The Structure, Function, and Evolution of Biological Systems. Instructor: Van Savage Winter 2015 Quarter 3/3/2015

Size: px
Start display at page:

Download "The Structure, Function, and Evolution of Biological Systems. Instructor: Van Savage Winter 2015 Quarter 3/3/2015"

Transcription

1 The Structure, Function, and Evolution of Biological Systems Instructor: Van Savage Winter 2015 Quarter 3/3/2015

2 Review of power laws

3 1. Types of Power Laws! y = ax b 1. Physical laws--planetary orbits, parabolic motion of thrown objects, classical forces, etc. (these are really idealized notions and do not exist in real world) 2. Scaling relations--relate two fundamental parameters in a system like lifespan to body mass in biology (physical laws are special/strong case) 3. Statistical distributions

4 Identifying Power Laws ln y = bln x + lna! Linear plot: slope=b and intercept=ln A Need big range on x- and y-axes to determine power laws because this minimizes effects of noise and errors Can give good measure of b, the exponent r 2 is property of data and measures how much variance in y is explained by variance in x. It is NOT really a measure of goodness of fit!

5 Examples of Power Laws

6 Parabolic Motion (Type 1)

7 Rates related to vascular networks (Type 2) Savage, et al., Func. Eco., 2004

8 Word usage (Type 3)

9 Word Usage (Type 3)

10 Web Sites (Type 2)

11 Identifying Power Laws Maximum likelihood methods are good for identifying power laws if used in correct way Whether to curve fit in linear or logarithmic space depends on distribution of errors because regressions make assumptions about these: homoscedascity->variance in y is independent of value of x Parabolic motion (error in distance measures is independent of y or x)--linear space Body size (for population, variance in body size or heart rate varies linearly with x)--logarithmic space

12 Self Similarity and Fractals

13 Imagine taking a picture of smaller piece and magnifying it, and then it looks like original part. Once a useful process is found in nature, it tends to be used over and over again-- physics constrains possible processes and evolution tends to maintain it because most mutations are harmful

14 Other examples of self similarity

15

16 Hun8ng the Hidden Dimension special on Nova: hap:// hidden- dimension.html Benoit Mandelbrot

17 How do you think this one was generated?

18 One movie just for fun hap:// Tropic_Isle_Level_Mandel.mpg

19 Power Laws Self Similarity Equation form for self similarity: f (λx) = λ p f (x) - > <- Differentiate with respect to λ Chain Rule f (x) = ax p f (λx) = a(λx) p = λ p ax p = λ p f (x) pλ p 1 f (x) = df (λx) dλ = d(λx) dλ df (λx) d(λx) = x df (λx) d(λx) Free to choose =1 x df (x) dx f (x) = ax p = pf (x) df f = p dx x

20 Fixed Points and Universality

21 Dynamical systems flow relative to fixed points What is functional form as fixed point is approached? This describes region and dynamics that are relevant for many scientific questions.

22 Non-power-law functions often behave as power laws near critical points Other functions commonly occur in nature: e x, sin(x), cosh(x), J (x), Ai(x) These functions can generally be expressed in Taylor or power series near critical points (phase transitions, etc.). When x is close to x*, difference is small, and first term dominates. f (x) = N k=p (x x*) k k! " $ # d k f dx % (x x*) k ' ~ C(x x*) p & p-exponent of leading-order term Any functions with the same first term in their series expansion behave the same near critical points, which is of great physical interest, even if they behave very differently elsewhere. Source of universality classes.

23 ln(1+x) x sin(x) x Near x=0, both of these functions scale like x!

24 Dimensional Analysis and Power Laws

25 Dimensional Analysis Often used in physics For reasons given thus far, many processes should scale as a power law. Given some quantity, f, that we want to determine, we need to intuit what other variables on which it must depend, {x 1,x 2,,x n }. Assume f depends on each of these variables as a power law. Use consistency of units to obtain set of equations that uniquely determine exponents. f (x 1,x 2,...,x n ) = x 1 p 1 x 2 p 2...x n p n

26 Example 1: Pythagorean Theorem Hypotenuse, c, and smallest angle, θ, uniquely determine right triangles. Area=f(c, θ), DA implies Area=c 2 g(θ). a φ θ φ c θ b Area of whole triangle=sum of area of smaller triangles a 2 g(θ) + b 2 g(θ) = c 2 g(θ) a 2 + b 2 = c 2

27 Example 2: Nuclear Blast US government wanted to keep energy yield of nuclear blasts a secret. Pictures of nuclear blast were released in Life magazine with time stamp Using DA, G. I. Taylor determined energy of blast and government was upset because they thought there had been a leak of information

28

29 Radius, R, of blast depends on time since explosion, t, energy of explosion, E, and density of medium, ρ, that explosion expands into [R]=m, [t]=s, [E]=kg*m 2 /s 2, ρ=kg/m 3 R=t p E q ρ k 1 = 2q 3k 0 = p 2q 0 = q + k q=1/5, k=-1/5, p=2/5 m s kg R (E / ρ) 1/5 t 2/5 E R5 ρ unknown constant coefficient can be determined from y-intercept of regression of log-log plot of time series t 2

30 Pitfalls of Dimensional Analysis Miss constant factors Miss dimensionless ratios But, can get far with a good bit of ignorance!!!

31 Summary Self-similarity and fractalsè Power Laws Behavior near critical point è Power Laws But, Power Lawsè near critical points Dimensional Analysis assumes power law form and this is partially justified by necessity of matching units

32 If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is. -John von Neumann

33 Theories are approximations that hope to impart deeper understanding We all know that art [theory] is not truth. Art [theory] is a lie that makes us realize truth, at least the truth that is given us to understand. The artist [theorist] must know the manner whereby to convince others of the truthfulness of his lies. --Pablo Picasso

34 A little philosophy of science Many general patterns are power laws Can often explain these without knowledge of all the details of the system Art of science is knowing system well enough to have intuition about which details are important

35 Single prediction models are not enough Much better to predict value of exponent and not just that it is a power law To really believe a theory we need multiple pieces of evidence (possibly n multiple power 1/3 laws) and need to be able to predict many of these. Understanding dynamics and some further details allows one to predict deviations from power law, and that is a very strong test and leads to very precise results

36 Barabasi et al.

37 Power laws in statistical distributions and scaling of growth of networks

38 Erdos-Renyi random graphs

39 Examples of distributions of real data Actors Internet Power grid

40 Growth models of networks 1. Start with m 0 unconnected nodes 2. Network grows one vertex at a time (gene duplication, species invasion, etc) 3. Add 1 node at a time and form m new connections between this node and existing nodes. (Why?) 4. Connections are formed with probability k i / k j where k i is the connectivity of node i. (Preferential attachment/rich get richer/proportional model) This is a type of self similarity! Power laws are to be expected.

41 Scaling of connectivity Total number of nodes at time t is m 0 +t Total number of edges is mt= k j /2 Connectivity at next time step is on average (edges can t be lost): k i (t +1) = k i (t) + m[k i (t) / k j ] Number of new edges at next 8me step Probability of that connec8on going to node i k i (t) t

42 Scaling of connectivity

43 Scaling of probability density " P(k i > k) = $ m # k (" * $ % # ' * &* * ) mt m 0 + t k % + '- &- - -, Average connec8vity of any node at 8me t Connec8vity at 8me that node i came into existence P(k i < k) =1 P(k i > k) =1 Connec8vity for comparison and probability m 2 t k 2 (m 0 + t) Probability density dp dk k 3

44 Scaling of probability density

45 Scaling of probability density

46 Scaling of probability density Adding edges without adding new nodes does not reach equilibrium

47 Metabolic networks

48 E coli metabolic substrate network

49 Scaling of probability density in metabolic networks Archaea E coli C elegans Average across 43 organisms

50 Distributions of pathway lengths

51 Scaling of connectivity

52 Scaling of lengths with node removal

53 Return to motifs

54 Similar frequencies of subgraphs in real networks

55 Universal scaling exponents in metabolic networks γ is degree exponent and α is clustering exponent. Exponents characterize local and global network organiza8on

56 Statistically significant subgraphs (i.e., motifs) for power law networks EDGES NODES

57 Scaling of probability density of triangles Dis8nct components T is number of selected subgraphs passing by a node

58 Scaling of probability density of penta-graphs Giant component T is number of selected subgraphs passing by a node

59 Phase transitions in hex-graphs: Before transition are motifs Aggrega8on/clustering decreases with number of edges in subgraph. Normalized by size of largest connected component

60 Free Network software 1. Network workbench (NWB) 2. Fanmod 3. Gephi 4. Prism.m Quick demos. Can use these in your research!

61 All humans are caught in an inescapable network of mutuality. - Mar8n Luther King, Jr.

62 Can display same network in different ways

63 Can look at different network or levels for given system

64 Can look at different 8mes

65 Can look at different 8mes

66 What have we learned? 1. Evolu8onary theory selec8on, drig, muta8ons, epistasis, neutrality, coalescence 2. Network theory mo8fs, subgraph structure, branching hierarchical, op8mal, clustering, growth, preferen8al aaachment (genes, proteins, food webs, disease) 3. Kolmogorov/Diffusion/Fokker Planck how to combine direc8onal and non- direc8onal processes, cell migra8on, cancer, gene expression, species abundance 4. Scaling power laws, self similarity, asympto8c expansions 5. How to read a modeling paper and work through the math and logic without just reading figures and punch lines 6. How to relate assump8on to figures and fundamental equa8ons and predic8ons 7. Fixed points, ODEs, sums, delta func8on, gamma func8on

67 THANKS to all of you! Good luck with your projects!

Modeling Vascular Networks with Applications. Instructor: Van Savage Spring 2015 Quarter 4/6/2015 Meeting time: Monday and Wednesday, 2:00pm-3:50 pm

Modeling Vascular Networks with Applications. Instructor: Van Savage Spring 2015 Quarter 4/6/2015 Meeting time: Monday and Wednesday, 2:00pm-3:50 pm Modeling Vascular Networks with Applications Instructor: Van Savage Spring 2015 Quarter 4/6/2015 Meeting time: Monday and Wednesday, 2:00pm-3:50 pm Total volume calculated V net = πr N 2 l N n N N k= 0

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

MATH 408N PRACTICE MIDTERM 1

MATH 408N PRACTICE MIDTERM 1 02/0/202 Bormashenko MATH 408N PRACTICE MIDTERM Show your work for all the problems. Good luck! () (a) [5 pts] Solve for x if 2 x+ = 4 x Name: TA session: Writing everything as a power of 2, 2 x+ = (2

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

MATH 302 Partial Differential Equations Fall Density

MATH 302 Partial Differential Equations Fall Density MATH 3 Partial Differential Equations Fall 11 Density Most of us first learned about density as mass divided by volume. This made sense in considering a specific object of uniform composition. We can separately

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Network models: dynamical growth and small world

Network models: dynamical growth and small world Network models: dynamical growth and small world Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

Biological networks CS449 BIOINFORMATICS

Biological networks CS449 BIOINFORMATICS CS449 BIOINFORMATICS Biological networks Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1 BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

MITOCW ocw-18_02-f07-lec17_220k

MITOCW ocw-18_02-f07-lec17_220k MITOCW ocw-18_02-f07-lec17_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks, CSYS/MATH 303, Spring, 2010 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under

More information

MATH6142 Complex Networks Exam 2016

MATH6142 Complex Networks Exam 2016 MATH642 Complex Networks Exam 26 Solution Problem a) The network is directed because the adjacency matrix is not symmetric. b) The network is shown in Figure. (4 marks)[unseen] 4 3 Figure : The directed

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 31A Discussion Session Week 5 Notes February 2 and 4, 2016 This week we re going to learn how to find tangent lines to curves which aren t necessarily graphs of functions, using an approach called

More information

Optimization. Charles J. Geyer School of Statistics University of Minnesota. Stat 8054 Lecture Notes

Optimization. Charles J. Geyer School of Statistics University of Minnesota. Stat 8054 Lecture Notes Optimization Charles J. Geyer School of Statistics University of Minnesota Stat 8054 Lecture Notes 1 One-Dimensional Optimization Look at a graph. Grid search. 2 One-Dimensional Zero Finding Zero finding

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Math 142, Final Exam, Fall 2006, Solutions

Math 142, Final Exam, Fall 2006, Solutions Math 4, Final Exam, Fall 6, Solutions There are problems. Each problem is worth points. SHOW your wor. Mae your wor be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE

More information

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006 Graph Theory and Networks in Biology arxiv:q-bio/0604006v1 [q-bio.mn] 6 Apr 2006 Oliver Mason and Mark Verwoerd February 4, 2008 Abstract In this paper, we present a survey of the use of graph theoretical

More information

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr Two common difficul:es with HW : Problem 1c: For what values of n does the divergence of v = r n ˆr diverge at the origin? In this context, diverge means becomes arbitrarily large ( goes to infinity ).

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Grade 6 Math Circles 7/8 November, Approximations & Estimations

Grade 6 Math Circles 7/8 November, Approximations & Estimations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Introduction Grade 6 Math Circles 7/8 November, 2017 Approximations & Estimations When solving problems,

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Complex Networks, Course 303A, Spring, Prof. Peter Dodds

Complex Networks, Course 303A, Spring, Prof. Peter Dodds Complex Networks, Course 303A, Spring, 2009 Prof. Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation ECS 253 / MAE 253 April 26, 2016 Intro to Biological Networks, Motifs, and Model selection/validation Announcement HW2, due May 3 (one week) HW2b, due May 5 HW2a, due May 5. Will be posted on Smartsite.

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019 Lecture 11: Information theory DANIEL WELLER THURSDAY, FEBRUARY 21, 2019 Agenda Information and probability Entropy and coding Mutual information and capacity Both images contain the same fraction of black

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

CS168: The Modern Algorithmic Toolbox Lecture #6: Regularization

CS168: The Modern Algorithmic Toolbox Lecture #6: Regularization CS168: The Modern Algorithmic Toolbox Lecture #6: Regularization Tim Roughgarden & Gregory Valiant April 18, 2018 1 The Context and Intuition behind Regularization Given a dataset, and some class of models

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 12: Random Graphs: preferential-attachment models Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/

More information

MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 2010

MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 2010 MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 010 INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU Question 1 : Compute the partial derivatives of order 1 order for: (1 f(x, y, z = e x+y cos(x sin(y. Solution:

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Prentice Hall Geometry (c) 2007 correlated to American Diploma Project, High School Math Benchmarks

Prentice Hall Geometry (c) 2007 correlated to American Diploma Project, High School Math Benchmarks I1.1. Add, subtract, multiply and divide integers, fractions and decimals. I1.2. Calculate and apply ratios, proportions, rates and percentages to solve problems. I1.3. Use the correct order of operations

More information

Week 5: Logistic Regression & Neural Networks

Week 5: Logistic Regression & Neural Networks Week 5: Logistic Regression & Neural Networks Instructor: Sergey Levine 1 Summary: Logistic Regression In the previous lecture, we covered logistic regression. To recap, logistic regression models and

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. You may often see (although not in FLAP) the notation sin 1 used in place of arcsin. sinh and cosh are pronounced

More information

Complex Systems. Shlomo Havlin. Content:

Complex Systems. Shlomo Havlin. Content: Complex Systems Content: Shlomo Havlin 1. Fractals: Fractals in Nature, mathematical fractals, selfsimilarity, scaling laws, relation to chaos, multifractals. 2. Percolation: phase transition, critical

More information

Representing metabolic networks

Representing metabolic networks Representing metabolic networks Given a reconstructed network, how should we represent it? For computational and statistical analyses, we need to be exact, much more so than when communicating between

More information

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables.

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables. 8.5.8 Lesson Date: Graphs of Non-Linear Functions Student Objectives I can examine the average rate of change for non-linear functions and learn that they do not have a constant rate of change. I can determine

More information

Calculus first semester exam information and practice problems

Calculus first semester exam information and practice problems Calculus first semester exam information and practice problems As I ve been promising for the past year, the first semester exam in this course encompasses all three semesters of Math SL thus far. It is

More information

Networks as a tool for Complex systems

Networks as a tool for Complex systems Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

MATH 2300 review problems for Exam 1 ANSWERS

MATH 2300 review problems for Exam 1 ANSWERS MATH review problems for Exam ANSWERS. Evaluate the integral sin x cos x dx in each of the following ways: This one is self-explanatory; we leave it to you. (a) Integrate by parts, with u = sin x and dv

More information

Math 120: Precalculus Autumn 2017 A List of Topics for the Final

Math 120: Precalculus Autumn 2017 A List of Topics for the Final Math 120: Precalculus Autumn 2017 A List of Topics for the Final Here s a fairly comprehensive list of things you should be comfortable doing for the final. Really Old Stuff 1. Unit conversion and rates

More information

A Conundrum concerning the area of a sphere

A Conundrum concerning the area of a sphere return to updates A Conundrum concerning the area of a sphere by Miles Mathis Since the surface area of a sphere and the surface area of an open cylinder of equal height are both 4πr 2, let us look at

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math 0-08 008 These problems are provided to help you study The presence of a problem on this handout does not imply that there will be a similar problem on the test And the

More information

7.3 Singular points and the method of Frobenius

7.3 Singular points and the method of Frobenius 284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Algebra 2 Secondary Mathematics Instructional Guide

Algebra 2 Secondary Mathematics Instructional Guide Algebra 2 Secondary Mathematics Instructional Guide 2009-2010 ALGEBRA 2AB (Grade 9, 10 or 11) Prerequisite: Algebra 1AB or Geometry AB 310303 Algebra 2A 310304 Algebra 2B COURSE DESCRIPTION Los Angeles

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information

August 27, Review of Algebra & Logic. Charles Delman. The Language and Logic of Mathematics. The Real Number System. Relations and Functions

August 27, Review of Algebra & Logic. Charles Delman. The Language and Logic of Mathematics. The Real Number System. Relations and Functions and of August 27, 2015 and of 1 and of 2 3 4 You Must Make al Connections and of Understanding higher mathematics requires making logical connections between ideas. Please take heed now! You cannot learn

More information

Instructor Quick Check: Question Block 12

Instructor Quick Check: Question Block 12 Instructor Quick Check: Question Block 2 How to Administer the Quick Check: The Quick Check consists of two parts: an Instructor portion which includes solutions and a Student portion with problems for

More information

Graph Theory and Networks in Biology

Graph Theory and Networks in Biology Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland {oliver.mason, mark.verwoerd}@nuim.ie January 17, 2007

More information

SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS

SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS (Section 3.5: Differentials and Linearization of Functions) 3.5.1 SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS LEARNING OBJECTIVES Use differential notation to express the approximate change

More information

Network Analysis and Modeling

Network Analysis and Modeling lecture 0: what are networks and how do we talk about them? 2017 Aaron Clauset 003 052 002 001 Aaron Clauset @aaronclauset Assistant Professor of Computer Science University of Colorado Boulder External

More information

Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks

Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.17(2014) No.3,pp.215-220 Average Receiving Time for Weighted-Dependent Walks on Weighted Koch Networks Lixin Tang

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes Data Analysis Standard Error and Confidence Limits E80 Spring 05 otes We Believe in the Truth We frequently assume (believe) when making measurements of something (like the mass of a rocket motor) that

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

Biological Networks Analysis

Biological Networks Analysis Biological Networks Analysis Degree Distribution and Network Motifs Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Networks: Networks vs. graphs A collection of nodesand

More information

Systems biology and biological networks

Systems biology and biological networks Systems Biology Workshop Systems biology and biological networks Center for Biological Sequence Analysis Networks in electronics Radio kindly provided by Lazebnik, Cancer Cell, 2002 Systems Biology Workshop,

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Basics and Random Graphs con0nued

Basics and Random Graphs con0nued Basics and Random Graphs con0nued Social and Technological Networks Rik Sarkar University of Edinburgh, 2017. Random graphs on jupyter notebook Solu0on to exercises 1 is out If your BSc/MSc/PhD work is

More information

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg Bioinformatics I CPBS 7711 October 29, 2015 Protein interaction networks Debra Goldberg debra@colorado.edu Overview Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

A Hypothesis about Infinite Series, of the minimally centered variety. By Sidharth Ghoshal May 17, 2012

A Hypothesis about Infinite Series, of the minimally centered variety. By Sidharth Ghoshal May 17, 2012 A Hypothesis about Infinite Series, of the minimally centered variety By Sidharth Ghoshal May 17, 2012 Contents Taylor s Theorem and Maclaurin s Special Case: A Brief Introduction... 3 The Curious Case

More information

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 is a fast-paced and thorough tour of precalculus mathematics, where the choice of topics is primarily motivated by the conceptual and technical knowledge

More information

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks Bioinformatics I Overview CPBS 7711 October 29, 2014 Protein interaction networks Debra Goldberg debra@colorado.edu Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

Spectral Analysis of Directed Complex Networks. Tetsuro Murai

Spectral Analysis of Directed Complex Networks. Tetsuro Murai MASTER THESIS Spectral Analysis of Directed Complex Networks Tetsuro Murai Department of Physics, Graduate School of Science and Engineering, Aoyama Gakuin University Supervisors: Naomichi Hatano and Kenn

More information

35 Chapter CHAPTER 4: Mathematical Proof

35 Chapter CHAPTER 4: Mathematical Proof 35 Chapter 4 35 CHAPTER 4: Mathematical Proof Faith is different from proof; the one is human, the other is a gift of God. Justus ex fide vivit. It is this faith that God Himself puts into the heart. 21

More information

Statistical analysis of biological networks.

Statistical analysis of biological networks. Statistical analysis of biological networks. Assessing the exceptionality of network motifs S. Schbath Jouy-en-Josas/Evry/Paris, France http://genome.jouy.inra.fr/ssb/ Colloquium interactions math/info,

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 2 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS (1) ( points) Solve the equation x 1 =. Solution: Since x 1 =, x 1 = or x 1 =. Solving for x, x = 4 or x = 2. (2) In the triangle below, let a = 4,

More information

Take a line segment of length one unit and divide it into N equal old length. Take a square (dimension 2) of area one square unit and divide

Take a line segment of length one unit and divide it into N equal old length. Take a square (dimension 2) of area one square unit and divide Fractal Geometr A Fractal is a geometric object whose dimension is fractional Most fractals are self similar, that is when an small part of a fractal is magnified the result resembles the original fractal

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

2007 Paper 1 Solutions

2007 Paper 1 Solutions 27 Paper 1 Solutions 2x 2 x 19 x 2 + x + 2 1 = 2x2 x 19 (x 2 + x + 2) x 2 + x + 2 2x 2 x 19 x 2 + x + 2 > 1 2x 2 x 19 x 2 + x + 2 1 > x 2 4x 21 x 2 + x + 2 > (x + )(x 7) (x + 2)(x + 1) > = x2 4x 21 x 2

More information

One-shot Learning of Poisson Distributions Information Theory of Audic-Claverie Statistic for Analyzing cdna Arrays

One-shot Learning of Poisson Distributions Information Theory of Audic-Claverie Statistic for Analyzing cdna Arrays One-shot Learning of Poisson Distributions Information Theory of Audic-Claverie Statistic for Analyzing cdna Arrays Peter Tiňo School of Computer Science University of Birmingham, UK One-shot Learning

More information

Math 116 Final Exam April 23, 2015

Math 116 Final Exam April 23, 2015 Math 116 Final Exam April 23, 2015 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 13 pages including this cover. There are 11 problems. Note that the

More information

Complex (Biological) Networks

Complex (Biological) Networks Complex (Biological) Networks Today: Measuring Network Topology Thursday: Analyzing Metabolic Networks Elhanan Borenstein Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 Define the problem: Suppose we have a 5-layer feed-forward neural network. (I intentionally

More information

Number, Number Sense, and Operations Data Analysis and Probability

Number, Number Sense, and Operations Data Analysis and Probability Algebra 1 Unit 1 Numbers 3 weeks Number, Number Sense, and Operations Data Analysis and Probability NC Apply properties of operations and the real number system, and justify when they hold for a set of

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

ECS 289 / MAE 298 May 8, Intro to Biological Networks, Motifs, and Model selection/validation

ECS 289 / MAE 298 May 8, Intro to Biological Networks, Motifs, and Model selection/validation ECS 289 / MAE 298 May 8, 2014 Intro to Biological Networks, Motifs, and Model selection/validation Announcement HW2a. Announced in class last Thurs, May 1. Posted on Smartsite. Due Monday May 12th, by

More information

Utah Secondary Mathematics Core Curriculum Precalculus

Utah Secondary Mathematics Core Curriculum Precalculus A Correlation of Trigonometry Lial To the Utah Secondary Mathematics Core Curriculum Precalculus Resource Title: Trigonometry Publisher: Pearson Education Inc Publishing as Prentice Hall ISBN (10 or 13

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Assortativity and Mixing. Outline. Definition. General mixing. Definition. Assortativity by degree. Contagion. References. Contagion.

Assortativity and Mixing. Outline. Definition. General mixing. Definition. Assortativity by degree. Contagion. References. Contagion. Outline Complex Networks, Course 303A, Spring, 2009 Prof Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

Introduction to Systems Biology

Introduction to Systems Biology Introduction to Systems Biology References: Watson s Molecular Biology of the Gene, Chapter 22 Alberts Molecular Biology of the Cell, Chapter 7 Yousof Gheisari ygheisari@med.mui.ac.ir Why is this picture

More information