error in the Quantity of Interest

105 Primal-Dual Weighted Error Representation I We set X := V r L 2 (Ω) V s as well as X l := V l V l V l and introduce the Lagrangians L : X M(Ω) lr as well as L l : X l M l lr according to L(x, σ) := J(y,u) + ( y, p) 0,Ω (u,p) 0,Ω + σ,y ψ, L l (x l, σ l ) := J l (y l,u l ) + ( y l, p l ) 0,Ω (u l,p l ) 0,Ω + σ l,y l ψ l, where x := (y,u,p) and x l := (y l,u l,p l ). Then, the optimality conditions can be stated as x L(x, σ)(ϕ) = 0, ϕ X, x L l (x l, σ l )(ϕ l ) = 0, ϕ l X l.

106 Primal-Dual Weighted Error Representation II Theorem. Let (x, σ) X and (x l, σ l ) X l be the solutions of the continuous and discrete optimality systems, respectively. Then, there holds J(y,u) J l (y l,u l ) = 1 2 xxl(x l x,x l x) + σ,y l ψ + osc (1) l, where the data oscillations osc (1) l are given by osc (1) l := osc (1) T T l (Ω) T, osc (1) T := (y l y d l,yd l yd ) 0,T yd y d l 2 0,T + α (u l u d l,ud l ud ) 0,T + α 2 ud u d l 2 0,T. Remark: In the unconstrained case, i.e., σ = σ l = 0, the above result reduces to the error representation in [Becker, Kapp, and Rannacher (2000)].

107 Interpolation Operators (State Constraints) We introduce interpolation operators i y l : V r V l, r > r > 2, i p l : V s V l, 0 < s < s < 2, such that for all y V r and p V s there holds ( ( ( h r(t 1) T i y l y y r t,r,t h r T iy l y y r 0,r,T + h r/2 T h s T ip l p p s 0,s,T + h s/2 T where D T := {T T l (Ω) N l (T ) N l (T) }. ) 1/r y 1,r,DT, 0 t 1, i y l y y r 0,r, T i p l p p s 0,s, T ) 1/r y 1,r,DT, ) 1/s h T p 1,s,DT, 1

108 Primal-Dual Weighted Error Representation III Theorem. Under the assumptions of the previous Theorem let i z l,z {y,p}, be the interpolation operators introduced before. Then, there holds J(y,u) J l (y l,u l ) = (r(i y l y y) + r(ip l p p)) + µ l (x, σ) + osc(1) l where r(i y l y y) and r(ip l p p) stand for the primal-dual weighted residuals + osc (2) l, r(i y l y y) := 1 2 ((y l yd l,iy l y y) 0,Ω + ( (i y l y y, p l ) 0,Ω + σ l,i y l y y ), r(i p l p p) := 1 2 (( (ip l p p, y l ) 0,Ω (u l,i p l p p) 0,Ω). Moreover, µ l (x, σ) represents the primal-dual mismatch in complementarity and osc (2) l osc (2) l are further oscillation terms := µ l (x, σ) := 1 2 ( σ,y l ψ + σ l, ψ l y ), T T l (Ω) osc (2) T, osc (2) T := 1 2 ((yd y d l,y l y) 0,T + α (u d u d l,u l u) 0,T).

109 Primal-Dual Weighted Residuals

110 Primal-Dual Weighted Residuals Theorem. The primal-dual residuals can be estimated according to r(i y l y y) C ( ω y T ρy T + ωσ T ρ σ ) T, r(i p l p p) C ω p T ρp T. T T l (Ω) T T l (Ω) Here, ρ y T and ρp T are Lr -norms and L s -norms of the residuals associated with the state and the adjoint state equation ( ρ y T := u l r 0,r,T + h r/2 T 1 ) 1/r 2 ν [ y l ] r 0,r, T, ( ρ p T := y l y l d s 0,s,T + h s/2 T 1 ) 1/s 2 ν [ p l ] s 0,s, T. The corresponding dual weights ω y T and ωp T are given by ( ) 1/s ω y T := i p l p p s 0,s,T + h s/2 T ip l p p s 0,s, T, ( ) 1/r ω p T := i y l y y r 0,r,T + h r/2 T iy l y y r 0,r, T. The residual ρ σ T and its dual weight ωσ T are given by ρ σ T := n 1 a κ a, ω σ T := i y l y y 2/r+ε,r,T, 0 < ε < (r 2)/r. a N l (T)

111 Primal-Dual Mismatch in Complementarity

112 Primal-Dual Mismatch in Complementarity The primal-dual mismatch µ l (x, σ) can be made partially a posteriori in the following two particular cases (cf. [Bergounioux/Kunisch (2003)]): Regular Case Nonregular Case The active set A is the union of a finite num- The active set A is a Lipschitzian curve ber of mutually disjoint, connected sets A i, that divides Ω into two connected com- 1 i m, with C 1,1 -boundary. ponents Ω + and Ω. p I H 2 (I), p int(a) H 2 (int(a)) ( p, w) 0,Ω = (y d y,w) σ,w, w V r p = y d y in I, p = α ψ in A { 0 on I σ A = y d ψ α 2 ψ on A σ = σ A + σ F, σ F = p I ν I + α ψ ν A σ = σ A := ν A p A+ ν A p A

113 Primal-Dual Mismatch in Complementarity The primal-dual mismatch in complementarity has the representations µ l I Il = 1 2 (σ F,y l ψ) 0,F Il µ l I Al = 1 2 (σ F, ψ l ψ) 0,F Al a N l (F l I) a N l (I A l ) κ a (y l y)(a), κ a (ψ l y)(a), µ l A Il = 1 2 (σ F,y l ψ) 0,F Il (yd ψ α 2 ψ,y l ψ) 0,A Il, µ l A Al = 1 2 (σ F, ψ l ψ) 0,F Al (yd ψ α 2 ψ, ψ l ψ) 0,A Al. Hence, we need appropriate approximations of the continuous coincidence set A, the continuous non-coincidence set I, the continuous free boundary F, and of σ F.

114 Primal-Dual Mismatch in Complementarity (State Constraints) The coincidence set A and the non-coincidence set I will be approximated by  l := {T T l χ A l (x) 1 κh for all x T}, where Î l := {T T l χ A l (x) 1 κh for some x T}, χ A l := I ψ i y l y l γh r + ψ i y l y l, 0 < γ 1, r > 0. Note that for T A we have ( ) χ(a) χ A l 0,T min T 1/2, γ 1 h r y i y l y 0,T 0 for y i y l y 0,T = O(h q ), q > r. Moreover, σ F will be approximated by σ ˆF l := { νîl p l Îl + α νâl ψ, E T l (Â) T l (Î) νâl p l Âl,+ νâl p l Âl,, E E l (Â) \ ( T l (Â) T l (Î)).

115 Primal-Dual Mismatch in Complementarity (State Constraints) The primal-dual mismatch in complementarity can be estimated from above as follows: µ l I Il ˆµ (1) l + ˆµ(2) l, µ l I A l ˆµ (1) l + ˆµ(3) l, µ l A I l ˆµ (1) l + ˆµ(4) l, µ l A A l ˆµ (1) l + ˆµ(5) l. where ˆµ (1) := ˆµ (1) l E, ˆµ (1) E := 1 2 σ ˆF l 0,E y l ψ 0,E, ˆµ (2) l := ˆµ (3) l := ˆµ (4) l := ˆµ (5) l := E E l ( ˆF l ) E E l (F l Î l ) T T l (Î l A l ) T T l ( l I l ) T T l ( l A l ) ˆµ (2) E, ˆµ (2) E := 1 2 ˆµ (3) T, ˆµ (3) T := 1 2 a N l (E) a N l (T) (y l i y l y l )(a) κ a, y l i y l y l )(a) κ a,, ˆµ (4) T, ˆµ (4) T := 1 2 yd ψ α 2 ψ 0,T y l ψ 0,T, ˆµ (5) T, ˆµ (5) T := 1 2 yd ψ α 2 ψ 0,T ψ l ψ 0,T.

116 Primal-Dual Weighted Data Oscillations

117 Primal-Dual Weighted Data Oscillations The data oscillations osc (2) l := osc (2) l T T l (Ω) as given by osc (2) T, osc (2) T := 1 2 ( ) (y d y l d,y l y) 0,T + α (u d u d l,u l u) 0,T can be estimated from above according to osc (2) ôsc (2) l T, ôsc (2) T := ˆωp T ud u d l 0,T + ˆω y T yd y l d 0,T + α u d u d l 2 0,T, T T l (Ω), where the weights ˆω p T and ˆωy T are given by ˆω p T := ip l p l p l 0,T, ˆω y T := iy l y l y l 0,T.

118 State Constraints: Numerical Results

119 Numerical Results: Distributed Control Problem with State Constraints I Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω over (y,u) H 1 0(Ω) L 2 (Ω) subject to y = u in Ω, y K := {v H 1 0(Ω) v ψ a.e. in Ω} Data: Ω := ( 2, +2) 2, y d (r) := y(r) + p(r) + σ(r), u d (r) := u(r) + α 1 p(r), ψ := 0, α := 0.1, where y(r),u(r),p(r), σ(r) is the solution of the problem: y(r) := r 4/3 + γ 1 (r), u(r) = y(r), p(r) = γ 2 (r) + r r r2, σ(r) :=, γ 1 := γ 2 := 1, r < (r 0.25) (r 0.25) 4 80(r 0.25) 3 + 1, 0.25 < r < , otherwise { 1, r < , otherwise. { 0.0, r < , otherwise,

120 Numerical Results: Distributed Control Problem with State Constraints I Optimal state (left) and optimal control (right)

121 Numerical Results: Distributed Control Problem with State Constraints I 10 3 J(y *,u * ) - J h (y * h,u* h ) θ = 0.3 uniform Decrease in the quantity of interest versus total number of DOFs N

122 Numerical Results: Distributed Control Problem with State Constraints II Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω over (y,u) H 1 (Ω) L 2 (Ω) subject to y + cy = u in Ω, y K := {v H 1 (Ω) v ψ a.e. in Ω} Data: Ω = B(0,1) := {x = (x 1,x 2 ) T x x 2 2 < 1}, y d (r) := π 1 4π r π ln(r), u d (r) := π r2 1 ln(r), ψ := 4 + r, α := 1. 2π The solution y(r),u(r),p(r), σ(r) of the problem is given by y(r) 4, u(r) 4, p(r) = 1 4π r2 1 2π ln(r), σ(r) = δ 0.

123 Numerical Results: Distributed Control Problem with State Constraints II Optimal state (left) and optimal control (right)

124 Numerical Results: Distributed Control Problem with State Constraints II Optimal adjoint state (left) and mesh after 16 adaptive loops (right)

125 Numerical Results: Distributed Control Problem with State Constraints II θ = 0.3 uniform J(y *,u * ) - J h (y * h,u* h ) Decrease in the quantity of interest versus total number of DOFs N

126 Control Constrained Elliptic Control Problems

127 A Posteriori Error Analysis of AFEM for Optimal Control Problems (i) Unconstrained problems R. Becker, H. Kapp, R. Rannacher (2000) R. Becker, R. Rannacher (2001) (ii) Control constrained problems W. Liu and N. Yan (2000/01) R. Li, W. Liu, H. Ma, and T. Tang (2002) M. Hintermüller/H. et al. (2006) A. Gaevskaya/H. et al. (2006/07) A. Gaevskaya/H. and S. Repin (2006/07) M. Hintermüller/H. (2007) B. Vexler and W. Wollner (2007)

128 Model Problem (Distributed Elliptic Control Problem with Control Constraints) Given a bounded domain Ω R 2 with polygonal boundary Γ = Ω, a function y d, ψ L 2 (Ω), and α > 0, consider the distributed optimal control problem Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u 2 0,Ω, over (y,u) H 1 0(Ω) L 2 (Ω), subject to y = u, u K := {v L 2 (Ω) v ψ a.e. in Ω}. 1

129 Optimality Conditions for the Distributed Control Problem There exists an adjoint state p H 1 0(Ω) and an adjoint control σ L 2 (Ω) such that the quadruple (y, p, u, σ) satisfies a(y,v) = (u,v) 0,Ω, v H1 0(Ω), a(p,v) = (y d y,v) 0,Ω, v H1 0(Ω), α u = p σ, σ 0, u ψ, (σ;u ψ) 0,Ω = 0, where a(, ) stands for the bilinear form a(w, z) = w z dx, w,z H 1 0(Ω). Ω 1

130 Finite Element Approximation of the Distributed Control Problem Let T l (Ω) be a shape regular, simplicial triangulation of Ω and let V l := { v l C(Ω) v l T P k1 (T), T T l (Ω), k 1 N, v H Ω = 0 } be the FE space of continuous, piecewise polynomial functions (of degree k 1 ) and W l := { w l L 2 (Ω) w l T P k2 (T), T T l (Ω), k 2 N {0} } the linear space of elementwise polynomial functions (of degree k 2 ). Consider the following FE Approximation of the distributed control problem Minimize J l (y l,u l ) := 1 2 y l yd l 2 0,Ω + α 2 u l 2 0,Ω, over (y l,u l ) V l W l, subject to a(y l,v l ) = (u l,v l ) 0,Ω, v l V l, u l K l := {w l W l w l T ψ l T, T T l (Ω)}. where ψ l W l is the discrete control constraint. 1

131 Optimality Conditions for the FE Discretized Control Problem There exists an adjoint state p l V l and an adjoint control σ l W l such that the quadruple (y l,u l,p l, σ l ) satisfies a(y l,v l ) = (u l,v l ) 0,Ω, v l V l, a(p l,v l ) = (y d l y,v l ) 0,Ω, v l V l, α u l = M l p l σ l, σ l 0, u l ψ l, (σ l,u l ψ l ) 0,Ω = 0, where y d l V l and M l : V l W l, e.g., for k 2 = 0: (M l v l ) T := T 1 v l dx, T T l (Ω). T 1

132 Primal-Dual Weighted Error Representation (Control Constraints) Theorem. Let (x, σ) X L 2 (Ω) and (x l, σ l ) X l W l be the solutions of the continuous and discrete optimality systems, respectively. Then, there holds J(y,u) J l (y l,u l ) = 1 2 xxl(x l x,x l x) + (σ,u l ψ) 0,Ω + osc(1) l. Remark: In the unconstrained case, i.e., σ = σ l = 0, the above result reduces to the error representation in [Becker, Kapp, and Rannacher (2000)].

133 Primal-Dual Weighted Error Representation (Control Constraints) Theorem. Under the assumptions of the previous Theorem let i z l,z {y,u,p}, be the interpolation operators introduced before. Then, there holds ) J(y,u) J l (y l,u l ) = (r(i y l y y) + r(ip l p p) + r(iu l u u) + µ l (x, σ) + osc (1) l + osc (2) l, where r(i y l y y), r(ip l p p) and r(iu l u u) stand for the primal-dual weighted residuals r(i y l y y) := 1 ( ) (y 2 l y l d,iy l y y) 0,Ω + ( (i y l y y), p l ) 0,Ω, r(i p l p p) := 1 ( ) ( (i p 2 l p p), y l ) 0,Ω (u l,i p l p p) 0,Ω, r(i u l u u) := 1 2 (M l p l p l,iu l u u) 0,Ω. Moreover, µ l (x, σ) represents the primal-dual mismatch in complementarity µ l (x, σ) := 1 ( ) (σ,u 2 l ψ) 0,Ω + (σ l, ψ l u) 0,Ω, and osc (2) l is a further oscillation term osc (2) := osc (2) l T, osc (2) T := 1 2 (yd y l d,y l y) 0,T. T T l (Ω)

134 Primal-Dual Weighted Residuals (Control Constraints) Theorem. The primal-dual residuals can be estimated according to r(i y l y y) C ω y T ρy T, r(i p l p p) C ( ) ω p T ρp,1 T + ω u Tρ p,2 T. T T l (Ω) T T l (Ω) Here, ρ y T and ρp,1 T are L2 -norms of ( the residuals associated with the ) state and the adjoint state 1/2 ρ y T := u l 2 0,T + h 1 T 1 2 ν [ y l ] 2 0, T, ( ) 1/2 ρ p,1 T := y l y l d 2 0,T + h 1 T 1 2 ν [ p l ] 2 0, T. The corresponding dual weights ω u T and ωp T are given by ( ) 1/2 ω y T := i p l p p 2 0,T + h T i p l p p 2 0, T, ( ) 1/2 ω p T := i y l y y 2 0,T + h T i y l y y 2 0, T. The residual ρ p,2 T and its dual weight ωu T are given by ρ p,2 T := M l p l p l 0,T, ω u T := i u l u u 0,T.

135 Primal-Dual Mismatch in Complementarity (Control Constraints) Using the complementarity conditions u ψ, σ 0, (σ,u ψ) 0,Ω = 0, αu p + σ = 0, u l ψ l, σ l 0, (σ l,u l ψ l ) 0,Ω = 0, αu l M l p l + σ l = 0, the primal-dual mismatch µ l := µ l (x, σ) can be further assessed according to µ l (I I l ) = 0, µ l (A A l ) = 1 2 (σ + σ l, ψ l ψ) 0,A A l, µ l (I A l ) = 1 2 (σ l, ψ l α 1 p) 0,I Al, µ l (A I l ) = α 2 u u l 2 0,I A l (p M l p l,u l u) 0,I A l. and we finally obtain µ l (I A l ) + µ l (A I l ) ν l with a fully computable a posteriori term ν l (consistency error).

136 Numerical Results: Distributed Control Problem with Control Constraints I Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u 2 0,Ω over (y,u) H 1 0(Ω) L 2 (Ω) subject to y = u in Ω, u K := {v L 2 (Ω) v ψ a.e. in Ω} Data: Ω := (0,1) 2, { y d 200 x := 1 x 2 (x 1 0.5) 2 (1 x 2 ), 0 x (x 1 1) (x 2 (x 1 0.5) 2 (1 x 2 ), 0.5 < x 1 1, α = 0.01, ψ = 1.

137 Numerical Results: Distributed Control Problem with Control Constraints I Optimal state (left) and optimal control (right)

138 Numerical Results: Distributed Control Problem with Control Constraints I Grid after 6 (left) and 10 (right) refinement steps

139 Numerical Results: Distributed Control Problem with Control Constraints I l N dof δ h η h osc h ν h E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-09 Error (quantity of interest), estimator, oscillations, and consistency error

140 Numerical Results: Distributed Control Problem with Control Constraints II Minimize J(y,u) := 1 2 y yd 2 0,Ω + α 2 u ud 2 0,Ω over (y,u) H 1 0(Ω) L 2 (Ω) subject to y = f + u in Ω, u K := {v L 2 (Ω) v ψ a.e. in Ω} Data: Ω := (0,1) 2, y d := 0, u d := û + α 1 (ˆσ 2 û), { (x1 0.5) ψ := 8, (x 1,x 2 ) Ω 1, (x 1 0.5) 2, α := 0.1, f := 0, otherwise { { ψ, (x û := 1,x 2 ) Ω 1 Ω 2, 2.25 (x1 0.75) 10, ˆσ := 4, (x 1,x 2 ) Ω 2, 1.01 ψ, otherwise 0, otherwise ( ) 1/2 Ω 1 := {(x 1,x 2 ) Ω (x 1 0.5) 2 + (x 2 0.5) }, Ω2 := {(x 1,x 2 ) Ω x }.,

141 Numerical Results: Distributed Control Problem with Control Constraints II Optimal state (left) and optimal control (right)

142 Numerical Results: Distributed Control Problem with Control Constraints II Grid after 6 (left) and 10 (right) refinement steps

143 Numerical Results: Distributed Control Problem with Control Constraints I l N dof δ h η h osc h ν h E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-16 Error (quantity of interest), estimator, oscillations, and consistency error

144 Numerical Results: Distributed Control Problem with Control Constraints II Decrease in the quantity of interest versus total number of DOFs

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Department of Mathematics, University of Houston Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of

More information

A POSTERIORI ERROR ESTIMATION OF FINITE ELEMENT APPROXIMATIONS OF POINTWISE STATE CONSTRAINED DISTRIBUTED CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATION OF FINITE ELEMENT APPROXIMATIONS OF POINTWISE STATE CONSTRAINED DISTRIBUTED CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATION OF FINITE ELEMENT APPROXIMATIONS OF POINTWISE STATE CONSTRAINED DISTRIBUTED CONTROL PROBLEMS RONALD H.W. HOPPE AND MICHAEL KIEWEG Abstract. We provide an a posteriori error

More information

Numerical Solution of Elliptic Optimal Control Problems

Numerical Solution of Elliptic Optimal Control Problems Department of Mathematics, University of Houston Numerical Solution of Elliptic Optimal Control Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics,

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

A Posteriori Estimates for Cost Functionals of Optimal Control Problems

A Posteriori Estimates for Cost Functionals of Optimal Control Problems A Posteriori Estimates for Cost Functionals of Optimal Control Problems Alexandra Gaevskaya, Ronald H.W. Hoppe,2 and Sergey Repin 3 Institute of Mathematics, Universität Augsburg, D-8659 Augsburg, Germany

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Dietrich Braess, Carsten Carstensen, and Ronald H.W. Hoppe Convergence Analysis of a Conforming Adaptive Finite Element Method for an Obstacle

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

A-posteriori error estimates for optimal control problems with state and control constraints

A-posteriori error estimates for optimal control problems with state and control constraints www.oeaw.ac.at A-posteriori error estimates for optimal control problems with state and control constraints A. Rösch, D. Wachsmuth RICAM-Report 2010-08 www.ricam.oeaw.ac.at A-POSTERIORI ERROR ESTIMATES

More information

Convergence of a finite element approximation to a state constrained elliptic control problem

Convergence of a finite element approximation to a state constrained elliptic control problem Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Convergence of a finite element approximation to a state constrained elliptic control problem Klaus Deckelnick & Michael Hinze

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik A finite element approximation to elliptic control problems in the presence of control and state constraints Klaus Deckelnick and Michael Hinze Nr. 2007-0

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

K. Krumbiegel I. Neitzel A. Rösch

K. Krumbiegel I. Neitzel A. Rösch SUFFICIENT OPTIMALITY CONDITIONS FOR THE MOREAU-YOSIDA-TYPE REGULARIZATION CONCEPT APPLIED TO SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS K. Krumbiegel I. Neitzel A. Rösch

More information

ADAPTIVE MULTILEVEL CORRECTION METHOD FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OPTIMAL CONTROL PROBLEMS

ADAPTIVE MULTILEVEL CORRECTION METHOD FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OPTIMAL CONTROL PROBLEMS ADAPTIVE MULTILEVEL CORRECTION METHOD FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OPTIMAL CONTROL PROBLEMS WEI GONG, HEHU XIE, AND NINGNING YAN Abstract: In this paper we propose an adaptive multilevel

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Matematik Micael Hintermüller, Ronald H.W. Hoppe Goal-Oriented Adaptivity in Pointwise State Constrained Optimal Control of Partial Differential Equations

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Ronald H.W. Hoppe, Irwin Yousept Adaptive Edge Element Approximation of H(curl-Elliptic Optimal Control Problems with Control Constraints Preprint

More information

Priority Program 1253

Priority Program 1253 Deutsche Forschungsgemeinschaft Priority Program 1253 Optimization with Partial Differential Equations Klaus Deckelnick and Michael Hinze A note on the approximation of elliptic control problems with bang-bang

More information

Numerical Analysis of State-Constrained Optimal Control Problems for PDEs

Numerical Analysis of State-Constrained Optimal Control Problems for PDEs Numerical Analysis of State-Constrained Optimal Control Problems for PDEs Ira Neitzel and Fredi Tröltzsch Abstract. We survey the results of SPP 1253 project Numerical Analysis of State-Constrained Optimal

More information

Robust error estimates for regularization and discretization of bang-bang control problems

Robust error estimates for regularization and discretization of bang-bang control problems Robust error estimates for regularization and discretization of bang-bang control problems Daniel Wachsmuth September 2, 205 Abstract We investigate the simultaneous regularization and discretization of

More information

Adaptive Space-Time Finite Element Approximations of Parabolic Optimal Control Problems. Dissertation

Adaptive Space-Time Finite Element Approximations of Parabolic Optimal Control Problems. Dissertation Adaptive Space-Time Finite Element Approximations of Parabolic Optimal Control Problems Dissertation zur Erlangung des akademischen Titels eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen

More information

An optimal control problem for a parabolic PDE with control constraints

An optimal control problem for a parabolic PDE with control constraints An optimal control problem for a parabolic PDE with control constraints PhD Summer School on Reduced Basis Methods, Ulm Martin Gubisch University of Konstanz October 7 Martin Gubisch (University of Konstanz)

More information

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS fredi tröltzsch 1 Abstract. A class of quadratic optimization problems in Hilbert spaces is considered,

More information

Bang bang control of elliptic and parabolic PDEs

Bang bang control of elliptic and parabolic PDEs 1/26 Bang bang control of elliptic and parabolic PDEs Michael Hinze (joint work with Nikolaus von Daniels & Klaus Deckelnick) Jackson, July 24, 2018 2/26 Model problem (P) min J(y, u) = 1 u U ad,y Y ad

More information

A posteriori error control for the binary Mumford Shah model

A posteriori error control for the binary Mumford Shah model A posteriori error control for the binary Mumford Shah model Benjamin Berkels 1, Alexander Effland 2, Martin Rumpf 2 1 AICES Graduate School, RWTH Aachen University, Germany 2 Institute for Numerical Simulation,

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Inexact Algorithms in Function Space and Adaptivity

Inexact Algorithms in Function Space and Adaptivity Inexact Algorithms in Function Space and Adaptivity Anton Schiela adaptive discretization nonlinear solver Zuse Institute Berlin linear solver Matheon project A1 ZIB: P. Deuflhard, M. Weiser TUB: F. Tröltzsch,

More information

Proper Orthogonal Decomposition for Optimal Control Problems with Mixed Control-State Constraints

Proper Orthogonal Decomposition for Optimal Control Problems with Mixed Control-State Constraints Proper Orthogonal Decomposition for Optimal Control Problems with Mixed Control-State Constraints Technische Universität Berlin Martin Gubisch, Stefan Volkwein University of Konstanz March, 3 Martin Gubisch,

More information

Optimal control of partial differential equations with affine control constraints

Optimal control of partial differential equations with affine control constraints Control and Cybernetics vol. 38 (2009) No. 4A Optimal control of partial differential equations with affine control constraints by Juan Carlos De Los Reyes 1 and Karl Kunisch 2 1 Departmento de Matemática,

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

Pontryagin s Maximum Principle of Optimal Control Governed by A Convection Diffusion Equation

Pontryagin s Maximum Principle of Optimal Control Governed by A Convection Diffusion Equation Communications in Mathematics and Applications Volume 4 (213), Number 2, pp. 119 125 RGN Publications http://www.rgnpublications.com Pontryagin s Maximum Principle of Optimal Control Governed by A Convection

More information

A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems D. Meidner and B. Vexler Abstract In this article we discuss a priori error estimates for Galerkin

More information

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Axel Kröner 1 Karl Kunisch 2 and Boris Vexler 3 1 Lehrstuhl für Mathematische Optimierung Technische Universität München

More information

Key words. optimal control, heat equation, control constraints, state constraints, finite elements, a priori error estimates

Key words. optimal control, heat equation, control constraints, state constraints, finite elements, a priori error estimates A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF PARABOLIC OPTIMIZATION PROBLEMS WITH POINTWISE STATE CONSTRAINTS IN TIME DOMINIK MEIDNER, ROLF RANNACHER, AND BORIS VEXLER Abstract. In this

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

A stabilized finite element method for the convection dominated diffusion optimal control problem

A stabilized finite element method for the convection dominated diffusion optimal control problem Applicable Analysis An International Journal ISSN: 0003-6811 (Print) 1563-504X (Online) Journal homepage: http://www.tandfonline.com/loi/gapa20 A stabilized finite element method for the convection dominated

More information

EXISTENCE OF REGULAR LAGRANGE MULTIPLIERS FOR A NONLINEAR ELLIPTIC OPTIMAL CONTROL PROBLEM WITH POINTWISE CONTROL-STATE CONSTRAINTS

EXISTENCE OF REGULAR LAGRANGE MULTIPLIERS FOR A NONLINEAR ELLIPTIC OPTIMAL CONTROL PROBLEM WITH POINTWISE CONTROL-STATE CONSTRAINTS EXISTENCE OF REGULAR LAGRANGE MULTIPLIERS FOR A NONLINEAR ELLIPTIC OPTIMAL CONTROL PROBLEM WITH POINTWISE CONTROL-STATE CONSTRAINTS A. RÖSCH AND F. TRÖLTZSCH Abstract. A class of optimal control problems

More information

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics Fikriye Yılmaz 1, Bülent Karasözen

More information

Error estimates for the finite-element approximation of a semilinear elliptic control problem

Error estimates for the finite-element approximation of a semilinear elliptic control problem Error estimates for the finite-element approximation of a semilinear elliptic control problem by Eduardo Casas 1 and Fredi röltzsch 2 1 Departamento de Matemática Aplicada y Ciencias de la Computación

More information

STATE-CONSTRAINED OPTIMAL CONTROL OF THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS. 1. Introduction

STATE-CONSTRAINED OPTIMAL CONTROL OF THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS. 1. Introduction STATE-CONSTRAINED OPTIMAL CONTROL OF THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS J. C. DE LOS REYES AND R. GRIESSE Abstract. In this paper, an optimal control problem for the stationary Navier-

More information

A GAGLIARDO NIRENBERG INEQUALITY, WITH APPLICATION TO DUALITY-BASED A POSTERIORI ESTIMATION IN THE L 1 NORM

A GAGLIARDO NIRENBERG INEQUALITY, WITH APPLICATION TO DUALITY-BASED A POSTERIORI ESTIMATION IN THE L 1 NORM 27 Kragujevac J. Math. 30 (2007 27 43. A GAGLIARDO NIRENBERG INEQUALITY, WITH APPLICATION TO DUALITY-BASED A POSTERIORI ESTIMATION IN THE L 1 NORM Endre Süli Oxford University Computing Laboratory, Wolfson

More information

A Control Reduced Primal Interior Point Method for PDE Constrained Optimization 1

A Control Reduced Primal Interior Point Method for PDE Constrained Optimization 1 Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-495 Berlin-Dahlem Germany MARTIN WEISER TOBIAS GÄNZLER ANTON SCHIELA A Control Reduced Primal Interior Point Method for PDE Constrained

More information

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma Chapter 5 A priori error estimates for nonconforming finite element approximations 51 Strang s first lemma We consider the variational equation (51 a(u, v = l(v, v V H 1 (Ω, and assume that the conditions

More information

A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control

A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control Schedae Informaticae Vol. 21 (2012): 9 26 doi: 10.4467/20838476SI.12.001.0811 A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control Christian Grossmann 1,

More information

Affine covariant Semi-smooth Newton in function space

Affine covariant Semi-smooth Newton in function space Affine covariant Semi-smooth Newton in function space Anton Schiela March 14, 2018 These are lecture notes of my talks given for the Winter School Modern Methods in Nonsmooth Optimization that was held

More information

arxiv: v1 [math.na] 17 Nov 2017 Received: date / Accepted: date

arxiv: v1 [math.na] 17 Nov 2017 Received: date / Accepted: date Noname manuscript No. (will be inserted by the editor) Maximum norm a posteriori error estimates for an optimal control problem Alejandro Allendes Enrique Otárola Richard Rankin Abner J. algado arxiv:1711.06707v1

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL

OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L 1 COST FUNCTIONAL EDUARDO CASAS, ROLAND HERZOG, AND GERD WACHSMUTH Abstract. Semilinear elliptic optimal control

More information

Algorithms for PDE-Constrained Optimization

Algorithms for PDE-Constrained Optimization GAMM-Mitteilungen, 31 January 2014 Algorithms for PDE-Constrained Optimization Roland Herzog 1 and Karl Kunisch 2 1 Chemnitz University of Technology, Faculty of Mathematics, Reichenhainer Straße 41, D

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

An a posteriori error analysis for distributed elliptic optimal control problems with pointwise state constraints

An a posteriori error analysis for distributed elliptic optimal control problems with pointwise state constraints An a posteriori error analysis for distributed elliptic optimal control problems with pointwise state constraints Dissertation zur Erlangung des akademischen Titels eines Doktors der Naturwissenschaften

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

LECTURE 3: DISCRETE GRADIENT FLOWS

LECTURE 3: DISCRETE GRADIENT FLOWS LECTURE 3: DISCRETE GRADIENT FLOWS Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA Tutorial: Numerical Methods for FBPs Free Boundary Problems and

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Chapter 1: The Finite Element Method

Chapter 1: The Finite Element Method Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p 428 436 A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation

More information

PDE Constrained Optimization selected Proofs

PDE Constrained Optimization selected Proofs PDE Constrained Optimization selected Proofs Jeff Snider jeff@snider.com George Mason University Department of Mathematical Sciences April, 214 Outline 1 Prelim 2 Thms 3.9 3.11 3 Thm 3.12 4 Thm 3.13 5

More information

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS Numerical Functional Analysis and Optimization, 28(7 8):957 973, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630560701493305 FINITE ELEMENT APPROXIMATION

More information

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method Chapter 3 Conforming Finite Element Methods 3.1 Foundations 3.1.1 Ritz-Galerkin Method Let V be a Hilbert space, a(, ) : V V lr a bounded, V-elliptic bilinear form and l : V lr a bounded linear functional.

More information

u = f in Ω, u = q on Γ. (1.2)

u = f in Ω, u = q on Γ. (1.2) ERROR ANALYSIS FOR A FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS S. MAY, R. RANNACHER, AND B. VEXLER Abstract. We consider the Galerkin finite element approximation of

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

1.The anisotropic plate model

1.The anisotropic plate model Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 6 OPTIMAL CONTROL OF PIEZOELECTRIC ANISOTROPIC PLATES ISABEL NARRA FIGUEIREDO AND GEORG STADLER ABSTRACT: This paper

More information

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes IMA Journal of Numerical Analysis Advance Access published October 29, 2008 IMA Journal of Numerical Analysis Page 1 of 15 doi:10.1093/imanum/drn050 Enhancing eigenvalue approximation by gradient recovery

More information

Error estimates for the discretization of the velocity tracking problem

Error estimates for the discretization of the velocity tracking problem Numerische Mathematik manuscript No. (will be inserted by the editor) Error estimates for the discretization of the velocity tracking problem Eduardo Casas 1, Konstantinos Chrysafinos 2 1 Departamento

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Optimal control of semilinear elliptic PDEs with state constraints - numerical analysis and implementation

Optimal control of semilinear elliptic PDEs with state constraints - numerical analysis and implementation Optimal control of semilinear elliptic PDEs with state constraints - numerical analysis and implementation Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs

Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs Christian Clason Faculty of Mathematics, Universität Duisburg-Essen joint work with Barbara Kaltenbacher, Tuomo Valkonen,

More information

ON CONVERGENCE OF A RECEDING HORIZON METHOD FOR PARABOLIC BOUNDARY CONTROL. fredi tröltzsch and daniel wachsmuth 1

ON CONVERGENCE OF A RECEDING HORIZON METHOD FOR PARABOLIC BOUNDARY CONTROL. fredi tröltzsch and daniel wachsmuth 1 ON CONVERGENCE OF A RECEDING HORIZON METHOD FOR PARABOLIC BOUNDARY CONTROL fredi tröltzsch and daniel wachsmuth Abstract. A method of receding horizon type is considered for a simplified linear-quadratic

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

NEW REGULARITY RESULTS AND IMPROVED ERROR ESTIMATES FOR OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTS.

NEW REGULARITY RESULTS AND IMPROVED ERROR ESTIMATES FOR OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTS. ESAIM: Control, Optimisation and Calculus of Variations URL: http://www.emath.fr/cocv/ Will be set by the publisher NEW REGULARITY RESULTS AND IMPROVED ERROR ESTIMATES FOR OPTIMAL CONTROL PROBLEMS WITH

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE *

A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE * Journal of Computational Mathematics, Vol.??, No.??, 2008, 1 17. A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE * Danping Yang Department of Mathematics,

More information

Optimal PDE Control Using COMSOL Multiphysics

Optimal PDE Control Using COMSOL Multiphysics Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Optimal PDE Control Using COMSOL Multiphysics Ira Neitzel 1, Uwe Prüfert 2,, and Thomas Slawig 3 1 Technische Universität Berlin/SPP

More information

Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization 1

Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization 1 Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany ANTON SCHIELA, MARTIN WEISER Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained

More information

A. RÖSCH AND F. TRÖLTZSCH

A. RÖSCH AND F. TRÖLTZSCH ON REGULARITY OF SOLUTIONS AND LAGRANGE MULTIPLIERS OF OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR EQUATIONS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS A. RÖSCH AND F. TRÖLTZSCH Abstract. A class of nonlinear

More information

Oblique derivative problems for elliptic and parabolic equations, Lecture II

Oblique derivative problems for elliptic and parabolic equations, Lecture II of the for elliptic and parabolic equations, Lecture II Iowa State University July 22, 2011 of the 1 2 of the of the As a preliminary step in our further we now look at a special situation for elliptic.

More information

Necessary conditions for convergence rates of regularizations of optimal control problems

Necessary conditions for convergence rates of regularizations of optimal control problems Necessary conditions for convergence rates of regularizations of optimal control problems Daniel Wachsmuth and Gerd Wachsmuth Johann Radon Institute for Computational and Applied Mathematics RICAM), Austrian

More information

Key words. Surface, interface, finite element, level set method, adaptivity, error estimator

Key words. Surface, interface, finite element, level set method, adaptivity, error estimator AN ADAPIVE SURFACE FINIE ELEMEN MEHOD BASED ON VOLUME MESHES ALAN DEMLOW AND MAXIM A. OLSHANSKII Abstract. In this paper we define an adaptive version of a recently introduced finite element method for

More information

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS Z. LU Communicated by Gabriela Marinoschi In this paper, we discuss a

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 47, No. 3, pp. 1301 1329 c 2008 Society for Industrial and Applied Mathematics A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL

More information

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations On Dual-Weighted Residual Error Estimates for p-dependent Discretizations Aerospace Computational Design Laboratory Report TR-11-1 Masayuki Yano and David L. Darmofal September 21, 2011 Abstract This report

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

A posteriori estimators for obstacle problems by the hypercircle method

A posteriori estimators for obstacle problems by the hypercircle method A posteriori estimators for obstacle problems by the hypercircle method Dietrich Braess 1 Ronald H.W. Hoppe 2,3 Joachim Schöberl 4 January 9, 2008 Abstract A posteriori error estimates for the obstacle

More information

arxiv: v2 [math.na] 1 Jun 2018

arxiv: v2 [math.na] 1 Jun 2018 arxiv:1805.04844v2 [math.na] 1 Jun 2018 An interface-unfitted finite element method for elliptic interface optimal control problem Chao Chao Yang, Tao Wang, Xiaoping Xie School of Mathematics, Sichuan

More information

L -Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem

L -Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http:/math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 37(1) (2014), 271 284 L -Estimates of Rectangular Mixed Methods for Nonlinear Constrained

More information

Lectures Notes Algorithms and Preconditioning in PDE-Constrained Optimization. Prof. Dr. R. Herzog

Lectures Notes Algorithms and Preconditioning in PDE-Constrained Optimization. Prof. Dr. R. Herzog Lectures Notes Algorithms and Preconditioning in PDE-Constrained Optimization Prof. Dr. R. Herzog held in July 2010 at the Summer School on Analysis and Numerics of PDE Constrained Optimization, Lambrecht

More information

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

A posteriori error estimates for some problems in linear elasticity

A posteriori error estimates for some problems in linear elasticity Helsinki University of Technology, Institute of Mathematics, Research Reports Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja Espoo 2007 A522 A posteriori error estimates for some

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Etienne Emmrich Technische Universität Berlin, Institut für Mathematik, Straße

More information

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS OR HCURL-ELLIPTIC PROBLEMS C. CARSTENSEN, R. H. W. HOPPE, N. SHARMA, AND T. WARBURTON Abstract. We develop and analyze an adaptive hybridized

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS Roland Herzog Susann Mach January 30, 206 Elliptic optimal control problems with pointwise state gradient constraints

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Space-time finite element approximation of parabolic optimal control problems Wei Gong, Michael Hinze, and Zhaojie Zhou Nr. 2-22 November 2 SPACE-IME FINIE

More information