Approximate Sunflowers

Size: px
Start display at page:

Download "Approximate Sunflowers"

Transcription

1 Approximate Sunflowers Benamin Rossman January 26, 2019 Abstract A (p, ε-approximate sunflower is a family of sets S with the property that a p-random subset of the universe is 1 ε likely to contain a set of the form A \ I where A S and I is the intersection of all elements of S. In this note, we give a proof of the Approximate Sunflower Theorem from [Ros14] (with a slightly sharper bound showing that every l-uniform set system of size l!((t+ 1 2 /pl contains a (p, e t -approximate sunflower. This result was originally applied to obtain monotone circuit lower bounds for the clique problem on Erdős-Rényi random graphs. The Approximate Sunflower Theorem has subsequently found applications in the sparsification of DNF formulas [GMR13] and was recently connected to questions on randomness extractors [LLZ18]. It has also been noted that improving the bound to f(p, t l for any function f(p, t (which does not depend on l would prove the notorious Sunflower Conecture [LZ18, LSZ18]. Throughout this note, let t > 0 and p (0, 1 be arbitrary real numbers, let l be a positive integer, and let be an arbitrary set. Let ( l denote the set of l-element subsets of, and let ( <l l 1 ( 0. We say that X is a p-random subset of, written X p, if X contains each element of independently with probability p. A set system over is a family S of subsets of. For B, let S B denote the set system S B : {A \ B : B A S}. Borrowing terminology from the literature on sunflowers, we define the core of S as the intersection C A S A of all elements of S; elements of S C are called petals of S. A set system S is a sunflower if its petals are pairwise disoint (equivalently: if all pairs of distinct elements in S have the same intersection. A set system S is l-uniform if A l for all A S (i.e., S ( l. The Erdős-Rado Sunflower Theorem [ER60] establishes that every sufficiently large l-uniform set system contains a sunflower of size k. Theorem 1 (Sunflower Theorem. Every l-uniform set system of size > l!(k 1 l contains a sunflower of size k. The following notion of approximate sunflowers was introduced in [Ros14]. (This was originally called quasi-sunflower. The much better name approximate sunflowers was suggested by Lovett and Zhang. Definition 2. A set system S over is a (p, ε-approximate sunflower if a p-random subset of contains a petal of S with probability > 1 ε. 1

2 Note that S contains a (p, ε-approximate sunflower if, and only if, there exists a set B such that P X p [ ( A S B A X ] > 1 ε. In [Ros14] I showed that every l-uniform set system of size l!(2.5t/p l contains a (p, e t -approximate sunflower. This note proves a slightly stronger bound by a more careful analysis of the argument in [Ros14]. Theorem 3 (Approximate Sunflower Theorem. Every l-uniform set system of size l!((t+ 1 2 /pl contains a (p, e t -approximate sunflower. The proof of Theorem 3 is by induction on l, similar to the proof of the Sunflower Theorem. A key tool in the argument is Janson s Inequality (Theorem 6. As we explain in Remark 10, the bound in Theorem 3 is essentially best possible by this method: obtaining a bound better than l!(t/p l (or any bound of the form f(p, t l without the l! factor appears to require a substantially different proof technique. An approach via randomness extractors was recently suggested by Li, Lovett and Zhang [LLZ18], who give an extractor-based proof of a quantitatively weaker version of Theorem 3 with the bound 2 2l ((l + 1.5t/p cl for a constant c > 1. Before presenting the proof of Theorem 3, we remark on the relationship between sunflowers and approximate sunflowers. Proposition 4 (Sunflower Approximate Sunflower. Every sunflower S of size k is a (p, e kpl - approximate sunflower where l is the size of largest petal in S. Proof. Let S be an l-uniform sunflower over with petals A 1,..., A k. For X p, we have P[ X contains no petal of S ] k i1 P[ A i X ] (1 p l k e kpl. A cute relationship in the other direction was communicated to me by Jiapeng Zhang (an unpublished observation of Lovett, Solomon and Zhang [LSZ18]. Proposition 5 (Approximate Sunflower Sunflower. Every ( 1 k, 1 k -approximate sunflower contains a sunflower of size k. Proof. Let S be a ( 1 k, 1 k -approximate sunflower. Let X 1 X k be a uniform random partition of. Note that each X i individually is a 1 k -random subset of. Let I i {0, 1} be the indicator 1[ X i contains a petal of S ]. Then E[ I i ] > 1 1 k for all i {1,..., k}. By linearity of expectations, E[ I I k ] > k 1. Therefore, there exists a partition X 1 X k of such that each X i contains a petal of S. As this gives k disoint petals, we conclude that S contains a sunflower of size k. In light of Proposition 5, if the bound l!((t /pl in the Approximate Sunflower Theorem can be replaced by f(p, t l for any function f(p, t (which does not depend on l, then the bound l!(k 1 l of the Sunflower Theorem can be replaced by f( 1 k, ln kl. This would prove the notorious Sunflower Conecture (see [ASU13, Juk11]. The hypothesis that such a function f(p, t exists was named the Approximate Sunflower Conecture by Lovett and Zhang [LZ18]. The rest of this note contains the proof of Theorem 3. The key tool from probabilistic combinatorics is Janson s Inequality (a.k.a. the Extended Janson s Inequality. 2

3 Theorem 6 (Janson s Inequality [Jan90]. Let S be any set system over a set and let X be a random subset of such that events {v X} are independent over v. Let µ : P[ A X ], : P[ A 1 A 2 X ]. A S Then P[ ( A S A X ] exp( µ 2 /. (A 1,A 2 S 2 : A 1 A 2 (In many statements of this inequality, the definition of includes the condition A 1 A 2 in the summation; in this case, one writes µ 2 /(µ + instead of µ 2 /. Rather than l!((t /pl, we shall prove a stronger version of Theorem 3 with the bound c l (t/p l for a certain sequence of polynomials c l (t. Definition 7. Let c 0 (t, c 1 (t,... be the sequence of polynomials defined by c 0 (t : 1, ( l c l (t : t c (t for l 1. 0 For l 1, we have the explicit expression c l (t t k k1 0 0 < 1 < < k l k i1 ( i i 1. Lemma 8. For all t > 0, we have l!t l c l (t l!(t l. Proof. For the lower bound, we have ( ( ( l l 1 1 c l (t t l l!t l. l 1 l 2 0 For the upper bound, we have the following proof by induction that c l (t l!(1/ ln( 1 t + 1l : ( l c l (t t c (t t 0 0 (! 1 ln( 1 t + 1 ( 1 l l! ln( 1 t + 1 t 0 ( 1 l! ln( 1 t + 1 l t( 1 + (ln( 1 t + 1l (l! k0 (ln( 1 t + 1k k! ( 1 l l! ln( 1 t + 1. Finally, we use the fact that 1/ ln( 1 t + 1 < t for all t > 0. In light of Lemma 8, Theorem 3 follows from the following theorem. Theorem 9. For every S ( l with S cl (t/p l, there exists B ( <l such that P [ ( A S B A X ] < e t. X p 3

4 Proof. Induction on l. In the base case, let S with S t/p. We have P [ ( v S v / X ] (1 X p S < e p S e t. p For the induction step, let l 2 and let S ( l with S cl (t/p l. We consider two cases. Case 1: There exists {1,..., l 1} and B ( l such that SB c l (t/p l. By the induction hypothesis, there exists C ( <l such that Since (S B C S B C, we are done. let P [ ( A (S B C A X ] < e t. X p Case 2: For all {1,..., l 1} and B ( l, we have SB < c l (t/p l. As in Theorem 6, µ : P [ A X ], : X p A S It suffices to show that µ 2 / > t. First, we have the lower bound We next upper bound : Therefore, µ + 1 µ + 1 p 2l p 2l (A 1,A 2 S 2 : A 1 A 2 µ p l S c l (t. B ( B ( P [ A 1 A 2 X ]. X p {(A 1, A 2 S 2 : A 1 A 2 B} < µ + p l c l (t 1 µ + p l µ + p l S µ 0 µ 2 1 B ( c l (t 1 A S c (t. S B ( l c l (t > µ l 1 0 c (t c l (t l 1 0 c (t t. Janson s Inequality now yields the desired bound P X p [ ( A S A X ] < e t. 4

5 Remark 10. This bound on is essentially tight. For i {1,..., l} and C ( i, instead of upper bounding the number of pairs (A 1, A 2 S 2 with A 1 A 2 C by S C 2 (in our bound on, we can instead use inclusion-exclusion to get an equality: {(A 1, A 2 S 2 : A 1 A 2 C} ( 1 i. i B ( : C B This gives the following exact expression for : i1 i1 p 2l i p 2l i 1 i1 1 C ( i C ( i i {(A 1, A 2 S 2 : A 1 A 2 C} ( 1 i ( p 2l i ( 1 i i p 2l B ( : C B B ( ( ( p i i i1 B ( p 2l ( (1 p ( p 1 B (. For small p, the value of (1 p ( p is very close to 1. Even in the case p 1 2, we get no significant improvement; in this case we have (1/2 2l. {1,3,5,...,2 l/2 1} B ( This allows us to replace c l (t in Theorem 3 with the polynomial d l (t k1 t k 0 0 < 1 < < k l : i i 1 is odd for all i {1,...,k} However, d l (t is still lower bounded by l!t l for t > 0. For this reason, it appear that any improvement to Theorem 3 beyond l!t l will require a substantially different proof technique. k i1 ( i i 1. 5

6 References [ASU13] [ER60] Noga Alon, Amir Shpilka, and Christopher Umans. On sunflowers and matrix multiplication. computational complexity, 22(2: , Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 1(1:85 90, [GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster deterministic counting algorithm. Computational Complexity, 22(2: , [Jan90] Svante Janson. Poisson approximation for large deviations. Random Structures and Algorithms, 1(2: , [Juk11] [LLZ18] Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer, Xin Li, Shachar Lovett, and Jiapeng Zhang. Sunflowers and quasi-sunflowers from randomness extractors. In APPROX-RANDOM, volume 116 of LIPIcs, pages 51:1 13, [LSZ18] Shachar Lovett, Noam Solomon, and Jiapeng Zhang. Unpublished work, [LZ18] Shachar Lovett and Jiapeng Zhang. DNF sparsification beyond sunflowers. ECCC preprint TR18-190, [Ros14] Benamin Rossman. The monotone complexity of k-clique on random graphs. SIAM Journal on Computing, 43(1: ,

About sunflowers. Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 April 27, 2018

About sunflowers. Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 April 27, 2018 arxiv:1804.10050v1 [math.co] 26 Apr 2018 About sunflowers Gábor Hegedűs Óbuda University Bécsi út 96, Budapest, Hungary, H-1037 hegedus.gabor@nik.uni-obuda.hu April 27, 2018 Abstract Alon, Shpilka and

More information

NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS

NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS M. R. POURNAKI, S. A. SEYED FAKHARI, AND S. YASSEMI Abstract. Let be a simplicial complex and χ be an s-coloring of. Biermann and Van

More information

Constructive bounds for a Ramsey-type problem

Constructive bounds for a Ramsey-type problem Constructive bounds for a Ramsey-type problem Noga Alon Michael Krivelevich Abstract For every fixed integers r, s satisfying r < s there exists some ɛ = ɛ(r, s > 0 for which we construct explicitly an

More information

arxiv: v1 [math.co] 30 Jun 2016

arxiv: v1 [math.co] 30 Jun 2016 UPPER BOUNDS FOR SUNFLOWER-FREE SETS ERIC NASLUND, WILLIAM F. SAWIN arxiv:66.9575v [math.co] 3 Jun 6 Abstract. A collection of sets is said to form a -sunflower, or -system if the intersection of any two

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Katarzyna Mieczkowska

Katarzyna Mieczkowska Katarzyna Mieczkowska Uniwersytet A. Mickiewicza w Poznaniu Erdős conjecture on matchings in hypergraphs Praca semestralna nr 1 (semestr letni 010/11 Opiekun pracy: Tomasz Łuczak ERDŐS CONJECTURE ON MATCHINGS

More information

arxiv: v1 [math.co] 18 Nov 2017

arxiv: v1 [math.co] 18 Nov 2017 Short proofs for generalizations of the Lovász Local Lemma: Shearer s condition and cluster expansion arxiv:171106797v1 [mathco] 18 Nov 2017 Nicholas J A Harvey Abstract Jan Vondrák The Lovász Local Lemma

More information

Minimal Paths and Cycles in Set Systems

Minimal Paths and Cycles in Set Systems Minimal Paths and Cycles in Set Systems Dhruv Mubayi Jacques Verstraëte July 9, 006 Abstract A minimal k-cycle is a family of sets A 0,..., A k 1 for which A i A j if and only if i = j or i and j are consecutive

More information

Asymptotically optimal induced universal graphs

Asymptotically optimal induced universal graphs Asymptotically optimal induced universal graphs Noga Alon Abstract We prove that the minimum number of vertices of a graph that contains every graph on vertices as an induced subgraph is (1 + o(1))2 (

More information

On the intersection of infinite matroids

On the intersection of infinite matroids On the intersection of infinite matroids Elad Aigner-Horev Johannes Carmesin Jan-Oliver Fröhlich University of Hamburg 9 July 2012 Abstract We show that the infinite matroid intersection conjecture of

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 24, No. 3, pp. 1038 1045 c 2010 Society for Industrial and Applied Mathematics SET SYSTEMS WITHOUT A STRONG SIMPLEX TAO JIANG, OLEG PIKHURKO, AND ZELEALEM YILMA Abstract. A

More information

MONOCHROMATIC VS. MULTICOLORED PATHS. Hanno Lefmann* Department of Mathematics and Computer Science Emory University. Atlanta, Georgia 30332, USA

MONOCHROMATIC VS. MULTICOLORED PATHS. Hanno Lefmann* Department of Mathematics and Computer Science Emory University. Atlanta, Georgia 30332, USA MONOCHROMATIC VS. MULTICOLORED PATHS Hanno Lefmann* Department of Mathematics and Computer Science Emory University Atlanta, Georgia 30322, USA and School of Mathematics Georgia Institute of Technology

More information

On explicit Ramsey graphs and estimates of the number of sums and products

On explicit Ramsey graphs and estimates of the number of sums and products On explicit Ramsey graphs and estimates of the number of sums and products Pavel Pudlák Abstract We give an explicit construction of a three-coloring of K N,N in which no K r,r is monochromatic for r =

More information

On a hypergraph matching problem

On a hypergraph matching problem On a hypergraph matching problem Noga Alon Raphael Yuster Abstract Let H = (V, E) be an r-uniform hypergraph and let F 2 V. A matching M of H is (α, F)- perfect if for each F F, at least α F vertices of

More information

Probabilistic Method. Benny Sudakov. Princeton University

Probabilistic Method. Benny Sudakov. Princeton University Probabilistic Method Benny Sudakov Princeton University Rough outline The basic Probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain

More information

Bipartite Subgraphs of Integer Weighted Graphs

Bipartite Subgraphs of Integer Weighted Graphs Bipartite Subgraphs of Integer Weighted Graphs Noga Alon Eran Halperin February, 00 Abstract For every integer p > 0 let f(p be the minimum possible value of the maximum weight of a cut in an integer weighted

More information

The Turán number of sparse spanning graphs

The Turán number of sparse spanning graphs The Turán number of sparse spanning graphs Noga Alon Raphael Yuster Abstract For a graph H, the extremal number ex(n, H) is the maximum number of edges in a graph of order n not containing a subgraph isomorphic

More information

Nonnegative k-sums, fractional covers, and probability of small deviations

Nonnegative k-sums, fractional covers, and probability of small deviations Nonnegative k-sums, fractional covers, and probability of small deviations Noga Alon Hao Huang Benny Sudakov Abstract More than twenty years ago, Manickam, Miklós, and Singhi conjectured that for any integers

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Probabilistic Proofs of Existence of Rare Events. Noga Alon

Probabilistic Proofs of Existence of Rare Events. Noga Alon Probabilistic Proofs of Existence of Rare Events Noga Alon Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Ramat-Aviv, Tel Aviv 69978 ISRAEL 1. The Local Lemma In a typical

More information

On Sunflowers and Matrix Multiplication

On Sunflowers and Matrix Multiplication On Sunflowers and Matrix Multiplication Noga Alon Amir Shpilka Christopher Umans Abstract We present several variants of the sunflower conjecture of Erdős and Rado [ER60] and discuss the relations among

More information

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM A. DUBICKAS and A. NOVIKAS Abstract. Let E(4) be the set of positive integers expressible by the form 4M d, where M is a multiple of the product ab and

More information

DAVID ELLIS AND BHARGAV NARAYANAN

DAVID ELLIS AND BHARGAV NARAYANAN ON SYMMETRIC 3-WISE INTERSECTING FAMILIES DAVID ELLIS AND BHARGAV NARAYANAN Abstract. A family of sets is said to be symmetric if its automorphism group is transitive, and 3-wise intersecting if any three

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

An estimate for the probability of dependent events

An estimate for the probability of dependent events Statistics and Probability Letters 78 (2008) 2839 2843 Contents lists available at ScienceDirect Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro An estimate for the

More information

Dominating a family of graphs with small connected subgraphs

Dominating a family of graphs with small connected subgraphs Dominating a family of graphs with small connected subgraphs Yair Caro Raphael Yuster Abstract Let F = {G 1,..., G t } be a family of n-vertex graphs defined on the same vertex-set V, and let k be a positive

More information

LOWER BOUNDS ON BALANCING SETS AND DEPTH-2 THRESHOLD CIRCUITS

LOWER BOUNDS ON BALANCING SETS AND DEPTH-2 THRESHOLD CIRCUITS LOWER BOUNDS ON BALANCING SETS AND DEPTH-2 THRESHOLD CIRCUITS PAVEL HRUBEŠ, SIVARAMAKRISHNAN NATARAJAN RAMAMOORTHY, ANUP RAO, AND AMIR YEHUDAYOFF Abstract. There are various notions of balancing set families

More information

Conflict-Free Colorings of Rectangles Ranges

Conflict-Free Colorings of Rectangles Ranges Conflict-Free Colorings of Rectangles Ranges Khaled Elbassioni Nabil H. Mustafa Max-Planck-Institut für Informatik, Saarbrücken, Germany felbassio, nmustafag@mpi-sb.mpg.de Abstract. Given the range space

More information

Maximal Independent Sets In Graphs With At Most r Cycles

Maximal Independent Sets In Graphs With At Most r Cycles Maximal Independent Sets In Graphs With At Most r Cycles Goh Chee Ying Department of Mathematics National University of Singapore Singapore goh chee ying@moe.edu.sg Koh Khee Meng Department of Mathematics

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Irredundant Families of Subcubes

Irredundant Families of Subcubes Irredundant Families of Subcubes David Ellis January 2010 Abstract We consider the problem of finding the maximum possible size of a family of -dimensional subcubes of the n-cube {0, 1} n, none of which

More information

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of

More information

Pseudorandomness in Computer Science and in Additive Combinatorics. Luca Trevisan University of California, Berkeley

Pseudorandomness in Computer Science and in Additive Combinatorics. Luca Trevisan University of California, Berkeley Pseudorandomness in Computer Science and in Additive Combinatorics Luca Trevisan University of California, Berkeley this talk explain what notions of pseudorandomness and indistinguishability arise in

More information

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms Course Notes Part IV Probabilistic Combinatorics and Algorithms J. A. Verstraete Department of Mathematics University of California San Diego 9500 Gilman Drive La Jolla California 92037-0112 jacques@ucsd.edu

More information

Lecture 2: January 18

Lecture 2: January 18 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 2: January 18 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS

A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS BRIAN L MILLER & CHRIS MONICO TEXAS TECH UNIVERSITY Abstract We describe a particular greedy construction of an arithmetic progression-free

More information

Cross-Intersecting Sets of Vectors

Cross-Intersecting Sets of Vectors Cross-Intersecting Sets of Vectors János Pach Gábor Tardos Abstract Given a sequence of positive integers p = (p 1,..., p n ), let S p denote the set of all sequences of positive integers x = (x 1,...,

More information

On a Balanced Property of Compositions

On a Balanced Property of Compositions On a Balanced Property of Compositions Miklós Bóna Department of Mathematics University of Florida Gainesville FL 32611-8105 USA Submitted: October 2, 2006; Accepted: January 24, 2007; Published: March

More information

Parameterized Algorithms and Kernels for 3-Hitting Set with Parity Constraints

Parameterized Algorithms and Kernels for 3-Hitting Set with Parity Constraints Parameterized Algorithms and Kernels for 3-Hitting Set with Parity Constraints Vikram Kamat 1 and Neeldhara Misra 2 1 University of Warsaw vkamat@mimuw.edu.pl 2 Indian Institute of Science, Bangalore neeldhara@csa.iisc.ernet.in

More information

The Intersection Theorem for Direct Products

The Intersection Theorem for Direct Products Europ. J. Combinatorics 1998 19, 649 661 Article No. ej9803 The Intersection Theorem for Direct Products R. AHLSWEDE, H.AYDINIAN AND L. H. KHACHATRIAN c 1998 Academic Press 1. INTRODUCTION Before we state

More information

Theorems of Erdős-Ko-Rado type in polar spaces

Theorems of Erdős-Ko-Rado type in polar spaces Theorems of Erdős-Ko-Rado type in polar spaces Valentina Pepe, Leo Storme, Frédéric Vanhove Department of Mathematics, Ghent University, Krijgslaan 28-S22, 9000 Ghent, Belgium Abstract We consider Erdős-Ko-Rado

More information

Communication is bounded by root of rank

Communication is bounded by root of rank Electronic Colloquium on Computational Complexity, Report No. 84 (2013) Communication is bounded by root of rank Shachar Lovett June 7, 2013 Abstract We prove that any total boolean function of rank r

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

Asymptotically optimal induced universal graphs

Asymptotically optimal induced universal graphs Asymptotically optimal induced universal graphs Noga Alon Abstract We prove that the minimum number of vertices of a graph that contains every graph on vertices as an induced subgraph is (1+o(1))2 ( 1)/2.

More information

Lecture 7: February 6

Lecture 7: February 6 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 7: February 6 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence

Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence Andrzej Dudek adudek@emory.edu Andrzej Ruciński rucinski@amu.edu.pl June 21, 2008 Joanna Polcyn joaska@amu.edu.pl

More information

Additive Combinatorics and Computational Complexity

Additive Combinatorics and Computational Complexity Additive Combinatorics and Computational Complexity Luca Trevisan U.C. Berkeley Ongoing joint work with Omer Reingold, Madhur Tulsiani, Salil Vadhan Combinatorics: Studies: Graphs, hypergraphs, set systems

More information

Lecture 7: The Subgraph Isomorphism Problem

Lecture 7: The Subgraph Isomorphism Problem CSC2429, MAT1304: Circuit Complexity October 25, 2016 Lecture 7: The Subgraph Isomorphism Problem Instructor: Benjamin Rossman 1 The Problem SUB(G) Convention 1 (Graphs). Graphs are finite simple graphs

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

On covering graphs by complete bipartite subgraphs

On covering graphs by complete bipartite subgraphs On covering graphs by complete bipartite subgraphs S. Jukna a,1, A. S. Kulikov b,2 a Institute of Mathematics, Akademijos 4, LT-80663 Vilnius, Lithuania b Steklov Institute of Mathematics, Fontanka 27,

More information

Choosability and fractional chromatic numbers

Choosability and fractional chromatic numbers Choosability and fractional chromatic numbers Noga Alon Zs. Tuza M. Voigt This copy was printed on October 11, 1995 Abstract A graph G is (a, b)-choosable if for any assignment of a list of a colors to

More information

The 123 Theorem and its extensions

The 123 Theorem and its extensions The 123 Theorem and its extensions Noga Alon and Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract It is shown

More information

Containment restrictions

Containment restrictions Containment restrictions Tibor Szabó Extremal Combinatorics, FU Berlin, WiSe 207 8 In this chapter we switch from studying constraints on the set operation intersection, to constraints on the set relation

More information

Bounded Matrix Rigidity and John s Theorem

Bounded Matrix Rigidity and John s Theorem Electronic Colloquium on Computational Complexity, Report No. 93 (2016) Bounded Matrix Rigidity and John s Theorem Cyrus Rashtchian Department of Computer Science & Engineering University of Washington,

More information

Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers

Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers 3 47 6 3 Journal of Integer Seuences, Vol. (7), rticle 7..3 ounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers Roger Woodford Department of Mathematics University

More information

Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp

Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp Proceedings of the 204 Federated Conference on Computer Science Information Systems pp. 479 486 DOI: 0.5439/204F297 ACSIS, Vol. 2 An efficient algorithm for the density Turán problem of some unicyclic

More information

REGULARITY LEMMAS FOR GRAPHS

REGULARITY LEMMAS FOR GRAPHS REGULARITY LEMMAS FOR GRAPHS Abstract. Szemerédi s regularity lemma proved to be a fundamental result in modern graph theory. It had a number of important applications and is a widely used tool in extremal

More information

The cocycle lattice of binary matroids

The cocycle lattice of binary matroids Published in: Europ. J. Comb. 14 (1993), 241 250. The cocycle lattice of binary matroids László Lovász Eötvös University, Budapest, Hungary, H-1088 Princeton University, Princeton, NJ 08544 Ákos Seress*

More information

Chromatic Ramsey number of acyclic hypergraphs

Chromatic Ramsey number of acyclic hypergraphs Chromatic Ramsey number of acyclic hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas@renyi.hu Alexander

More information

On the number of cycles in a graph with restricted cycle lengths

On the number of cycles in a graph with restricted cycle lengths On the number of cycles in a graph with restricted cycle lengths Dániel Gerbner, Balázs Keszegh, Cory Palmer, Balázs Patkós arxiv:1610.03476v1 [math.co] 11 Oct 2016 October 12, 2016 Abstract Let L be a

More information

Optimal primitive sets with restricted primes

Optimal primitive sets with restricted primes Optimal primitive sets with restricted primes arxiv:30.0948v [math.nt] 5 Jan 203 William D. Banks Department of Mathematics University of Missouri Columbia, MO 652 USA bankswd@missouri.edu Greg Martin

More information

STAT 7032 Probability Spring Wlodek Bryc

STAT 7032 Probability Spring Wlodek Bryc STAT 7032 Probability Spring 2018 Wlodek Bryc Created: Friday, Jan 2, 2014 Revised for Spring 2018 Printed: January 9, 2018 File: Grad-Prob-2018.TEX Department of Mathematical Sciences, University of Cincinnati,

More information

Vertex colorings of graphs without short odd cycles

Vertex colorings of graphs without short odd cycles Vertex colorings of graphs without short odd cycles Andrzej Dudek and Reshma Ramadurai Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 1513, USA {adudek,rramadur}@andrew.cmu.edu

More information

The Rainbow Turán Problem for Even Cycles

The Rainbow Turán Problem for Even Cycles The Rainbow Turán Problem for Even Cycles Shagnik Das University of California, Los Angeles Aug 20, 2012 Joint work with Choongbum Lee and Benny Sudakov Plan 1 Historical Background Turán Problems Colouring

More information

Uniformly discrete forests with poor visibility

Uniformly discrete forests with poor visibility Uniformly discrete forests with poor visibility Noga Alon August 19, 2017 Abstract We prove that there is a set F in the plane so that the distance between any two points of F is at least 1, and for any

More information

Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems

Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems Dhruv Mubayi December 19, 2016 Abstract Given integers l, n, the lth power of the path P n is the ordered graph Pn l with vertex set v 1

More information

EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS

EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS #A5 INTEGERS 5 (205) EGYPTIAN FRACTIONS WITH EACH DENOMINATOR HAVING THREE DISTINCT PRIME DIVISORS Steve Butler Department of Mathematics, Iowa State University, Ames, Iowa butler@iastate.edu Paul Erdős

More information

The Complete Intersection Theorem for Systems of Finite Sets

The Complete Intersection Theorem for Systems of Finite Sets Europ. J. Combinatorics (1997) 18, 125 136 The Complete Intersection Theorem for Systems of Finite Sets R UDOLF A HLSWEDE AND L EVON H. K HACHATRIAN 1. H ISTORIAL B ACKGROUND AND THE N EW T HEOREM We are

More information

A note on network reliability

A note on network reliability A note on network reliability Noga Alon Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics Tel Aviv University, Tel Aviv, Israel Let G = (V, E) be a loopless undirected multigraph,

More information

arxiv: v3 [cs.cc] 28 Jun 2015

arxiv: v3 [cs.cc] 28 Jun 2015 Parity Decision Tree Complexity and 4-Party Communication Complexity of XOR-functions Are Polynomially Equivalent arxiv:156.2936v3 [cs.cc] 28 Jun 215 Penghui Yao CWI, Amsterdam phyao1985@gmail.com September

More information

Probabilistic construction of t-designs over finite fields

Probabilistic construction of t-designs over finite fields Probabilistic construction of t-designs over finite fields Shachar Lovett (UCSD) Based on joint works with Arman Fazeli (UCSD), Greg Kuperberg (UC Davis), Ron Peled (Tel Aviv) and Alex Vardy (UCSD) Gent

More information

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy A Note on the Karp-Lipton Collapse for the Exponential Hierarchy Chris Bourke Department of Computer Science & Engineering University of Nebraska Lincoln, NE 68503, USA Email: cbourke@cse.unl.edu January

More information

Set-orderedness as a generalization of k-orderedness and cyclability

Set-orderedness as a generalization of k-orderedness and cyclability Set-orderedness as a generalization of k-orderedness and cyclability Keishi Ishii Kenta Ozeki National Institute of Informatics, Tokyo 101-8430, Japan e-mail: ozeki@nii.ac.jp Kiyoshi Yoshimoto Department

More information

Generalized hashing and applications to digital fingerprinting

Generalized hashing and applications to digital fingerprinting Generalized hashing and applications to digital fingerprinting Noga Alon, Gérard Cohen, Michael Krivelevich and Simon Litsyn Abstract Let C be a code of length n over an alphabet of q letters. An n-word

More information

Expander Construction in VNC 1

Expander Construction in VNC 1 Expander Construction in VNC 1 Sam Buss joint work with Valentine Kabanets, Antonina Kolokolova & Michal Koucký Prague Workshop on Bounded Arithmetic November 2-3, 2017 Talk outline I. Combinatorial construction

More information

Large topological cliques in graphs without a 4-cycle

Large topological cliques in graphs without a 4-cycle Large topological cliques in graphs without a 4-cycle Daniela Kühn Deryk Osthus Abstract Mader asked whether every C 4 -free graph G contains a subdivision of a complete graph whose order is at least linear

More information

Uniformly X Intersecting Families. Noga Alon and Eyal Lubetzky

Uniformly X Intersecting Families. Noga Alon and Eyal Lubetzky Uniformly X Intersecting Families Noga Alon and Eyal Lubetzky April 2007 X Intersecting Families Let A, B denote two families of subsets of [n]. The pair (A,B) is called iff `-cross-intersecting A B =`

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Bipartite decomposition of random graphs

Bipartite decomposition of random graphs Bipartite decomposition of random graphs Noga Alon Abstract For a graph G = (V, E, let τ(g denote the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs

More information

Gearing optimization

Gearing optimization Gearing optimization V.V. Lozin Abstract We consider an optimization problem that arises in machine-tool design. It deals with optimization of the structure of gearbox, which is normally represented by

More information

CS151 Complexity Theory. Lecture 6 April 19, 2017

CS151 Complexity Theory. Lecture 6 April 19, 2017 CS151 Complexity Theory Lecture 6 Shannon s counting argument frustrating fact: almost all functions require huge circuits Theorem (Shannon): With probability at least 1 o(1), a random function f:{0,1}

More information

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA Odd K 3,3 subdivisions in bipartite graphs 1 Robin Thomas and Peter Whalen School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA Abstract We prove that every internally

More information

Poly-logarithmic independence fools AC 0 circuits

Poly-logarithmic independence fools AC 0 circuits Poly-logarithmic independence fools AC 0 circuits Mark Braverman Microsoft Research New England January 30, 2009 Abstract We prove that poly-sized AC 0 circuits cannot distinguish a poly-logarithmically

More information

A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy Nir Halman Hebrew University of Jerusalem halman@huji.ac.il July 3, 2016 Abstract Given n elements

More information

European Journal of Combinatorics

European Journal of Combinatorics European Journal of Combinatorics 30 (2009) 1686 1695 Contents lists available at ScienceDirect European Journal of Combinatorics ournal homepage: www.elsevier.com/locate/ec Generalizations of Heilbronn

More information

Approximating the independence number via the ϑ-function

Approximating the independence number via the ϑ-function Approximating the independence number via the ϑ-function Noga Alon Nabil Kahale Abstract We describe an approximation algorithm for the independence number of a graph. If a graph on n vertices has an independence

More information

Lecture 5. Shearer s Lemma

Lecture 5. Shearer s Lemma Stanford University Spring 2016 Math 233: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: April 6, 2016 Scribe: László Miklós Lovász Lecture 5. Shearer s Lemma 5.1 Introduction

More information

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES #A69 INTEGERS 3 (203) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri bankswd@missouri.edu Greg Martin Department of

More information

List coloring hypergraphs

List coloring hypergraphs List coloring hypergraphs Penny Haxell Jacques Verstraete Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada pehaxell@uwaterloo.ca Department of Mathematics University

More information

arxiv: v1 [math.co] 22 May 2014

arxiv: v1 [math.co] 22 May 2014 Using recurrence relations to count certain elements in symmetric groups arxiv:1405.5620v1 [math.co] 22 May 2014 S.P. GLASBY Abstract. We use the fact that certain cosets of the stabilizer of points are

More information

Maximum union-free subfamilies

Maximum union-free subfamilies Maximum union-free subfamilies Jacob Fox Choongbum Lee Benny Sudakov Abstract An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called

More information

Euler characteristic of the truncated order complex of generalized noncrossing partitions

Euler characteristic of the truncated order complex of generalized noncrossing partitions Euler characteristic of the truncated order complex of generalized noncrossing partitions D. Armstrong and C. Krattenthaler Department of Mathematics, University of Miami, Coral Gables, Florida 33146,

More information

3 Finish learning monotone Boolean functions

3 Finish learning monotone Boolean functions COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 5: 02/19/2014 Spring 2014 Scribes: Dimitris Paidarakis 1 Last time Finished KM algorithm; Applications of KM

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree-d polynomials is a set S F n, where F is a finite field, such that any degree-d

More information

Szemerédi s Lemma for the Analyst

Szemerédi s Lemma for the Analyst Szemerédi s Lemma for the Analyst László Lovász and Balázs Szegedy Microsoft Research April 25 Microsoft Research Technical Report # MSR-TR-25-9 Abstract Szemerédi s Regularity Lemma is a fundamental tool

More information

Packing of Rigid Spanning Subgraphs and Spanning Trees

Packing of Rigid Spanning Subgraphs and Spanning Trees Packing of Rigid Spanning Subgraphs and Spanning Trees Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti December 14, 2011 Abstract We prove that every 6k + 2l, 2k-connected simple graph contains

More information

Forbidding complete hypergraphs as traces

Forbidding complete hypergraphs as traces Forbidding complete hypergraphs as traces Dhruv Mubayi Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago, IL 60607 Yi Zhao Department of Mathematics and Statistics

More information

A Hilton-Milner-type theorem and an intersection conjecture for signed sets

A Hilton-Milner-type theorem and an intersection conjecture for signed sets A Hilton-Milner-type theorem and an intersection conjecture for signed sets Peter Borg Department of Mathematics, University of Malta Msida MSD 2080, Malta p.borg.02@cantab.net Abstract A family A of sets

More information

Linear independence, a unifying approach to shadow theorems

Linear independence, a unifying approach to shadow theorems Linear independence, a unifying approach to shadow theorems by Peter Frankl, Rényi Institute, Budapest, Hungary Abstract The intersection shadow theorem of Katona is an important tool in extremal set theory.

More information

Some hard families of parameterised counting problems

Some hard families of parameterised counting problems Some hard families of parameterised counting problems Mark Jerrum and Kitty Meeks School of Mathematical Sciences, Queen Mary University of London {m.jerrum,k.meeks}@qmul.ac.uk September 2014 Abstract

More information