Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances

Size: px
Start display at page:

Download "Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances"

Transcription

1 Testing for bioequivalence of highly variable drugs from T-T crossover designs with heterogeneous residual variances Christopher I. Vahl, PhD Department of Statistics Kansas State University Qing Kang, PhD Chief Statistical Scientist The Statistical Intelligence Group, LLC

2 Introduction Traditional bioavailability (BA) studies assess average bioequivalence (ABE) between the test (T) and reference () products under the T-T crossover design. With highly variable (HV) drugs whose within-subject coefficient of variation (CV) in pharmacokinetic measures is 30%, assertion of ABE becomes difficult. In 011, the FDA adopted a BE criterion with mixed-scaling. For HV drugs, the equivalence limits for the geometric mean ratio (GM) are scaled to within-subject variance of the reference product. This is known as reference scaled ABE (SABE). GM H 0 H H 0 : ( T ) kmax(0.5, ) vs. 1 : ( T ) kmax(0.5, ) H 1 T ln( CV 1); k ln(t: GM); [ln(1.5)] 0.5.

3 Introduction The FDA extended the statistical methods for assessing individual BE (IBE) to testing SABE. The recommended procedure operates exclusively under T-T-T and TT-TT designs. Testing IBE calls for separate estimation of subjectformulation variance and withinsubject variances, which could only be achieved by replicate crossover designs. In 003, the FDA discontinued the IBE criterion due to the lack of evidence confirming the existence of subjectformulation. Designs with more than periods are not always feasible. The volume of blood taken from each subject may exceed the acceptable limit. They tend to have a large amount of missing data and a high dropout rate. To avoid carryover effect, the washout period lasts for 5 half lives. A -period design is more practical for drugs with a long half life. Subject s physiological changes affect the variability of systemic drug concentration. A lengthy study could not be conducted on growing animals or those susceptible to stress under prolonged confinement and repeated dosing. Goal: To investigate how to evaluate HV drugs under the T-T design.

4 Model Consider a T-T design where the washout time between periods is sufficient to eliminate any carryover effect. Subject j in sequence i provides a vector of ln-transformed responses (Y ij1,y ij ). Alternative BE criteria under the T-T design were assessed using the model with heterogeneous residual variance. 1 1 T ijt i ij 1 1 i Y ij1 τ ij Y ij 1 1 ij i ij i 1 τ T ijt τij : subject effect, τij ~ N(, S ); : sequence effect; i : period effect; j T & : product effects; Treatment Sequence (i). of Subjects* Period 1 Period 1 n 1 T n T τ ijt & ij : residual errors, ijt ~ N(0, T ), ij ~ N(0, );, & are mutually indept. ij ijt ij *n n N 1

5 Model The FDA s model for replicate crossover designs allows ij to have a covariance matrix of any positive definite structure. τ 0 0 ~ N(, ), ~ N(, ) ST ST S S ST S 1j j 0 τ 0 ST S S ST S ST The variance of subjectformulation is ( ) (1 ) Int ST S ST S The T-T design confounds Int no subjectformulation, with within-subject variances. But when there is ~ (, ) ST S S Int τij N S It is then plausible to assess SABE from the T-T design.

6 Summary Statistics Convert (Y ij1, Y ij ) into within-subject sum and T- difference. Yij1Yij i 1 Yij Yij1 Yij Yij Yij Yij1 i Yij 4 S T T Var( ) Y ij T T ( ) ( ) T T T T Define the summary statistics with respect to (Y ij, Y ij ) as n n i i Y Y n Y Y n D ( Y Y ) i j1 ij i i j1 ij i 1 ni ni ni i 1 j 1 ij i i 1 j 1 ij i i 1 j 1 ij i ij i S ( Y Y ) S ( Y Y ) S ( Y Y )( Y Y ) B S S S S S S te : D and S /[(N-)] correspond the LS mean difference and MSE in the classical ANOVA model; B and S represent the slope and the SSE when regressing Y ij on Y ij with the same slope but different intercept for i=1,.

7 Summary Statistics By ao(1973), these summary statistics have the distributional properties of 4nn N S [ D ( )] Z ~ N(0,1) U ~ ( N ) 1 T T T 1 S ( B ) S Z ~ N (0,1) U ~ ( N 3) 4 (1 ) : conditional variance of Y given Y S T ij ij te: Z, Z, U, and U are mutually independent; B is not independent of S and its marginal distribution is not normal; The estimator for T, and T are D, B and S /(N-); The estimator for 0.5(1 ) is whose distribution does not follow any classic form. T 0.5(1 B) S ( N )

8 Testing Procedures The current test of SABE employs the modified large sample (MLS) method which is applicable under replicate crossover designs. The MLS method approximates the confidence limits (CLs) of a linear combination of parameters by restricting it to be exact when only one parameter is unknown. It calls for independent summary statistics with known distributions. Let b, s and d be the values of B, S and D observed from the T-T design. The estimate of is and the CLs for T is 1 (1 bs ) N 4 N d t0.95, N s 4 n n ( N ) 1 The MLS method is inappropriate under the T-T design because is not estimated from independent summary statistics with classic marginal distributions.

9 Testing Procedures The generalized pivotal quantity (GPQ) method is used to test SABE under the T- T design. The distribution of the GPQ produces a fiducial-type inference which, in many situations, meets frequentists standards. The distributional properties of the summary statistics suggest that the GPQ for T, T, and are 4nn N s N s T1 d ( D) d Z N n n S n n U 1 T T T 1 T s S T s U 1 s s T3 b ( B ) S b Z S s s U The GPQ for ( T ) k ( T ) 0.5 k T(1 ) T 0.5 kt (1 T ) 1 3 is then assembled as

10 Testing Procedures The distribution of this GPQ is obtained via a resampling algorithm. Step 1. Independently sample z, u, z and u and N(0,1) and (N-3). from N(0,1), (N-), Step. eplace Z, U, Z, and U in T 1, T and T 3 with z, u, z and u. This yields t 1, t and t 3. Step 3. Calculate t 1 0.5kt (1-t 3 ) and accumulate its value by repeating steps1 and many times. The 95% upper CL of ( T ) k is given by the 95 th percentile of the resampling distribution. The test product passes SABE when this percentile is 0.

11 Analysis of Example Dataset Source: Dataset #7 in FDA s databank for BA studies. Data: Cmax measured in the first two periods of a TT-TT-TT-TT design. d s s s b s T ( n1 1) T ( n 10) Parameter Point Estimate (PE) Conf. Level Conf. Interval (CI) exp( T ) % (0.9148, ) ( T ) k % (-, )

12 Analysis of Example Dataset The FDA s decision rule for testing SABE under replicate crossover designs applies TOST when To ensure public confidence and harmonize with various regulatory agencies, the FDA requires PE of the estimated T: geometric mean ratio to lie within 0.8~1.5. TOST-MLS Procedure W/ PE constraint Data from the replicate crossover design TOST-GPQ Procedure W/ PE constraint Data from the T-T design Test SABE via the MLS method 0.94 Test SABE via the GPQ method % UCL of ( ) k 0 T Test ABE via TOST 90% CI of exp( T ) [0.8,1.5] 95% UCL of ( ) k 0 T PE constaint: 0.8 ln( d ) 1.5 Fail PE constaint: 0.8 ln( d ) 1.5 Pass Pass

13 Simulation Study Simulation parameters were chosen based on historical publications on BA studies. Total Sample size T-T designs: N =4,, 7 with n 1 =n =N/; T-T-T designs: N=18,,48 with n 1 =n =n 3 =N/3; Variation of the reference product High: CV = 40%,,80%; Borderline high: CV = 5% (the changeover point) and 30%; egular: CV = 0%. Within-subject variance Heterogeneous: T / =0.5 and ; Homogeneous: T / =1. S =0.,,1. Zero sequence and period effects. 10,000 simulations at each sample size and parameter setting. 5, 000 resamples within each simulated dataset.

14 Simulation Study Type I error rate at ( T ) =kmax(0.5, ). Each schematic boxplot summarizes results of 75 combinations of simulation setting.

15 Simulation Study te: The TOST-GPQ procedure was moderately liberal at CV =5% but held a desirable type I error rate at all other examined values of CV. The TOST-MLS procedure preserved its nominal level when CV 5%. In comparison to the TOST-GPQ procedure, it had a slightly lower inflation of type I error at CV =5%. The PE constraint led to ultra conservativeness when CV 40% but had little impact when CV 5%.

16 Power Simulation Study N 4 N 48 N 7 CV CV CV S Power for the TOST-GPQ procedure with PE constraint at T =0 & T / =1. te: Power increased as S decreased and as N increased. There was no monotonic relationship between power and CV. For a given S & N, power was always the highest when CV is around 0% and dipped to the bottom when CV is around 50%.

17 Passing ate Simulation Study CV =CV T =30% CV =CV T =60% exp( ) T exp( ) T S Passing rate of the TOST-GPQ procedure under the T-T design of size 54 ( ) and the TOST-MLS procedure under the T-T-T design of size 36 (- - -). te: These hybrid procedures performed similarly well at S =0. & 0.6. The TOST-GPQ procedure underperforms at S =1.

18 Sample Size Estimation Total sample size needed to establish BE with mixed scaling at T =0. 80% power CV T =CV T-TT-T Design S =0.4 T-T Design S =0.6 S =0.8 30% 1 8 (1.3 ) 3 (1.5) 38 (1.8) 40% 34 (1.5) 44 ( ) 56 (.5) 50% 34 (1.5) 44 ( ) 56 (.5) 60% 3 34 (1.5) 4 (1.8) 5 (.3) 70% 5 36 (1.4) 4 (1.7) 50 ( ) Provided by Tothfalusi & Endrenyi 01. The ratio of sample sizes. te: The two designs have a trivial difference at S =0.4. The T-T design is more expensive at S =0.6 & 0.8.

19 Discussion So far, BA studies on HV drugs have all been carried out under replicate crossover designs with 3 or 4 periods. In cases that these designs are infeasible, parallel designs have been considered as a backup choice. The setbacks include prohibitive sample sizes; difficulty in translating SABE when the between- and within-subject variability are confounded. The proposed approach utilizes the fact that subjectformulation is negligible; operates under the traditional T-T design; allows continued exercise of the existing BE criterion. When S 0.4, the resulting inference is at least as good as that derived from replicate crossover designs. Larger S weakens the inference. ecommendation: eplicate crossover designs are preferred for BA studies on HV drugs. Under practical restrictions, producers are encouraged to implement the T- T design and the proposed TOST-GPQ procedure.

20 Discussion The FDA requires producers to determine, a priori, whether the reference drug is HV. Variability classification is a known problem for human and animal drugs. Dispute arises when producers classify the same reference drug differently. The protocol specifies to use SABE for a HV drug Data from the replicate crossover design Data from the T-T design Test SABE via the MLS method 0.94 Test ABE via TOST 95% UCL of ( ) k 0 T PE constaint: 0.8 exp( d ) 1.5 Fail 90% CI of exp( T ) [0.8,1.5] Pass

21 Discussion The proposed approach promotes coherence in regulatory evaluation. The protocol specifies to test BE with mixed scaling Data from a crossover design Test SABE via the MLS or GPQ method 0.94 Test ABE via TOST 95% UCL of ( ) k 0 T PE constaint: 0.8 exp( d ) 1.5 Fail 90% CI of exp( T ) [0.8,1.5] Pass

22 eferences Claxton et al. Estimating product bioequivalence for highly variable veterinary drugs. J. Vet. Pharmaco. Ther. 01; 35 (Suppl. 1): Davit BM et al. Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration. AAPS J. 01; 14: Draft guidance on progesterone, GuidanceComplianceegulatoryInformation/Guidances/UCM0994.pdf. Guilbaud O. Exact inference about the within-subject variability in crossover trials. JASA 1993; 88: Hannig J et al. Fiducial generalized confidence intervals. JASA 006; 101: Haidar et al. Evaluation of a scaling approach for the bioequivalence of highly Variable drugs. AAPS J. 008; 10: ao C. Linear statistical inference and its applications (nd ed.). Wiley: New York; Tothfalusi L & Endrenyi L. Sample sizes for designing bioequivalence studies for highly variable drugs. J. Pharm. Pharm. Sci. 01; 15: Weerahandi S. Generalized confidence Intervals. JASA 1993; 88:

- 1 - By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus)

- 1 - By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus) - 1 - BIOAVAILABILIY AND BIOEQUIVALENCE By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus) 1. Bioavailability (see Westlake, 1988) 1.1 Absorption: he aim is

More information

Inflation of the Type I Error in Reference-scaled Average Bioequivalence

Inflation of the Type I Error in Reference-scaled Average Bioequivalence Wikimedia Commons 2014 Herzi Pinki Creative Commons Attribution 4.0 Internat. Inflation of the Type I Error in Reference-scaled Average Bioequivalence Helmut Schütz Vienna, 16 June 2016 1 To bear in Remembrance...

More information

Reference-Scaled Average Bioequivalence

Reference-Scaled Average Bioequivalence Hola! Reference-Scaled Average Bioequivalence Problems with the EMA s Method and a Proposal to solve them Helmut Schütz BEBAC Wikimedia Commons 2006 Georges Jansoone CC BY-SA 3.0 Unported 1 19 To bear

More information

LIKELIHOOD APPROACH FOR EVALUATING BIOEQUIVALENCE OF HIGHLY VARIABLE DRUGS. Liping Du. Thesis. Submitted to the Faculty of the

LIKELIHOOD APPROACH FOR EVALUATING BIOEQUIVALENCE OF HIGHLY VARIABLE DRUGS. Liping Du. Thesis. Submitted to the Faculty of the LIKELIHOOD APPROACH FOR EVALUATING BIOEQUIVALENCE OF HIGHLY VARIABLE DRUGS By Liping Du Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 8--006 Assessing the Effect of Prior Distribution Assumption on the Variance

More information

2 >1. That is, a parallel study design will require

2 >1. That is, a parallel study design will require Cross Over Design Cross over design is commonly used in various type of research for its unique feature of accounting for within subject variability. For studies with short length of treatment time, illness

More information

On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons

On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons Jiayin Zheng 1, Shein-Chung Chow 1 and Mengdie Yuan 2 1 Department of Biostatistics & Bioinformatics, Duke

More information

How Critical is the Duration of the Sampling Scheme for the Determination of Half-Life, Characterization of Exposure and Assessment of Bioequivalence?

How Critical is the Duration of the Sampling Scheme for the Determination of Half-Life, Characterization of Exposure and Assessment of Bioequivalence? How Critical is the Duration of the Sampling Scheme for the Determination of Half-Life, Characterization of Exposure and Assessment of Bioequivalence? Philippe Colucci 1,2 ; Jacques Turgeon 1,3 ; and Murray

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Statistical Approaches to Establishing Bioequivalence U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) January

More information

ESTABLISHING POPULATION AND INDIVIDUAL BIOEQUIVALENCE CONFIDENCE INTERVALS

ESTABLISHING POPULATION AND INDIVIDUAL BIOEQUIVALENCE CONFIDENCE INTERVALS Libraries Conference on Applied Statistics in Agriculture 2000-12th Annual Conference Proceedings ESTABLISHING POPULATION AND INDIVIDUAL BIOEQUIVALENCE CONFIDENCE INTERVALS Feng Yu Linda J. Young Gary

More information

What Does It Mean? A Review of Interpreting and Calculating Different Types of Means and Standard Deviations

What Does It Mean? A Review of Interpreting and Calculating Different Types of Means and Standard Deviations pharmaceutics Review What Does It Mean? A Review Interpreting Calculating Different Types Means Stard Deviations Marilyn N. Martinez 1, * Mary J. Bartholomew 2 1 Office New Animal Drug Evaluation, Center

More information

Lecture Outline. Biost 518 Applied Biostatistics II. Choice of Model for Analysis. Choice of Model. Choice of Model. Lecture 10: Multiple Regression:

Lecture Outline. Biost 518 Applied Biostatistics II. Choice of Model for Analysis. Choice of Model. Choice of Model. Lecture 10: Multiple Regression: Biost 518 Applied Biostatistics II Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Lecture utline Choice of Model Alternative Models Effect of data driven selection of

More information

The general concept of pharmacokinetics

The general concept of pharmacokinetics The general concept of pharmacokinetics Hartmut Derendorf, PhD University of Florida Pharmacokinetics the time course of drug and metabolite concentrations in the body Pharmacokinetics helps to optimize

More information

Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs

Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs Martin J. Wolfsegger Department of Biostatistics, Baxter AG, Vienna, Austria Thomas Jaki Department of Statistics, University of South Carolina,

More information

COVARIANCE ANALYSIS. Rajender Parsad and V.K. Gupta I.A.S.R.I., Library Avenue, New Delhi

COVARIANCE ANALYSIS. Rajender Parsad and V.K. Gupta I.A.S.R.I., Library Avenue, New Delhi COVARIANCE ANALYSIS Rajender Parsad and V.K. Gupta I.A.S.R.I., Library Avenue, New Delhi - 110 012 1. Introduction It is well known that in designed experiments the ability to detect existing differences

More information

Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation

Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation Libraries Conference on Applied Statistics in Agriculture 015-7th Annual Conference Proceedings Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation Maryna

More information

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design Science Journal of Clinical Medicine 2014; 3(5): 82-90 Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/sjcm) doi: 10.11648/j.sjcm.20140305.12 ISSN: 2327-2724 (Print); ISSN:

More information

Sample size considerations in IM assays

Sample size considerations in IM assays Sample size considerations in IM assays Lanju Zhang Senior Principal Statistician, Nonclinical Biostatistics Midwest Biopharmaceutical Statistics Workshop May 6, 0 Outline Introduction Homogeneous population

More information

Individual bioequivalence testing under 2 3 designs

Individual bioequivalence testing under 2 3 designs STATISTICS IN MEDICINE Statist. Med. 00; 1:69 648 (DOI: 10.100/sim.1056) Individual bioequivalence testing under 3 designs Shein-Chung Chow 1, Jun Shao ; and Hansheng Wang 1 Statplus Inc.; Heston Hall;

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc.

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. ABSTRACT In several statistical applications, the ratio of means is of

More information

STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS

STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS & STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS Edina Vranić¹*, Alija Uzunović² ¹ Department of Pharmaceutical Technology, Faculty of

More information

BIOAVAILABILITY AND CV COMPONENT COMPARISON IN A CROSSOVER

BIOAVAILABILITY AND CV COMPONENT COMPARISON IN A CROSSOVER Libraries Conference on Applied Statistics in Agriculture 1997-9th Annual Conference Proceedings BIOAVAILABILITY AND CV COMPONENT COMPARISON IN A CROSSOVER Zhiming Wang Vince A. Uthoff Follow this and

More information

Impact of serial correlation structures on random effect misspecification with the linear mixed model.

Impact of serial correlation structures on random effect misspecification with the linear mixed model. Impact of serial correlation structures on random effect misspecification with the linear mixed model. Brandon LeBeau University of Iowa file:///c:/users/bleb/onedrive%20 %20University%20of%20Iowa%201/JournalArticlesInProgress/Diss/Study2/Pres/pres.html#(2)

More information

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd.

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd. Paper 11683-2016 Equivalence Tests Fei Wang and John Amrhein, McDougall Scientific Ltd. ABSTRACT Motivated by the frequent need for equivalence tests in clinical trials, this paper provides insights into

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

CROPS AND SOILS RESEARCH PAPER Statistical procedures for testing hypotheses of equivalence in the safety evaluation of a genetically modified crop

CROPS AND SOILS RESEARCH PAPER Statistical procedures for testing hypotheses of equivalence in the safety evaluation of a genetically modified crop Journal of Agricultural Science (2016), 154, 1392 1412. Cambridge University Press 2016 doi:10.1017/s0021859615001367 CROPS AND SOILS RESEARCH PAPER Statistical procedures for testing hypotheses of equivalence

More information

ANCOVA. Psy 420 Andrew Ainsworth

ANCOVA. Psy 420 Andrew Ainsworth ANCOVA Psy 420 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the DV

More information

Topic 13. Analysis of Covariance (ANCOVA) - Part II [ST&D Ch. 17]

Topic 13. Analysis of Covariance (ANCOVA) - Part II [ST&D Ch. 17] Topic 13. Analysis of Covariance (ANCOVA) - Part II [ST&D Ch. 17] 13.5 Assumptions of ANCOVA The assumptions of analysis of covariance are: 1. The X s are fixed, measured without error, and independent

More information

IVIVC Industry Perspective with Illustrative Examples

IVIVC Industry Perspective with Illustrative Examples IVIVC Industry Perspective with Illustrative Examples Presenter: Rong Li Pfizer Inc., Groton, CT rong.li@pfizer.com 86.686.944 IVIVC definition 1 Definition A predictive mathematical treatment describing

More information

Statistical methods for evaluating the linearity in assay validation y,z

Statistical methods for evaluating the linearity in assay validation y,z Research Article Received: 28 February 2008, Revised: 21 June 2008, Accepted: 20 August 2008, Published online in Wiley InterScience: 6 October 2008 (www.interscience.wiley.com) DOI: 10.1002/cem.1194 Statistical

More information

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE Course Title: Probability and Statistics (MATH 80) Recommended Textbook(s): Number & Type of Questions: Probability and Statistics for Engineers

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Use in experiment, quasi-experiment

More information

Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction Review of regression concepts

Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction Review of regression concepts Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction The analysis of covariance (ANCOVA) is a technique that is occasionally useful for improving the precision of an experiment.

More information

Dose-response modeling with bivariate binary data under model uncertainty

Dose-response modeling with bivariate binary data under model uncertainty Dose-response modeling with bivariate binary data under model uncertainty Bernhard Klingenberg 1 1 Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267 and Institute of Statistics,

More information

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES Journal of Biopharmaceutical Statistics, 16: 1 14, 2006 Copyright Taylor & Francis, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500406421 AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY

More information

ABSTRACT. KEYWORDS: Component-wise Ranks, Average Bioequivalence, Hodges Lehmann s Estimator, Confidence Ellipse, Robust Statistics.

ABSTRACT. KEYWORDS: Component-wise Ranks, Average Bioequivalence, Hodges Lehmann s Estimator, Confidence Ellipse, Robust Statistics. Paper SA21-2011 Outlier resistance of multivariate bioequivalence procedures Dr. Srinand P. Nandakumar, Quintiles Inc., Kansas, USA Dr. Joseph W. McKean, Western Michigan University, Michigan, USA ABSTRACT

More information

Confidence Intervals for One-Way Repeated Measures Contrasts

Confidence Intervals for One-Way Repeated Measures Contrasts Chapter 44 Confidence Intervals for One-Way Repeated easures Contrasts Introduction This module calculates the expected width of a confidence interval for a contrast (linear combination) of the means in

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Rerandomization to Balance Covariates

Rerandomization to Balance Covariates Rerandomization to Balance Covariates Kari Lock Morgan Department of Statistics Penn State University Joint work with Don Rubin University of Minnesota Biostatistics 4/27/16 The Gold Standard Randomized

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH From Basic to Translational: INDIRECT BIOASSAYS INDIRECT ASSAYS In indirect assays, the doses of the standard and test preparations are are applied

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions Journal of Modern Applied Statistical Methods Volume 8 Issue 1 Article 13 5-1-2009 Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error

More information

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp

Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Testing. Confidence intervals on mean. CL = x ± t * CL1- = exp Statistics: CI, Tolerance Intervals, Exceedance, and Hypothesis Lecture Notes 1 Confidence intervals on mean Normal Distribution CL = x ± t * 1-α 1- α,n-1 s n Log-Normal Distribution CL = exp 1-α CL1-

More information

Supplemental Materials. In the main text, we recommend graphing physiological values for individual dyad

Supplemental Materials. In the main text, we recommend graphing physiological values for individual dyad 1 Supplemental Materials Graphing Values for Individual Dyad Members over Time In the main text, we recommend graphing physiological values for individual dyad members over time to aid in the decision

More information

What is Experimental Design?

What is Experimental Design? One Factor ANOVA What is Experimental Design? A designed experiment is a test in which purposeful changes are made to the input variables (x) so that we may observe and identify the reasons for change

More information

Topic 8. Data Transformations [ST&D section 9.16]

Topic 8. Data Transformations [ST&D section 9.16] Topic 8. Data Transformations [ST&D section 9.16] 8.1 The assumptions of ANOVA For ANOVA, the linear model for the RCBD is: Y ij = µ + τ i + β j + ε ij There are four key assumptions implicit in this model.

More information

9 Correlation and Regression

9 Correlation and Regression 9 Correlation and Regression SW, Chapter 12. Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then retakes the

More information

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Modeling Sub-Visible Particle Data Product Held at Accelerated Stability Conditions José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Outline Sub-Visible Particle (SbVP) Poisson Negative Binomial

More information

To control the consistency and quality

To control the consistency and quality Establishing Acceptance Criteria for Analytical Methods Knowing how method performance impacts out-of-specification rates may improve quality risk management and product knowledge. To control the consistency

More information

Two-Stage Sequential Designs Regulatory Perspective

Two-Stage Sequential Designs Regulatory Perspective Wikimedia Commons 2007 Sokoljan Creative Commons SA 3.0 Unported Two-Stage Sequential Designs Regulatory Perspective Helmut Schütz BA/BE Workshop Prague, 22 September 2016 1 Disclaimer I am not a regulator.

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume VI: Statistics PART A Edited by Emlyn Lloyd University of Lancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester

More information

multilevel modeling: concepts, applications and interpretations

multilevel modeling: concepts, applications and interpretations multilevel modeling: concepts, applications and interpretations lynne c. messer 27 october 2010 warning social and reproductive / perinatal epidemiologist concepts why context matters multilevel models

More information

Prentice Hall Stats: Modeling the World 2004 (Bock) Correlated to: National Advanced Placement (AP) Statistics Course Outline (Grades 9-12)

Prentice Hall Stats: Modeling the World 2004 (Bock) Correlated to: National Advanced Placement (AP) Statistics Course Outline (Grades 9-12) National Advanced Placement (AP) Statistics Course Outline (Grades 9-12) Following is an outline of the major topics covered by the AP Statistics Examination. The ordering here is intended to define the

More information

Designs for Clinical Trials

Designs for Clinical Trials Designs for Clinical Trials Chapter 5 Reading Instructions 5.: Introduction 5.: Parallel Group Designs (read) 5.3: Cluster Randomized Designs (less important) 5.4: Crossover Designs (read+copies) 5.5:

More information

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication CHAPTER 4 Analysis of Variance One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication 1 Introduction In this chapter, expand the idea of hypothesis tests. We

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Estimating terminal half life by non-compartmental methods with some data below the limit of quantification

Estimating terminal half life by non-compartmental methods with some data below the limit of quantification Paper SP08 Estimating terminal half life by non-compartmental methods with some data below the limit of quantification Jochen Müller-Cohrs, CSL Behring, Marburg, Germany ABSTRACT In pharmacokinetic studies

More information

Inference on reliability in two-parameter exponential stress strength model

Inference on reliability in two-parameter exponential stress strength model Metrika DOI 10.1007/s00184-006-0074-7 Inference on reliability in two-parameter exponential stress strength model K. Krishnamoorthy Shubhabrata Mukherjee Huizhen Guo Received: 19 January 2005 Springer-Verlag

More information

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics Introduction A Brief Introduction to Intersection-Union Tests Often, the quality of a product is determined by several parameters. The product is determined to be acceptable if each of the parameters meets

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Prediction of New Observations

Prediction of New Observations Statistic Seminar: 6 th talk ETHZ FS2010 Prediction of New Observations Martina Albers 12. April 2010 Papers: Welham (2004), Yiang (2007) 1 Content Introduction Prediction of Mixed Effects Prediction of

More information

8STATISTICAL ANALYSIS OF HIGH EXPLOSIVE DETONATION DATA. Beckman, Fernandez, Ramsay, and Wendelberger DRAFT 5/10/98 1.

8STATISTICAL ANALYSIS OF HIGH EXPLOSIVE DETONATION DATA. Beckman, Fernandez, Ramsay, and Wendelberger DRAFT 5/10/98 1. 8STATISTICAL ANALYSIS OF HIGH EXPLOSIVE DETONATION DATA Beckman, Fernandez, Ramsay, and Wendelberger DRAFT 5/1/98 1. INTRODUCTION Statistical analysis of data for two different high explosives was performed.

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH

THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH Phil Williams PDK Projects, Inc., Nanaimo, Canada philwilliams@pdkgrain.com INTRODUCTION It is helpful to remember two descriptions. The first is

More information

3 Results. Part I. 3.1 Base/primary model

3 Results. Part I. 3.1 Base/primary model 3 Results Part I 3.1 Base/primary model For the development of the base/primary population model the development dataset (for data details see Table 5 and sections 2.1 and 2.2), which included 1256 serum

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Chapter 170 Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Introduction Senn (2002) defines a cross-over design as one in which each subject receives all treatments and the objective

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model

Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model United States Department of Agriculture Forest Service Forest Products Laboratory Research Paper FPL-RP-484 Estimation and Confidence Intervals for Parameters of a Cumulative Damage Model Carol L. Link

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

Fiducial Inference and Generalizations

Fiducial Inference and Generalizations Fiducial Inference and Generalizations Jan Hannig Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Hari Iyer Department of Statistics, Colorado State University

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2004 alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml CHAPTER 14: Assessing and Comparing Classification Algorithms

More information

Sample Size Determination

Sample Size Determination Sample Size Determination 018 The number of subjects in a clinical study should always be large enough to provide a reliable answer to the question(s addressed. The sample size is usually determined by

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Bayesian concept for combined Phase 2a/b trials

Bayesian concept for combined Phase 2a/b trials Bayesian concept for combined Phase 2a/b trials /////////// Stefan Klein 07/12/2018 Agenda Phase 2a: PoC studies Phase 2b: dose finding studies Simulation Results / Discussion 2 /// Bayer /// Bayesian

More information

MSc / PhD Course Advanced Biostatistics. dr. P. Nazarov

MSc / PhD Course Advanced Biostatistics. dr. P. Nazarov MSc / PhD Course Advanced Biostatistics dr. P. Nazarov petr.nazarov@crp-sante.lu 04-1-013 L4. Linear models edu.sablab.net/abs013 1 Outline ANOVA (L3.4) 1-factor ANOVA Multifactor ANOVA Experimental design

More information

A Practitioner s Guide to Cluster-Robust Inference

A Practitioner s Guide to Cluster-Robust Inference A Practitioner s Guide to Cluster-Robust Inference A. C. Cameron and D. L. Miller presented by Federico Curci March 4, 2015 Cameron Miller Cluster Clinic II March 4, 2015 1 / 20 In the previous episode

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Confidence Interval for the mean response

Confidence Interval for the mean response Week 3: Prediction and Confidence Intervals at specified x. Testing lack of fit with replicates at some x's. Inference for the correlation. Introduction to regression with several explanatory variables.

More information

Group Sequential Designs: Theory, Computation and Optimisation

Group Sequential Designs: Theory, Computation and Optimisation Group Sequential Designs: Theory, Computation and Optimisation Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 8th International Conference

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Chapter 14. Statistical versus Deterministic Relationships. Distance versus Speed. Describing Relationships: Scatterplots and Correlation

Chapter 14. Statistical versus Deterministic Relationships. Distance versus Speed. Describing Relationships: Scatterplots and Correlation Chapter 14 Describing Relationships: Scatterplots and Correlation Chapter 14 1 Statistical versus Deterministic Relationships Distance versus Speed (when travel time is constant). Income (in millions of

More information

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93 Contents Preface ix Chapter 1 Introduction 1 1.1 Types of Models That Produce Data 1 1.2 Statistical Models 2 1.3 Fixed and Random Effects 4 1.4 Mixed Models 6 1.5 Typical Studies and the Modeling Issues

More information

Heteroskedasticity-Robust Inference in Finite Samples

Heteroskedasticity-Robust Inference in Finite Samples Heteroskedasticity-Robust Inference in Finite Samples Jerry Hausman and Christopher Palmer Massachusetts Institute of Technology December 011 Abstract Since the advent of heteroskedasticity-robust standard

More information

Cost Analysis and Estimating for Engineering and Management

Cost Analysis and Estimating for Engineering and Management Cost Analysis and Estimating for Engineering and Management Chapter 6 Estimating Methods Ch 6-1 Overview Introduction Non-Analytic Estimating Methods Cost & Time Estimating Relationships Learning Curves

More information

BIOSTATISTICAL METHODS

BIOSTATISTICAL METHODS BIOSTATISTICAL METHODS FOR TRANSLATIONAL & CLINICAL RESEARCH Cross-over Designs #: DESIGNING CLINICAL RESEARCH The subtraction of measurements from the same subject will mostly cancel or minimize effects

More information

Draft Guideline on Bioanalytical Method Validation in. Pharmaceutical Development. (15 April 2013, MHLW, Japan)

Draft Guideline on Bioanalytical Method Validation in. Pharmaceutical Development. (15 April 2013, MHLW, Japan) Draft Guideline on Bioanalytical Method Validation in Pharmaceutical Development (15 April 2013, MHLW, Japan) Table of Contents 1. Introduction 2. Scope 3. Reference Standard 4. Analytical Method Validation

More information

ACE 564 Spring Lecture 8. Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information. by Professor Scott H.

ACE 564 Spring Lecture 8. Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information. by Professor Scott H. ACE 564 Spring 2006 Lecture 8 Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information by Professor Scott H. Irwin Readings: Griffiths, Hill and Judge. "Collinear Economic Variables,

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs)

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs) 36-309/749 Experimental Design for Behavioral and Social Sciences Dec 1, 2015 Lecture 11: Mixed Models (HLMs) Independent Errors Assumption An error is the deviation of an individual observed outcome (DV)

More information

Test Strategies for Experiments with a Binary Response and Single Stress Factor Best Practice

Test Strategies for Experiments with a Binary Response and Single Stress Factor Best Practice Test Strategies for Experiments with a Binary Response and Single Stress Factor Best Practice Authored by: Sarah Burke, PhD Lenny Truett, PhD 15 June 2017 The goal of the STAT COE is to assist in developing

More information

NONLINEAR MODELS IN MULTIVARIATE POPULATION BIOEQUIVALENCE TESTING

NONLINEAR MODELS IN MULTIVARIATE POPULATION BIOEQUIVALENCE TESTING Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School NONLINEAR MODELS IN MULTIVARIATE POPULATION BIOEQUIVALENCE TESTING Bassam Dahman Virginia Commonwealth University

More information

Chapter 6. Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer

Chapter 6. Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer Chapter 6 Estimation of Confidence Intervals for Nodal Maximum Power Consumption per Customer The aim of this chapter is to calculate confidence intervals for the maximum power consumption per customer

More information

Mixed-Effects Pattern-Mixture Models for Incomplete Longitudinal Data. Don Hedeker University of Illinois at Chicago

Mixed-Effects Pattern-Mixture Models for Incomplete Longitudinal Data. Don Hedeker University of Illinois at Chicago Mixed-Effects Pattern-Mixture Models for Incomplete Longitudinal Data Don Hedeker University of Illinois at Chicago This work was supported by National Institute of Mental Health Contract N44MH32056. 1

More information