Optimizations of the Thickness and the Operating Temperature of LiB 3 O 5, BaB 2 O 4, and KTiOPO 4 Crystals for Second Harmonic Generation

Size: px
Start display at page:

Download "Optimizations of the Thickness and the Operating Temperature of LiB 3 O 5, BaB 2 O 4, and KTiOPO 4 Crystals for Second Harmonic Generation"

Transcription

1 New Physics: Sae Mulli, Vol. 65, No. 12, December 2015, pp DOI: /NPSM Optimizations of the Thickness and the Operating Temperature of LiB 3 O 5, BaB 2 O 4, and KTiOPO 4 Crystals for Second Harmonic Generation Doo Jae Park Department of Physics, Hallym University, Chuncheon 24252, Korea Hong Chu Laseroptek Co. LTD, Sungnam 13212, Korea Won Bae Cho BioMed Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea Soo Bong Choi Department of Physics, Incheon National University, Incheon 22012, Korea (Received 5 August 2015 : revised 27 August 2015 : accepted 27 August 2015) We demonstrate a theoretical study for determining the optimal crystal thickness and operating temperature when generating a second harmonic of a pulse laser with pulsewidths ranging from a few tens of femtosecond to a few nanosecond by using commonly-used nonlinear crystals of lithium barium borate, beta barium borate, and potassium titanyl phosphate. The optimal thicknesses of those crystals to avoid any pump pulse depletion for a fundamental-mode laser pulse having a high intensity and a long pulsewidth was calculated as a function of the intensity and the pulsewidth of the fundamental mode. Also, for short-pulse operation, thickness limits are calculated for conditions under which no pulse dispersion due to group velocity mismatch is observed. Finally, the fluctuation of second-harmonic yield due to temperature variations which introduce a refractive-index change is calculated, and the effective temperature ranges are demonstrated for room-temperature operation. PACS numbers: Ky, Re, Nv Keywords: Harmonic generation, Ultrafast process, Optical frequency converter I. INTRODUCTION A virtue of pulse laser is its high peak intensity which is sufficient to introduce various nonlinear optical effect such as second harmonic generation (SHG), sumfrequency generation, difference frequency generation, electro-optic effect and etc. Specifically, SHG enables us to double the frequency of fundamental pulse laser simply introducing a second-harmonic generating nonlinear crystals as Lithium Barium Borate (LBO), beta- Barium Borate (BBO), and Potassium Titanyl Phosphate (KTP), without requiring any complicated opti- sbchoi@incheon.ac.kr cal alignments. Considering that wavelengths of frequently used pulse lasers such as Ti:Sapphire laser and q-switched Nd:YAG laser are centered at near-infrared region, SHG provides a handy method to push those to visible frequency region, for application in biomedical imaging, curing, and therapy. In those biomedical applications, supply of optimal condition for highly efficient and stable generation of SHG in terms of choice of second-harmonic generating crystals and its thickness without disturbing pulseshape of generated second harmonic pulse is important. Additionally, because properties of those nonlinear crystals are highly affected by ambient conditions (especially temperature), it is also critical to suggest an optimal This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Optimizations of the Thickness and the Operating Temperature of Doo Jae Park et al Fig. 1. (Color online) Calculated normalized SHG efficiency as a function of thickness for LBO (black curve), KTP (red curve), and BBO (blue curve). operating temperature. Even though there is a lot of experimental, theoretical studies are performed through more than half of a century [1 7], surprisingly a systematic study for giving optimal thickness of SHG crystal for high intensity operation and temperature condition was not given so far. In this report, we demonstrate a theoretical research to give a proper choice of SHG crystals for high intensity operation for medical therapy and surgery, including the thickness. Also, a specification for temperature controller which assures a stable emission of second harmonic when operating SHG apparatus in near room temperature is suggested. II. OPTIMAL THICKNESS DUE TO PUMP LASER DEPLETION In ideal case, while fundamental pulse is injected into SHG crystal, energy carried by pulse is either consumed during second harmonic generation or dissipated by heating or scattering, finally diminished inside crystal with a certain travel length, which is referred to as a nonlinear interaction thickness L NL. Consequently, of a nonlinear crystal L is thicker than L NL, some part of crystal never contributes in SHG. Hence, finding out the optimal thickness based on an exact determination of L NL is critical. It is well known that L NL is dependent on nonlinear conversion efficiency d eff, refractive index for fundamental (n ω ) and index for second harmonic (n 2ω ) Fig. 2. (Color online) Optimal thickness as function of incident pump energy with fixed wavelength of 1064 nm and fixed pulsewidth of 750 ps for LBO (black curve), KTP (red curve), and BBO (blue curve). of crystal, incident fundamental wavelength λ, and incident intensity of fundamental I ω (0). Here, nonlinear interaction thickness can be given as [1] 1 2ε 0 n 2 ω n 2ω cλ L NL = 2, (1) I ω (0) 4πd eff with ε 0 being vacuum permittivity. Because of fundamental depletion, SHG efficiency becomes reduced while fundamental pulse travels inside crystal, so that the total conversion efficiency η 2ω can be given as [1] η 2ω = tan h 2 L. (2) L NL By using this formula and utilizing those optical constants of LBO, BBO, and KTP from literature [3, 8], SHG efficiency can be plotted as a function of crystal thickness as depicted in Fig. 1. In this plot, fundamental (hereafter, pump) laser pulse was assumed to have 1064 nm center wavelength, 750 ps pulsewidth, and 300 mj pulse energy with 5 mm beam diameter, which is a typical value emitted from Nd:YAG q-switched laser. In calculation, all crystals are assumed to have a cut for perfect phase matching condition. As depicted in this plot, SHG efficiencies are saturated at thickness of about 3 7 mm for all crystals, which denotes that thicker crystals, i.e., >10 mm, is not needed to achieve maximal SHG. If we regards an optimal thickness L opt as a thickness having 90% conversion compared to maximum conversion when thickness is infinite, we can find that L opt for LBO, BBO, and KTP is read as 2 mm, 4.5 mm, and 5.5 mm,

3 1236 New Physics: Sae Mulli, Vol. 65, No. 12, December 2015 Fig. 3. (Color online) Optimal thickness as function of pump puslewidth with fixed wavelength of 1064 nm and fixed pulse energy of 200 mj for LBO (black curve), KTP (red curve), and BBO (blue curve). respectively. It is found that L opt for LBO is remarkably smaller than other crystals, which originates from high nonlinear conversion efficiency of LBO, which suggests that LBO is the best candidates for high intensity SHG. Optimal thicknesses as a function of incident pump energy is plotted in Fig. 2 with fixed wavelength of 1064 nm and pulsewidth of 750 ps. As expected, optimal thickness was larger for smaller pump energy, and becomes smaller while an increase of pump energy. However, in our simulation energy region, optimal thickness was in a few mm range. Pulsewidth dependence was also monitored as plotted in Fig. 3. With increase of pulsewidth, optimal thicknesses are slowly grow, because of the peak intensity decrease. Here, pump wavelength and pulse energy was fixed as 1064 nm and 200 mj, respectively. III. BANDWIDTH LIMIT WITHOUT INTRODUCING SECOND HARMONIC PULSE DISPERSION In wide bandwidth incidence (in other words, short pulsewidth incidence), it is well known that a phase matching should be kept both to achieve maximal conversion efficiency and minimal broadening of SHG pulse [1,3]. For almost every materials, refractive indices varies with wavelength, which introduces inequality of refractive index for pump and SHG. This introduces a phase mismatch between pump and SHG inside the crystal, finally generates destructive interferences between those Fig. 4. (Color online) Bandwidth limit with no pulse broadening as a function of crystal thickness for various pump wavelength of 755 nm (black curve), 800 nm (red curve), and 1064 nm (blue curve) for (a) LBO crystal and (b) BBO crystal. Upper dotted line denotes bandwidth corresponding to 100 fs and bottom dotted line denotes bandwidth corresponding to 10 fs pulsewidth. second harmonic pulses generated at different site of crystal. This results in a decrease of total SHG intensity. Additionally, such mismatch of refractive indices also introduce group velocity mismatch (GVM) between pump pulse and second harmonic pulse, which introduces a delayed generation of second harmonic and finally cause a second harmonic pulse broadening. Hence, it is necessary to match refractive indices at the pump wavelength and second harmonic wavelength, by using a birefringence nature of crystal and corresponding cut of crystal. Even with this well-known phase matching techniques, pulse dispersion still occurs in wide bandwidth operation, because refractive index difference in spectral band of pump pulse and that in second harmonic pulse prevents a perfect phase matching, resulting in introducing a second harmonic pulse dispersion. Hence, the only so-

4 Optimizations of the Thickness and the Operating Temperature of Doo Jae Park et al lution to avoid such dispersion is to use thinner crystals with sacrificing SHG intensity. An amount of group velocity mismatch inside crystal in phase-matched condition is given as follows: GV M = c λ (n(λ) 1 n(λ/2)). (3) 2 Applying this relation to broadband laser pulse, bandwidth limit for a crystal having thickness of L can be given as follows: 0.44λ/L δλ F W HM = n(λ) 1 (4) 2n(λ/2), with an assumptions of Fourier-limited pulse and Gaussian distribution of pulse spectrum [1]. Based on this, bandwidth limit in various pump wavelengths for LBO and BBO crystals are plotted in Fig. 4. refractive indices, In obtaining a Sellmeier equation was utilized for ordinary axis. A calculation for KTP was omitted because phase matching condition cannot be found for this crystal due to inappropriate index contrasts between ordinary axis and extraordinary axis in near-ir region. In figures, upper dotted line near 100 nm denotes bandwidth of Fourier-limited pulse corresponding to 10 fs pulsewidth, and lower dotted line near 10 nm denotes 100 fs pulsewidth. As can be seen in figure, bandwidth limits for different wavelengths rapidly decrease with increasing thickness of crystal, which denotes that pulse broadening is highly sensitive to the thickness of crystal. Specifically, for short pulse operation reaching 10 fs, crystal thickness should be relatively small as 40 µm, 50 µm, and 200 µm for 755 nm, 800 nm, and 1064 nm pump wavelength, respectively for LBO, which suggests quite a lot of SHG efficiency should be sacrificed to achieve short pulse SHG, regarding the optimal thickness for high-intensity operation obtained from previous chapter. However, when pulsewidth exceeds 100 fs (<10 nm bandwidth), crystal thickness without pulse broadening is larger than 500 µm which becomes much closer to the optimal thickness without pump depletion, which denotes that such pulse dispersion phenomena is not a major concern in long pulse, high intensity SHG. In case of BBO, crystal thicknesses for 10 fs operation without pulsewidth broadening were obtained as shorter than LBO as 25 µm, 32 µm, and 150 µm for 755 nm, 800 nm, and 1064 nm operation. This comparison suggests that LBO is better choice for SHG for short pulse operation, compared to BBO. IV. TEMPERATURE DEPENDENT YIELD FLUCTUATION Since GVM and corresponding phase matching condition critically determined by refractive indices of SHG crystals, a small changes of indices due to variation of ambient condition such as vapor pressure and temperature induces a considerable fluctuation of SHG yields. For example, index variation n(x,y,z) for crystal axes x, y, and z with temperature variation T is expressed as follows for LBO [5]: n x = ( 3.76λ ) 10 6 ( T ( T ) 2 ) (5) n y = (6.01λ 9.70) 10 6 ( T ( T ) 2 ) (6) n z = (1.50λ 9.70) 10 6 ( T ( T ) 2 ) (7) When applying this relation, it is found that the refractive index for crystal axis x varies from 1.55 to 1.57 in temperature range of 0 to 300 degree Celcius at a fixed wavelength of 1000 nm. This rather small changes of refractive index introduces variation of phase matching angle as amount of 0.5 degree, as depicted in Fig. 5. Such variation of phase matching angle introduces a wavevector mismatch between fundamental and second harmonic, even a crystal having perfect phase matching condition at fixed temperature. Traditionally to minimize the amount of such wavevector mismatch due to temperature fluctuation, phase matching cut of LBO

5 1238 New Physics: Sae Mulli, Vol. 65, No. 12, December 2015 Fig. 5. (Color online) Bandwidth limit with no pulse broadening as a function of crystal thickness for various pump wavelength of 755 nm (black curve), 800 nm (red curve), and 1064 nm (blue curve) for (a) LBO crystal and (b) BBO crystal. Upper dotted line denotes bandwidth corresponding to 100 fs and bottom dotted line denotes bandwidth corresponding to 10 fs pulsewidth. crystal is given at a certain temperature where refractive index variation is minimized. This temperature is found as C, 141 C, and 148 C at wavelength of 1064 nm, 800 nm, and 755 nm, respectively, by finding local maximum of Eq. (5). Fig. 6(a) depicts wavevector mismatch of those optimally prepared crystals for different operating wavelength as a function of temperature. As can be seen in this figure, the amount of wavevector mismatch is 30 cm 1 within the temperature span of 200 C. However, those optimal temperature is relatively higher than room temperature, hence necessitates heating device for crystal which may introduce an increase of cost and complexity of SHG apparatus. To exclude such heating device, an operating temperature may be about 40 degree Celcius regarding natural heating of crystal due to pump laser irradiation. To answer such demand, same calculation was performed with assuming that the phase matching condition was met in 40 degree temperature and depicted in Fig. 6(b). Unlike to the case depicted in Fig. 6(a), the amounts of wavevector mismatch are quite different between different operating wavelength having 20 cm 1 to 40 cm 1, which implies SHG yield fluctuation should be larger at this temperature. SHG yields fluctuations due to such wavevector mismatch were calculated and depicted in Fig. 7(a) and (b), Fig. 6. (Color online) (a) Wavevector mismatch as a function of temperature for those crystals optimized for 1064 nm pump wavelength and 104 degree temperature (black curve), 800 nm pump wavelength and 141 degree temperature (red curve), 755 nm pump wavelength and 148 degree temperature (blue curve). (b) Wavevector mismatch as a function of temperature for those crystals optimized in 40 degree Celcius. with fixed crystal thickness of 2 mm. As depicted in Fig. 7(a), SHG yield almost vanishes when temperature changes more than 100 degree from optimal temperature, where wavevector mismatch is about 30 cm 1. However, a clear plateau are observed for every operation wavelength, which denotes that stable operation is available in those optimal temperature region. The span of temperature range T opt allowing 5% yield fluctuation is read as 60 degree Celcius at 1064 nm pump wavelength. However, as depicted in Fig. 7(b), T opt becomes much narrower as 32 C for 1064 nm and 10 C for 755 nm and 800 nm pump wavelength in 40 degree operation temperature. This suggests that quite precise temperature controller is require for stable operation of SHG device when trying to use in room temperature.

6 Optimizations of the Thickness and the Operating Temperature of Doo Jae Park et al Fig. 7. (Color online) (a) SHG yield fluctuation as a function of temperature for those LBO crystals optimized for 1064 nm pump wavelength and 104 degree temperature (black curve), 800 nm pump wavelength and 141 degree temperature (red curve), 755 nm pump wavelength and 148 degree temperature (blue curve). (b) SHG yield fluctuation as a function of temperature for those LBO crystals optimized in 40 degree Celcius. In case of BBO application, scenario becomes quite different because of different response of refractive index to temperature variation [2]. In BBO, refractive index change as a function of temperature variation is given as a linear function in the temperature range from -10 to 300 degree, hence no optimal temperature region is available. Consequently, wavevector mismatch is also linearly dependent to the temperature for every observed operating wavelength, as can be seen Fig. 8(a). The only difference is its slope, which is smallest for 1064 nm wavelength. This implies that the stable operation may possible for 1064 nm pump wavelength. Fig. 8(b) depicts SHG yield as a function of temperature when phase matching condition is fixed as 40 degree operation. Here, it is clearly seen that T opt is largest having 50 C Fig. 8. (Color online) (a) Wavevector mismatch as a function of temperature for BBO crystals optimized in 40 degree Celcius. (b) SHG yield fluctuation as a function of temperature for BBO crystals optimized in 40 degree Celcius. for 1064 nm pump incident as expected, while halved for other wavelength i.e., T opt 25 C. However, compare to the case of LBO application at 40 C operation, T opt is larger for all operating wavelength, which suggests that BBO is better choice for stable operation than LBO in room temperature operation. V. CONCLUSION In conclusion, we have demonstrated a series of calculation to supply optimal choice of crystal and optimal condition in second harmonic generation. We found that optimal thickness which is given from pump depletion is order of few millimeter, and most efficient crystal was found as LBO. Also, we found that the maximum thickness of SHG crystals without introducing dispersion was

7 1240 New Physics: Sae Mulli, Vol. 65, No. 12, December 2015 order of few tens of microns in 10 fs operation condition, however, this thickness becomes acceptably larger having few millimeter when pulsewidth becomes larger than 100 fs. Finally, for stable frequency doubled-pulse generation free from temperature fluctuation BBO which has relatively big T opt can be the best choice in room temperature operation. We believe our study helps in optimizing SHG devices for various applications. ACKNOWLEDGEMENTS This research is supported by the Industrial Strategic technology development program (No ) funded By the Ministry of Trade, industry & Energy (MI, Korea). REFERENCES [1] R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, Inc., 2003). [2] D. Eimerl, L. Davis, S. Velsko, E. K. Graham and A. Zalkin, J. Appl. Phys. 62, 1968 (1987). [3] R. W. Boyd, Nonlinear Optics (Academic Press, 1992). [4] S. P. Velsko, M. Webb, L. Davis and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991). [5] K. Kato, IEEE J. Quantum Electron. 30, 2950 (1994). [6] K. Kato and E. Takaoka, Appl. Opt. 41, 5040 (2002). [7] D. N. Nikogosyan, Appl. Phys. A 58, 181 (1994). [8] R. Eckardt, H. Masuda, Y. X. Fan and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm). R.J. Jones Optical Sciences OPTI 511L Fall 2017 Experiment 3: Second Harmonic Generation (SHG) (1 week lab) In this experiment we produce 0.53 µm (green) light by frequency doubling of a 1.06 µm (infrared)

More information

Nonlinear Optics (NLO)

Nonlinear Optics (NLO) Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams

More information

36. Nonlinear optics: χ(2) processes

36. Nonlinear optics: χ(2) processes 36. Nonlinear optics: χ() processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

Potassium Titanyl Phosphate(KTiOPO 4, KTP) Potassium Titanyl Phosphate(KTiOPO 4, KTP) Introduction Potassium Titanyl Phosphate (KTiOPO 4 or KTP) is widely used in both commercial and military lasers including laboratory and medical systems, range-finders,

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

Determining the Optimum Hardware for Generation of 260 nm Light. Physics 582 Bryce Gadway Prof. Tom Weinacht

Determining the Optimum Hardware for Generation of 260 nm Light. Physics 582 Bryce Gadway Prof. Tom Weinacht Determining the Optimum Hardware for Generation of 60 nm Light Physics 58 Bryce Gadway Prof. Tom Weinacht The general path to UV Second-Harmonic Generation (SHG) With a single input field at λ 1 = 780

More information

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C Potassium Titanyl Phosphate (KTiOPO 4 or KTP) KTP (or KTiOPO 4 ) crystal is a nonlinear optical crystal, which possesses excellent nonlinear and electro-optic properties. It has large nonlinear optical

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3 1300 J. Opt. Soc. Am. B/Vol. 16, No. 8/August 1999 S. Yu and A. M. Weiner Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3 Sungkyu Yu* and A. M.

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

36. Nonlinear optics: (2) processes

36. Nonlinear optics: (2) processes 36. Nonlinear optics: () processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Movva Sai Krishna *a, U.S. Tripathi a, Ashok Kaul a, K. Thyagarajan b, M.R. Shenoy b a

More information

Third Harmonic Generator

Third Harmonic Generator Third Harmonic Generator MODEL ATsG800-7 S/N 0003 INSTRUCTION MANUAL Del Mar Photonics, Inc 4119 Twilight Ridge San Diego, CA 9130 tel: (858) 876-3133 fax: (858) 630-376 support@dmphotonics.com http://www.dmphotonics.com/

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

Evaluation of Second Order Nonlinearity in Periodically Poled

Evaluation of Second Order Nonlinearity in Periodically Poled ISSN 2186-6570 Evaluation of Second Order Nonlinearity in Periodically Poled KTiOPO 4 Crystal Using Boyd and Kleinman Theory Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES LIVIU NEAGU National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, 077125, Bucharest,

More information

BBO Crystals - Beta Barium Borate and Lithium Borate

BBO Crystals - Beta Barium Borate and Lithium Borate BBO Crystals - Beta Barium Borate and Lithium Borate (BBO and LBO) (Table of Material Properties appears below) Beta Barium Borate (BBO) and Lithium Triborate (LBO) single crystals combine unusually wide

More information

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions Chapter 7: Optical Properties of Solids Interaction of light with atoms Insert Fig. 8.1 Allowed and forbidden electronic transitions 1 Insert Fig. 8.3 or equivalent Ti 3+ absorption: e g t 2g 2 Ruby Laser

More information

Frequency Doubling Ole Bjarlin Jensen

Frequency Doubling Ole Bjarlin Jensen Frequency Doubling Ole Bjarlin Jensen DTU Fotonik, Risø campus Technical University of Denmark, Denmark (email: ole.bjarlin.jensen@risoe.dk) Outline of the talk Quasi phase matching Schemes for frequency

More information

Crystals NLO Crystals LBO

Crystals NLO Crystals LBO Crystals NLO Crystals LBO Introduction Lithium triborate (LiB 3 O 5 or LBO) has the following exceptional properties that make it a very important nonlinear crystal: LBO has following advance: absorption:

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Supplementary Materials for

Supplementary Materials for wwwsciencemagorg/cgi/content/full/scienceaaa3035/dc1 Supplementary Materials for Spatially structured photons that travel in free space slower than the speed of light Daniel Giovannini, Jacquiline Romero,

More information

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion VG04-123 Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion Douglas J. Bamford, David J. Cook, and Scott J. Sharpe Physical Sciences Inc. Jeffrey Korn and Peter

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

DESIGN OF A FREQUENCY-DOUBLED 423 nm LASER FOR USE IN A CALCIUM INTERFEROMETER. Jeremiah Birrell. A senior thesis submitted to the faculty of

DESIGN OF A FREQUENCY-DOUBLED 423 nm LASER FOR USE IN A CALCIUM INTERFEROMETER. Jeremiah Birrell. A senior thesis submitted to the faculty of DESIGN OF A FREQUENCY-DOUBLED 423 nm LASER FOR USE IN A CALCIUM INTERFEROMETER by Jeremiah Birrell A senior thesis submitted to the faculty of Brigham Young University In partial fulfillment of the requirements

More information

Singly resonant optical parametric oscillator for mid infrared

Singly resonant optical parametric oscillator for mid infrared Singly resonant optical parametric oscillator for mid infrared S Das, S Gangopadhyay, C Ghosh and G C Bhar, Laser Laboratory, Physics Department Burdwan University, Burdwan 713 104, India FAX: +91 342

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Optical second harmonic generation properties of BiB 3 O 6

Optical second harmonic generation properties of BiB 3 O 6 Optical second harmonic generation properties of BiB 3 O 6 M. Ghotbi and M. Ebrahim-Zadeh ICFO-Institut de Ciencies Fotoniques, Jordi Girona 29, Nexus II, 834 Barcelona, Spain Abstract: We present studies

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

arxiv:physics/ v1 [physics.optics] 25 Jun 1998

arxiv:physics/ v1 [physics.optics] 25 Jun 1998 arxiv:physics/9806043v [physics.optics] 5 Jun 998 Nonlinear phase shift without cascaded second-order processes and third order nonlinearity V.P. Drachev, S.V. Perminov Institute of Semiconductor Physics,

More information

A Laser Frequency Doubling Application in Ion Trapping. Zach Simmons UW Physics REU Summer 2006

A Laser Frequency Doubling Application in Ion Trapping. Zach Simmons UW Physics REU Summer 2006 A Laser Frequency Doubling Application in Ion Trapping Zach Simmons UW Physics REU Summer 2006 1 Overview Big Picture-ion trapping/context Details and What I worked on Challenges/What I got done Summary

More information

Spontaneous Parametric Down Conversion of Photons Through β-barium Borate

Spontaneous Parametric Down Conversion of Photons Through β-barium Borate Spontaneous Parametric Down Conversion of Photons Through β-barium Borate A Senior Project By Luke Horowitz Advisor, Dr. Glen D. Gillen Department of Physics, California Polytechnic University SLO May

More information

NUMERICAL ANALYSIS OF OPTIMAL FOURTH-HARMONIC- GENERATION CRYSTAL LENGTH FOR WAVELENGTH CONVERSION INTO ULTRAVIOLET LIGHT

NUMERICAL ANALYSIS OF OPTIMAL FOURTH-HARMONIC- GENERATION CRYSTAL LENGTH FOR WAVELENGTH CONVERSION INTO ULTRAVIOLET LIGHT IJRRAS 13 () November 01 www.arpapress.com/volumes/vol13issue/ijrras_13 0.pdf NUMERICAL ANALYSIS OF OPTIMAL FOURTH-HARMONIC- GENERATION CRYSTAL LENGTH FOR WAVELENGTH CONVERSION INTO ULTRAVIOLET LIGHT Takafumi

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Characterization of femtosecond pulses from xz BIBO OPO

Characterization of femtosecond pulses from xz BIBO OPO Master in Photonics MASTER THESIS WORK Characterization of femtosecond pulses from xz BIBO OPO Enrique Sánchez Bautista Supervised by Dr. Adolfo Esteban Martín (ICFO) and Prof. Dr. Majid Ebrahim Zadeh

More information

Broadband Nonlinear Frequency Conversion

Broadband Nonlinear Frequency Conversion Broadband Nonlinear Frequency Conversion Haim Suchowski, Barry D. Bruner, Ady Arie and Yaron Silberberg 36 OPN Optics & Photonics News 1047-6938/10/09/0036/6-$15.00 OSA www.osa-opn.org There is growing

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

Tuning of 2-D Silicon Photonic Crystals

Tuning of 2-D Silicon Photonic Crystals Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Tuning of 2-D Silicon Photonic Crystals H. M. van Driel, S.W. Leonard, J. Schilling 1 and R.B. Wehrspohn 1 Department of Physics, University

More information

Collinear Setup for Two-Color High-Harmonic Generation

Collinear Setup for Two-Color High-Harmonic Generation Collinear Setup for Two-Color High-Harmonic Generation Bachelor thesis by Rimantas Budriūnas Supervisor: Cord Arnold 2 3 Abstract High harmonic generation (HHG) is a process in which extremely short bursts

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Generation of supercontinuum light in photonic crystal bers

Generation of supercontinuum light in photonic crystal bers Generation of supercontinuum light in photonic crystal bers Koji Masuda Nonlinear Optics, Fall 2008 Abstract. I summarize the recent studies on the supercontinuum generation (SC) in photonic crystal fibers

More information

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field Kent State University Digital Commons @ Kent State University Libraries Chemical Physics Publications Department of Chemical Physics 2004 Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic

More information

Non-linear Optics III (Phase-matching & frequency conversion)

Non-linear Optics III (Phase-matching & frequency conversion) Non-linear Optics III (Phase-matching & frequency conversion) P.E.G. Baird MT 011 Phase matching In lecture, equation gave an expression for the intensity of the second harmonic generated in a non-centrosymmetric

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Grading Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Maximum total = 39 points Pass if total >= 20 points Fail if total

More information

Measurement of the 2 tensors of KTiOPO 4, KTiOAsO 4, RbTiOPO 4, and RbTiOAsO 4 crystals

Measurement of the 2 tensors of KTiOPO 4, KTiOAsO 4, RbTiOPO 4, and RbTiOAsO 4 crystals Measurement of the 2 tensors of KTiOPO 4, KTiOAsO 4, RbTiOPO 4, and RbTiOAsO 4 crystals Michael V. Pack, Darrell J. Armstrong, and Arlee V. Smith We use the separated-beams method to measure the second-order

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Numerical Analysis of a Q-switched Er:YAG Laser to Determine the Operational Parameter Effect of a Pockels Cell

Numerical Analysis of a Q-switched Er:YAG Laser to Determine the Operational Parameter Effect of a Pockels Cell New Physics: Sae Mulli, Vol. 64, No. 2, February 2014, pp. 217 222 DOI: 10.3938/NPSM.64.217 Numerical Analysis of a Q-switched Er:YAG Laser to Determine the Operational Parameter Effect of a Pockels Cell

More information

Theoretical Analysis of Second Harmonic Generation Considering Laser Absorption with Repetitive Irradiation of Focused Beam

Theoretical Analysis of Second Harmonic Generation Considering Laser Absorption with Repetitive Irradiation of Focused Beam JLMN-Journal of Laser Micro/Nanoengineering Vol. 1, No. 3, 6 Theoretical Analysis of Second Harmonic Generation Considering Laser Absorption with Repetitive Irradiation of ocused Beam Kazufumi Nomura *,

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Derivation of the General Propagation Equation

Derivation of the General Propagation Equation Derivation of the General Propagation Equation Phys 477/577: Ultrafast and Nonlinear Optics, F. Ö. Ilday, Bilkent University February 25, 26 1 1 Derivation of the Wave Equation from Maxwell s Equations

More information

Absorption suppression in photonic crystals

Absorption suppression in photonic crystals PHYSICAL REVIEW B 77, 442 28 Absorption suppression in photonic crystals A. Figotin and I. Vitebskiy Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA Received

More information

Sources supercontinuum visibles à base de fibres optiques microstructurées

Sources supercontinuum visibles à base de fibres optiques microstructurées Sources supercontinuum visibles à base de fibres optiques microstructurées P. Leproux XLIM - Université de Limoges Journées Thématiques CMDO+, Palaiseau, 24-25 nov. 2008 Palaiseau, 25/11/2008 - P. Leproux

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Photon Pair Production using non-linear waveguides

Photon Pair Production using non-linear waveguides Photon Pair Production using non-linear waveguides Alexander Ling J. Chen, J. Fan, A. Pearlmann, A. Migdall Joint Quantum Institute NIST and University of Maryland, College Park Motivation Correlated photon-pairs

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer

Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer Birefringence dispersion in a quartz crystal retrieved from a channelled spectrum resolved by a fibre-optic spectrometer Petr Hlubina, Dalibor Ciprian Department of Physics, Technical University Ostrava,

More information

Application of quantum control techniques to design broadband and ultra-broadband half-wave plates

Application of quantum control techniques to design broadband and ultra-broadband half-wave plates Journal of Physics: Conference Series PAPER OPEN ACCESS Application of quantum control techniques to design broadband and ultra-broadband half-wave plates To cite this article: Wei Huang and Elica Kyoseva

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Quantum Electronics Prof. K. Thyagarajan Department of Physics Indian Institute of Technology, Delhi

Quantum Electronics Prof. K. Thyagarajan Department of Physics Indian Institute of Technology, Delhi Quantum Electronics Prof. K. Thyagarajan Department of Physics Indian Institute of Technology, Delhi Module No. # 03 Second Order Effects Lecture No. # 11 Non - Linear Optic (Refer Slide Time: 00:36) Before

More information

Four-wave mixing in PCF s and tapered fibers

Four-wave mixing in PCF s and tapered fibers Chapter 4 Four-wave mixing in PCF s and tapered fibers The dramatically increased nonlinear response in PCF s in combination with single-mode behavior over almost the entire transmission range and the

More information

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples Russian Forum of Young Scientists Volume 2018 Conference Paper Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples A D

More information

Third harmonic generator

Third harmonic generator Third harmonic generator MODEL ATsG800 S/N 0003 INSTRUCTION MANUAL Del Mar Photonics, Inc 49 Twilight Ridge San Diego, CA 930 tel: (858) 876-333 fax: (858) 630-376 support@dmphotonics.com http://www.dmphotonics.com/

More information

The generation of terahertz frequency radiation by optical rectification

The generation of terahertz frequency radiation by optical rectification University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 29 The generation of terahertz frequency radiation by optical

More information

Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity

Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity Irit Juwiler and Ady Arie In multiple-pass nonlinear frequency conversion devices, interacting waves may accumulate

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals 122 J. Opt. Soc. Am. B/Vol. 15, No. 1/January 1998 Smith et al. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals A. V. Smith,

More information

The Generation of Ultrashort Laser Pulses

The Generation of Ultrashort Laser Pulses The Generation of Ultrashort Laser Pulses The importance of bandwidth More than just a light bulb Two, three, and four levels rate equations Gain and saturation But first: the progress has been amazing!

More information

Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect

Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect Peng Xi, Changhe Zhou, Enwen Dai, and Liren Liu Shanghai Institute of Optics and Fine Mechanics, Chinese Academy

More information

Modeling of the fringe shift in multiple beam interference for glass fibers

Modeling of the fringe shift in multiple beam interference for glass fibers PRAMANA c Indian Academy of Sciences Vol. 70, No. 4 journal of April 2008 physics pp. 643 648 Modeling of the fringe shift in multiple beam interference for glass fibers A M HAMED 1 Physics Department,

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Analog quantum gravity effects in dielectrics. Carlos H. G. Bessa (UFPB-Brazil) ICTP-SAIFR April 2017

Analog quantum gravity effects in dielectrics. Carlos H. G. Bessa (UFPB-Brazil) ICTP-SAIFR April 2017 Analog quantum gravity effects in dielectrics Carlos H. G. Bessa (UFPB-Brazil) In collaboration with V. A. De Lorenci (UNIFEI-Brazil), L. H. Ford (TUFTS-USA), C. C. H. Ribeiro (USP-Brazil) and N. F. Svaiter

More information

4: birefringence and phase matching

4: birefringence and phase matching /3/7 4: birefringence and phase matching Polarization states in EM Linear anisotropic response χ () tensor and its symmetry properties Working with the index ellipsoid: angle tuning Phase matching in crystals

More information

Frequency-Doubling of Femtosecond Pulses in Thick Nonlinear Crystals With Different Temporal and Spatial Walk-Off Parameters

Frequency-Doubling of Femtosecond Pulses in Thick Nonlinear Crystals With Different Temporal and Spatial Walk-Off Parameters Open Access Frequency-Doubling of Femtosecond Pulses in Thick Nonlinear Crystals With Different Temporal and Spatial Walk-Off Parameters Volume 8, Number 6, December 2016 N. Apurv Chaitanya A. Aadhi S.

More information

Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials

Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials Institute of Physics Publishing Journal of Physics: Conference Series 38 (2006) 144 147 doi:10.1088/1742-6596/38/1/035 NPMS-7/SIMD-5 (Maui 2005) Z-scan and four-wave mixing characterization of semiconductor

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany Numerical and Experimental Investigation of a Fiber-Optic Sensor Consisting of a Fiber Bragg Grating in a Two-Mode Fiber for Simultaneous Sensing of Temperature and Strain A. Siekiera 1,, R. Engelbrecht

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

HIGH-POWER THIRD-HARMONIC FLAT LASER PULSE GENERATION. Abstract

HIGH-POWER THIRD-HARMONIC FLAT LASER PULSE GENERATION. Abstract SPARC-LS-07/001 23 May 2007 HIGH-POWER THIRD-HARMONIC FLAT LASER PULSE GENERATION C. Vicario (INFN/LNF), M. Petrarca. (INFN/Roma1), S. Cialdi (INFN/Milano) P. Musumeci (UCLA). Abstract The generation of

More information

The Gouy phase shift in nonlinear interactions of waves

The Gouy phase shift in nonlinear interactions of waves The Gouy phase shift in nonlinear interactions of waves Nico Lastzka 1 and Roman Schnabel 1 1 Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

[D] indicates a Design Question

[D] indicates a Design Question EP421 Assignment 4: Polarization II: Applications of Optical Anisotropy use of the Jones Calculus (Handed Out: Friday 1 November 2013 Due Back: Friday 8 November 2013) 1. Optic Axis of Birefringent Crystals

More information