Effects of Heat Transfer on the Peristaltic Flow of Jeffrey Fluid through a Porous Medium in a Vertical Annulus

Size: px
Start display at page:

Download "Effects of Heat Transfer on the Peristaltic Flow of Jeffrey Fluid through a Porous Medium in a Vertical Annulus"

Transcription

1 J. Basic. Appl. Sci. Res., (7)75-758,, TextRoad Publication ISSN 9-44X Journal of Basic and Applied Scientific Research Effects of Heat Transfer on the Peristaltic Flow of Jeffrey Fluid through a Porous Medium in a Vertical Annulus C.Vasudev, Prof.U.Rajeswara Rao, M.V.Subba Reddy 3, G.Prabhakara Rao 4 Assistant Professor, Department of Mathematics, K.S.Institute of Technology, Bangalore, India Head, Chairman & BOS, Department of Mathematics, Sri Krishna Devaraya University, Anantapur, India. 3 Professor, Department of Information Technology, Sri Venkatesa Perumal College of Engineering, Puttur. 4 Research Scholar, Department of Mathematics, Sri Krishna Devaraya University, Anantapur, India. ABSTRACT In this paper, we studied the peristaltic flow of a Jeffrey fluid through a porous vertical annular region between two concentric vertical tubes under the assumptions of low Reynolds number and long wave length. The expressions for the temperature field, the velocity field, and the pressure gradient and heat transfer coefficient are obtained analytically. Interaction of various pertinent parameters with peristaltic transport is discussed with the help of graphs. KEY WORDS: Heat Transfer, Peristaltic Transport, Jeffrey Fluid, Pressure Gradient, Reynolds Number.. INTRODUCTION Peristaltic transport is an important mechanism for mixing and transporting fluids, which is generated by a progressive wave of contraction and expansion moving on the wall of the tube. This mechanism is found in urine transport from kidney to bladder, the motion of spermatozoa in the cervical canal, the movement of chyme in the gastrointestinal tract, vasomotion of the small blood vessels and in many other glandular ducts. In addition such mechanism has several applications in engineering and in biomedical systems including roller and finger pumps. Shapiro et al. (969) have investigated the inertia free peristaltic flow with long wavelength analysis. The early developments on the mathematical modeling and experimental fluid mechanisms of peristaltic flow were given in a comprehensive review by Jaffrin and Shapiro (97). Most of the theoretical investigations have been carried out by assuming blood and other physiological fluids to behave like a Newtonian fluid. Although, this approach provides satisfactory understanding of the peristaltic mechanism in the ureter, it fails to give a better understanding when the peristaltic mechanism involved in small blood vessels, intestine and in transport of spermatozoa in the cervical canal. It has been accepted that majority of the physiological fluids behave like a non-newtonian fluids. Peristaltic flow of blood in small vessels was investigated using the viscoelastic, power-law, Casson, micropolar fluid models by (Bhome and Friedrich, 983; Radhakridhnamacharya, 98; Srivastava and Srivastava, 984; Srinivasacharya et al., 3). The power-law model was used to study the intra uterine fluid in a sagittal cross section of uterus due to myometrial contraction by Subba Reddy (7). Hayat et al. (6) have investigated the effect of endoscope on the peristaltic flow of a Jeffrey fluid assuming chyme as a non-newtonian fluid. Hayat et al. (8) have analyzed the influence of an endoscope on the peristaltic flow of a Jeffrey fluid under the effective of magnetic filed in a tube. Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube was discussed by Hayat and Ali (8). Still the actual mechanism for the transport of water from the ground to upper branches of all tall trees is not well understood, it is speculated that peristalsis and free convection contribute to this motion. The diameters of the trunks of the trees are found to vary with time. In view of these, some researchers (Aikmn and Anderson, 97; Canny and Phillips, 963) have studied peristalsis with reference to water transport in trees. The translocation of water involves its motion through the porous matrix of the tree. Radhakrishnamurthy et al. (995) have studied the interaction peristaltic flow with heat transfer for the flow of a viscous fluid through a vertical porous tube. Recently, Vajravelu et al. (7) have investigated the effect of heat transfer on the peristaltic flow of a Newtonian fluid through a vertical porous annulus. Mekheimer and Abd Elmaboud (8) have studied the influence of heat transfer and magnetic field on the peristaltic transport of Newtonian fluid in a vertical annulus. It also found that in trees there is a core region through which water does not flow and water flows only through the outer region. *Corresponding Author: C.Vasudev, Research Scholar, Department of Mathematics, Sri Krishna Devaraya University, Anantapur, India. -raadha@gmail.com 75

2 Vasudev et al., However, the problem of peristaltic flow of a Jeffrey fluid through a vertical porous annuls has received little attention. Hence, an attempt is made to investigate the peristaltic flow of a Jeffrey fluid through a vertical porous annulus. The analysis has been carried out in the wave frame of reference with long wavelength and zero Reynolds number assumptions. The expressions for the temperature field, the velocity field and the heat transfer coefficient are obtained analytically. The effects of various emerging parameters on the pumping characteristics, the temperature field and the heat transfer coefficient are discussed in detail with the help of graphs.. MATHEMATICAL FORMULATION We consider the peristaltic flow of an incompressible Jeffrey fluid through a porous annular region between two coaxial vertical tubes. The flow is generated by sinusoidal wave trains propagating with constant speed c along the wall of the outer rube. The axisymmetric cylindrical polar coordinate system Z, R is chosen such that the Z - coordinate is along the center line of the inner and outer tubes and R - coordinate along the radial coordinate. The inner tube is rigid maintained at a temperature T and the outer tube maintained at a temperature T. Fig. depicts the physical model of the problem. The geometry of the inner and outer walls are defined by R R a (.) R R Z, t a bsin Z ct (.) where a, a are the radii of the inner and outer tubes, b is the amplitude of the wave, is the wavelength and t is the time. The flow is unsteady in the fixed frame( Z, R ). However, in a co-ordinate system moving with the propagation velocity c (wave frame( z, r )), the boundary shape is stationary. The transformation from fixed frame to wave frame is given by z Z ct, r R, w W c, u U (.3) where ( w, u ) and ( W, U ) are the velocity components in the wave and fixed frames respectively. The constitute equation of S for Jeffrey fluid is S (.4) where is the dynamic viscosity, is the ratio of relaxation to retardation times, is the retardation time, is the shear rate and dots over the quantities denote differentiation with time. The equations governing the flow in the wave frame of reference are Fig.. Geometry of the problem 75

3 J. Basic. Appl. Sci. Res., (7)75-758, u u w r r z (.5) u u p Srz u w rsrr u r z r r r z k (.6) w w p Szz u w ( rsrz ) w c g T T r z z r r z k (.7) T T T T T cp u w k Q r z r r r z (.8) k is the permeability of the porous medium, T is the temperature, Q is the constant heat c is the specific heat at constant pressure, k is the where p is the pressure, addition/absorption, is the coefficient of linear thermal expansion of the fluid, thermal conductivity and is the density of the fluid. Introducing the non-dimensional variables defined by r z w u r, z, w, u, a c c pa p as, S c c, T T a,, T T r a r, r b, r sin z,, a a a a 3 g a T T c Gr, Pr p a Q, k k T T p k, ac Da Re, a where Da is the Darcy number, Re is the Reynolds number, is the wave number, is the amplitude ratio, Pr is the Prandtl number, Gr is the Grashof number and is the non-dimensional heat source/sink parameter, into the Equations (.5) (.8), we obtain (after dropping the bars) u u w r r z (.) 3 u u p S Re rz u w rsrr u r z r r r z Da (.) w w p Szz Re u w ( rsrz ) w Gr r z z r r z Da (.) T T T Re Pr u w r z r r r z (.3) where and c u Srr u w a r z r, c w u Srz u w, a r z r z c w Szz u w a r z. z ) and low Reynolds number ( Re p r Using the long wavelength approximation ( (.9) ), assumption the Equations (.) and (.3) become (.4) 753

4 p w r w Gr z ( ) r r r Da r r r From Eq. (.4) and (.5), we have Vasudev et al., dp w ( ) r N w ( 3 ) Gr dz r r r ( ) where N. Da The corresponding non-dimensional boundary conditions are (.5) (.6) (.7) w at r r, r (.8) at r r (.9) at r r (.) The dimensionless volume flow rate in the wave frame is given by h q wrdr (.) The dimensionless instantaneous volume flow rate in the fixed frame of reference is given by h h Q( x, t) WRdr ( w ) rdr q h The dimensionless time mean flow over a period T / c 3. SOLUTION T (.) Q Q( x, t) dt q h dx q T of the peristaltic wave, is defined as (.3) Solving Eq. (.6) using the boundary conditions (.9) and (.), we obtain where (3.) log 4 r c r c 4 r r c r 4log r and c r log r 4 r log r r 4log r Substituting Eq. (3.) in to the Eq. (.7) and solving Eq.(.7) together with the boundary conditions (.8), we get where dp w f 5I Nr f6k Nr N dz f3 f4 Gr I Nr K Nr c log r r 4Da N f f 4 4 f c c log r r 4 N, 4 f c c log r r 4 N,. (3.) 754

5 J. Basic. Appl. Sci. Res., (7)75-758,, f4 fi Nr fi Nr K Nr K Nr I Nr I Nr f f K Nr f K Nr 3 f5, f6 f f I Nr K Nr I Nr K Nr. The volume flow rate q is given by, and dp q f 7 r r Grf 8 (3.3) N dz N f 5 f6 4 r r f7 r I Nr r I Nr r K Nr r K Nr N N where and f3 f4 f 8 r I Nr r I Nr r K Nr r K Nr Mf Nf 4 4 r r r r c 4 4 N From Eq.(3.3), we have The pressure rise r r q r r Grf N dp N dz f7 p per one wave length is given by 8 f r r r r c log r log r 4 dp p dz (3.5) dz The heat transfer coefficient at the outer wall is defined by r r c r z yh r cos 4. DISCUSSION OF THE RESULTS z In order to see the effects of various pertinent parameters on the pumping characteristics and the temperature we have plotted Figs. 9. Fig. shows the variation of pressure rise with. (3.4) (3.6) p with time averaged flux Q for different values of Jeffrey fluid parameter.4,., Da., Gr 3and 5. It is found that, the time - averaged flux Q decreases with increasing the pumping region with increasing. p and free pumping region p, while in the co-pumping region p in, the Q increases. Also, it is found that the pumping is more for Newtonian fluid than that of Jeffrey fluid The variation of pressure rise p with time averaged flux Q for different values of with.4,., Da., Gr 3 and.3 is presented in Fig. 3. It is found that, the time - averaged flux Q increases with an increase in heat source/sink parameter in all the three (pumping, free pumping and co-pumping) regions. 755

6 Fig. 4 depicts the variation of pressure rise.4,.,.3, Gr 3and 5 Vasudev et al., p with time averaged flux Q for different values of Darcy number Da with. It is observed that, in the pumping region the time-averaged flux Q decreases with increasing Da, while Q increases with increasing Da in the free pumping and co-pumping region. The variation of pressure rise p with time averaged flux Q for different values of Grashof number Gr with.4,., Da.,.3 and 5 is shown in Fig. 5. It is noted that, an increase in the Gr increases the time - averaged flux Q in all the three (pumping, free-pumping and co-pumping) regions. Fig. 6 presents The variation of pressure rise p with time averaged flux Q for different values of with.4,.3, Da., Gr 3and 5. It is observed that, the time - averaged flux Q increases with increasing in the pumping region and free pumping region, while in the co-pumping region, the Q decreases with increasing. 5 The variation of pressure rise p with time averaged flux Q for different values of with.3,., Da., Gr 3and 5 is depicted in Fig. 7. It is found that, the time - averaged flux Q increases with an increase in in both pumping and free pumping regions, while in co-pumping region, the Q decreases as increases for an appropriately chosen p. Fig. 8 have been plotted to illustrate the variation of on the temperature distribution. It is observed that, the temperature increases with increasing. In order to see the effect of amplitude ratio on the temperature distribution, we have plotted Fig. 9. It is found that, the temperature decreases with an increase in. Fig. shows the variation of on the temperature distribution. It is found that, the temperature increases with increasing. Table depicts the variation of heat transfer coefficient with for.4 and.. It is observed that, the heat transfer coefficient increases with increasing with. The variation of heat transfer coefficient with for 5 and. is shown in Table. It is found that, the heat transfer coefficient increases with an increase in. Table 3 shows the variation of heat transfer coefficient with for.4 and. coefficient decreases with an increase in.. It is noted that, the heat transfer 756

7 Vasudev et al., 757

8 J. Basic. Appl. Sci. Res., (7)75-758, 5. CONCLUSIONS In this chapter, we modeled the peristaltic flow of a Jeffrey fluid through a porous vertical annular region between two concentric vertical tubes under the assumptions of low Reynolds number and long wavelength. The expressions for the temperature field, the velocity field, the pressure gradient and heat transfer coefficient are obtained analytically. Interaction of various pertinent parameters with peristaltic transport is discussed with the help of graphs. It is found that, the pumping decreases with increasing and Da, whereas the pumping increases with increasing, Gr, and. The temperature distribution increases with increasing and, whereas the temperature distribution decreases with increasing. The heat transfer coefficient increases with increasing and, whereas the heat transfer coefficient decreases with an increase in. ACKNOWLEDGEMENTS We thank the management of Sri Kalki Supreme Constructions Pvt Ltd Hyderabad; Suma Engineering works Bangalore, Sri Sanjana Food Products Chittoor, Swami & sons constructions Bangalore, Sri Sai Educational Institutions Anantapur, India, for their support, valuable guidelines, consistent encouragement and providing me necessary facilities in pursuing the research-work. Aikman, D. P. and Anderson, W. P., Ann. Botany, 35(97), 76. REFERENCES Bohme, G., and Friedrich, R. Peristaltic flow of viscoelastic liquids, J.Fluid Mech., 8 (983), 9-. Canny, M. J. and Phillips, O. M. Ann. Botany, 7(963), 379. Hayat, T., Ali, N., Asghar, S. and Siddiqui, A. M. Exact peristaltic flow in tubes with an endoscope, Appl. Math. Comput. 8 (6) Hayat, T. and Ali, N. Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube, Communications in Nonlinear Science and Numerical Simulation, 3(8), Hayat, T., Ahamad, N. and Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid, Communications in Nonlinear Science and Numerical Simulation, 3(8), Jaffrin, M.Y. and Shapiro, A. H. Peristaltic Pumping, Ann. Rev. Fluid Mech., 3(97), Mekheimer, Kh. S. and Abd Elmaboud, Y. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope, Physics letters A, 37(8), Radhakrishnamacharya, G. Long wavelength approximation to peristaltic motion of a power law fluid, Rheol. Acta., (98), Radhakrishnamurthy, V. Radhakrishnamacharya, G. and Chandra, P. Advances in Physiological Fluid Dynamics, Narosa publishing House, India, 995. Shapiro, A.H., Jaffrin, M.Y and Weinberg, S.L. Peristaltic pumping with long wavelengths at low Reynolds number, J. Fluid Mech. 37(969), Srinivasacharya, D., Mishra, M. and Ramachandra Rao, A. Peristaltic pumping of a micro polar fluid in a tube, Acta Mechanica, 6(3), Srivastava, L.M. and Srivastava, V.P, Peristaltic transport of blood: Casson model II, J. Biomech., 7(984), Subba Reddy, M.V., Ramachandra Rao, A. and Sreenadh, S. Peristaltic motion of a power law fluid in an asymmetric channel, Int. J. Non-Linear Mech., 4 (7), Vajravelu, K., Radhakrishnamacharya, G. and Radhakrishnamurthy, V. Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation, Int. J. Non-Linear Mech., 4(7),

Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid in a uniform tube

Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid in a uniform tube Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, 3 ():9-98 ISSN: 976-86 CODEN (USA): AASRFC Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid

More information

INFLUENCE OF HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A POROUS MEDIUM IN AN INCLINED ASYMMETRIC CHANNEL

INFLUENCE OF HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A POROUS MEDIUM IN AN INCLINED ASYMMETRIC CHANNEL VOL, NO 9, MAY 07 ISSN 89-6608 006-07 Asian Research Publishing Network (ARPN) All rights reserved INFLUENCE OF HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A POROUS MEDIUM IN AN INCLINED

More information

Peristaltic flow of a Williamson fluid in an inclined planar channel under the effect of a magnetic field

Peristaltic flow of a Williamson fluid in an inclined planar channel under the effect of a magnetic field Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, 3 ():5-6 ISSN: 976-86 CODEN (USA): AASRFC Peristaltic flow of a Williamson fluid in an inclined planar channel

More information

INTERNATIONAL JOURNAL OF ADVANCE RESEARCH, IJOAR.ORG ISSN

INTERNATIONAL JOURNAL OF ADVANCE RESEARCH, IJOAR.ORG ISSN ISSN 30-913 7 International Journal of Advance Research, IJOAR.org Volume 3, Issue 6, June 015, Online: ISSN 30-913 PERISTALTIC PUMPING OF COUPLE STRESS FLUID THROUGH NON - ERODIBLE POROUS LINING TUBE

More information

MHD peristaltic transport of a micropolar fluid in an asymmetric channel with porous medium

MHD peristaltic transport of a micropolar fluid in an asymmetric channel with porous medium Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 06, 7():05-4 ISSN: 0976-860 CODEN (USA): AASRFC MHD peristaltic transport of a micropolar fluid in an asymmetric

More information

INFLUENCE OF MAGNETIC FIELD AND HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A POROUS MEDIUM IN AN ASYMMETRIC CHANNEL

INFLUENCE OF MAGNETIC FIELD AND HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A POROUS MEDIUM IN AN ASYMMETRIC CHANNEL VOL. 5, NO., DECEMBER 00 ISSN 89-6608 006-00 Asian Research Publishing Network (ARPN). All rights reserved. INFLUENCE OF MAGNETIC FIELD AND HEAT TRANSFER ON PERISTALTIC FLOW OF JEFFREY FLUID THROUGH A

More information

Slip Effect on Peristaltic Transport. of Micropolar Fluid

Slip Effect on Peristaltic Transport. of Micropolar Fluid Applied Mathematical Sciences, Vol. 4,, no. 43, 5-7 Slip Effect on Peristaltic Transport of Micropolar Fluid M. K. Chaube *, S. K. Pandey and D. Tripathi Department of Applied Mathematics, Institute of

More information

EFFECT OF MAGNETIC FIELD ON THE PERISTALTIC PUMPING OF A JEFFREY FLUID IN A CHANNEL WITH VARIABLE VISCOSITY

EFFECT OF MAGNETIC FIELD ON THE PERISTALTIC PUMPING OF A JEFFREY FLUID IN A CHANNEL WITH VARIABLE VISCOSITY International Journal of Applied Mathematics & Engineering Sciences Vol. 5, No., January-June EFFECT OF MAGNETIC FIELD ON THE PERISTALTIC PUMPING OF A JEFFREY FLUID IN A CHANNEL WITH VARIABLE VISCOSITY

More information

SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT OF A WILLIAMSON FLUID THROUGH A POROUS MEDIUM IN A SYMMETRIC CHANNEL. Andhra Pradesh, India

SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT OF A WILLIAMSON FLUID THROUGH A POROUS MEDIUM IN A SYMMETRIC CHANNEL. Andhra Pradesh, India Available online at http://scik.org J. Math. Comput. Sci. 3 (3), No. 5, 36-34 ISSN: 97-537 SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT OF A WILLIAMSON FLUID THROUGH A POROUS MEDIUM IN A SYMMETRIC CHANNEL

More information

Peristaltic pumping of couple stress fluid through non - erodible porous lining tube wall with thickness of porous material

Peristaltic pumping of couple stress fluid through non - erodible porous lining tube wall with thickness of porous material Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 01, 3 (4):36-336 ISSN: 0976-8610 CODEN (USA): AASRFC Peristaltic pumping of couple stress fluid through non - erodible

More information

PERISTALTIC FLOW OF A FRACTIONAL SECOND GRADE FLUID THROUGH A CYLINDRICAL TUBE

PERISTALTIC FLOW OF A FRACTIONAL SECOND GRADE FLUID THROUGH A CYLINDRICAL TUBE THERMAL SCIENCE, Year 0, Vol. 5, Suppl., pp. S67-S73 S67 PERISTALTIC FLOW OF A FRACTIONAL SECOND GRADE FLUID THROUGH A CYLINDRICAL TUBE by Dharmendra TRIPATHI Mathematics Group, BITS Pilani, Hyderabad

More information

Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel

Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel Sohail Nadeem and Safia Akram Department of Mathematics Quaid-i-Azam University 4530 Islamabad 44000 Pakistan Reprint

More information

Peristaltic transport of a newtonian fluid with wall properties in an asymmetric channel

Peristaltic transport of a newtonian fluid with wall properties in an asymmetric channel Int. J. Adv. Appl. Math. and Mech. 3(1) (015) 10 109 (ISSN: 347-59) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Peristaltic transport of a newtonian

More information

[Komala, 2(10): October, 2013] ISSN: Impact Factor: 1.852

[Komala, 2(10): October, 2013] ISSN: Impact Factor: 1.852 [Komala, (0): October, 03] ISSN: 77-9655 Impact Factor:.85 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Peristaltic Transport of a Conducting Jeffrey Fluid in a Vertical Annulus

More information

MHD PERISTALTIC FLOW OF A COUPLE STRESS FLUIDS PERMEATED WITH SUSPENDED PARTICLES THROUGH A POROUS MEDIUM UNDER LONG WAVELENGTH APPROXIMATION

MHD PERISTALTIC FLOW OF A COUPLE STRESS FLUIDS PERMEATED WITH SUSPENDED PARTICLES THROUGH A POROUS MEDIUM UNDER LONG WAVELENGTH APPROXIMATION VOL. 0, NO. 7, APRIL 05 ISSN 89-6608 006-05 Asian Research Publishing Network (ARPN). All rights reserved. MHD PERISTALTIC FLOW OF A COUPLE STRESS FLUIDS PERMEATED WITH SUSPENDED PARTICLES THROUGH A POROUS

More information

Peristaltic Flow through a Porous Medium in an Annulus: Application of an Endoscope

Peristaltic Flow through a Porous Medium in an Annulus: Application of an Endoscope Applied Mathematics & Information Sciences 2(1) (2008), 103 121 An International Journal c 2008 Dixie W Publishing Corporation, S A Peristaltic Flow through a Porous Medium in an Annulus: Application of

More information

Peristaltic Flow of A Couple Stress Fluids in an Inclined Channel

Peristaltic Flow of A Couple Stress Fluids in an Inclined Channel International Journal of Allied Practice, Research and Review Website: www.ijaprr.com (ISSN 350-194) Peristaltic Flow of A Couple Stress Fluids in an Inclined Channel V.P.Rathod and N.G.Sridhar Department

More information

Effects of magnetic field and an endoscope on peristaltic motion

Effects of magnetic field and an endoscope on peristaltic motion Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, (4:-9 ISSN: 976-86 CODEN (USA: AASRFC Effects of magnetic field and an endoscope on peristaltic motion V.P. Rathod

More information

Research Article Peristaltic Transport of a Jeffrey Fluid with Variable Viscosity through a Porous Medium in an Asymmetric Channel

Research Article Peristaltic Transport of a Jeffrey Fluid with Variable Viscosity through a Porous Medium in an Asymmetric Channel Hindawi Publishing Corporation Advances in Mathematical Physics Volume 212, Article ID 169642, 15 pages doi:1.1155/212/169642 Research Article Peristaltic Transport of a Jeffrey Fluid with Variable Viscosity

More information

MHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel with partial slip

MHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel with partial slip Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, 3 (6):3755-3765 ISSN: 976-86 CODEN (USA): AASRFC MHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel

More information

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 6, Issue 2 (December 2011), pp. 428 444 Applications and Applied Mathematics: An International Journal (AAM) Mathematical Modeling

More information

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 8, Issue 6 (Nov. Dec. 2013), PP 32-39 Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in

More information

Peristaltic Transport of Micropolar Fluid in a Tubes Under Influence of Magnetic Field and Rotation A.M.Abd-Alla a, G.A.Yahya b,c, H.S.

Peristaltic Transport of Micropolar Fluid in a Tubes Under Influence of Magnetic Field and Rotation A.M.Abd-Alla a, G.A.Yahya b,c, H.S. International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 1 17 Peristaltic Transport of Micropolar Fluid in a Tubes Under Influence of Magnetic Field and Rotation A.M.Abd-Alla a, G.A.Yahya

More information

Influence of velocity slip conditions on MHD peristaltic flow of a Prandtl fluid in a non-uniform channel

Influence of velocity slip conditions on MHD peristaltic flow of a Prandtl fluid in a non-uniform channel Malaysian Journal of Mathematical Sciences 11): 35 47 16) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Influence of velocity slip conditions on MHD peristaltic

More information

Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel

Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel Sohail Nadeem and Noreen Sher Akbar Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan

More information

PERISTALTIC MOTION WITH HEAT AND MASS TRANSFER OF A DUSTY FLUID THROUGH A HORIZONTAL POROUS CHANNEL UNDER THE EFFECT OF WALL PROPERTIES

PERISTALTIC MOTION WITH HEAT AND MASS TRANSFER OF A DUSTY FLUID THROUGH A HORIZONTAL POROUS CHANNEL UNDER THE EFFECT OF WALL PROPERTIES www.arpapress.com/volumes/vol15issue3/ijrras_15_3_12.pdf PERISTALTIC MOTION WITH HEAT AND MASS TRANSFER OF A DUSTY FLUID THROUGH A HORIZONTAL POROUS CHANNEL UNDER THE EFFECT OF WALL PROPERTIES Nabil T.

More information

Heat absorption and chemical reaction effects on peristaltic motion of micropolar fluid through a porous medium in the presence of magnetic field

Heat absorption and chemical reaction effects on peristaltic motion of micropolar fluid through a porous medium in the presence of magnetic field Vol. 6(5), pp. 94-101, May 2013 DOI: 10.5897/AJMCSR 2013.0473 ISSN 2006-9731 2013 Academic Journals http://www.academicjournals.org/ajmcsr African Journal of Mathematics and Computer Science Research Full

More information

Theoretical Study of Heat Transfer on Peristaltic Transport of Non- Newtonian Fluid Flowing in a Channel: Rabinowitsch Fluid Model

Theoretical Study of Heat Transfer on Peristaltic Transport of Non- Newtonian Fluid Flowing in a Channel: Rabinowitsch Fluid Model Theoretical Study of Heat Transfer on Peristaltic Transport of Non- Newtonian Fluid Flowing in a Channel: Rabinowitsch Fluid Model U. P. Singh Department of Applied Sciences and Humanities Rajkiya Engineering

More information

Flow of a Casson Fluid Through an Inclined Tube of Non-uniform Cross Section with Multiple Stenoses

Flow of a Casson Fluid Through an Inclined Tube of Non-uniform Cross Section with Multiple Stenoses Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (5):340-349 ISSN: 0976-8610 CODEN (USA): AASRFC Flow of a Casson Fluid Through an Inclined Tube of Non-uniform

More information

Effects of Slip and Heat Transfer on MHD Peristaltic Flow in An Inclined Asymmetric Channel

Effects of Slip and Heat Transfer on MHD Peristaltic Flow in An Inclined Asymmetric Channel Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 2 (2012), pp 35-52 Effects of Slip and Heat Transfer on MHD Peristaltic Flow in An Inclined Asymmetric Channel Kalidas Das Department

More information

A study of nonlinear variable viscosity in finite-length tube with peristalsis

A study of nonlinear variable viscosity in finite-length tube with peristalsis Applied Bionics and Biomechanics 11 (214) 197 26 DOI 1.3233/ABB-1411 IOS Press 197 A study of nonlinear variable viscosity in finite-length tube with peristalsis Y. Abd Elmaboud a,b,, Kh.S. Mekheimer c,d

More information

Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus

Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus Sohail Nadeem and Noreen Sher Akbar Department of Mathematics Quaid-i-Azam University 530 Islamabad 000 Pakistan

More information

Long Wavelength Flow Analysis in a Curved Channel

Long Wavelength Flow Analysis in a Curved Channel Long Wavelength Flow Analysis in a Curved Channel Nasir Ali a, Muhammad Sajid b, and Tasawar Hayat c a Department of Mathematics, International Islamic University, Islamabad, Pakistan b Theoretical Plasma

More information

MHD Peristaltic Flow of a Couple Stress Fluids with Heat and Mass. Transfer through a Porous Medium

MHD Peristaltic Flow of a Couple Stress Fluids with Heat and Mass. Transfer through a Porous Medium MHD Peristaltic Flow of a Couple Stress Fluids with Heat and Mass Transfer through a Porous Medium N.T. Eldabe, Department of Mathematics, Faculty of Education, Ain Shams University,Cairo, Egypt S.M. Elshaboury,

More information

Peristaltic transport of a Newtonian fluid in an asymmetric channel

Peristaltic transport of a Newtonian fluid in an asymmetric channel Z. angew. Math. Phys. 54 (3) 53 55 44-75/3/353-9 DOI.7/s33-3-7-7 c 3 Birkhäuser Verlag, Basel Zeitschrift für angewandte Mathematik und Physik ZAMP Peristaltic transport of a Newtonian fluid in an asymmetric

More information

The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel

The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel Commun. Theor. Phys. 59 213 729 736 Vol. 59, No. 6, June 15, 213 The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel S. Nadeem and E.N. Maraj Department of Mathematics,

More information

Peristaltic Pumping of a Conducting Jeffrey Fluid in a Vertical Porous Channel with Heat Transfer

Peristaltic Pumping of a Conducting Jeffrey Fluid in a Vertical Porous Channel with Heat Transfer vailable online at www.pelagiaresearclibrary.com dvances in pplied Science Researc,, (6):439-453 ISSN: 976-86 CODEN (US): SRFC Peristaltic Pumping of a Conducting Jeffrey Fluid in a Vertical Porous Cannel

More information

Peristaltic Pumping of a Casson Fluid in an Elastic Tube

Peristaltic Pumping of a Casson Fluid in an Elastic Tube Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 97-95, 6. Available online at www.jafmonline.net, ISSN 735-357, EISSN 735-365. DOI:.69/acadpub.jafm.6.35.695 Peristaltic Pumping of a Casson Fluid in

More information

Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube

Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube Sohail Nadeem and Noreen Sher Akbar Department of Mathematics, Quaid-i-Azam University 45320, Islamabad

More information

Influence of Wall Properties on the Peristaltic Flow of a Jeffrey Fluid in a Uniform Porous Channel under Heat Transfer

Influence of Wall Properties on the Peristaltic Flow of a Jeffrey Fluid in a Uniform Porous Channel under Heat Transfer Int. J. Res. Ind. Eng. Vol. 6, No. 3 (2017) 246 261 International Journal of Research in Industrial Engineering www.riejournal.com Influence of Wall Properties on the Peristaltic Flow of a Jeffrey Fluid

More information

Peristaltic transport through eccentric cylinders: Mathematical model

Peristaltic transport through eccentric cylinders: Mathematical model Applied Bionics and Biomechanics 10 013 19 7 DOI 10.333/ABB-01-0071 IOS Press 19 Peristaltic transport through eccentric cylinders: Mathematical model Kh.S. Mekheimer a,b,, Y. Abd elmaboud c,d and A.I.

More information

CHAPTER 6 Effect of slip and heat transfer on the Peristaltic flow of a Williamson fluid in an incliped channel

CHAPTER 6 Effect of slip and heat transfer on the Peristaltic flow of a Williamson fluid in an incliped channel CHAPTER 6 Effect of slip and heat transfer on the Peristaltic flow of a Williamson fluid in an incliped channel 6.1. Introduction Peristalsis is a well-known mechanism for pumping biological and industrial

More information

Oscillatory flow of a jeffrey fluid in an elastic tube of variable cross-section

Oscillatory flow of a jeffrey fluid in an elastic tube of variable cross-section Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research 2012 3 (2):671-677 ISSN: 0976-8610 CODEN (USA): AASRFC Oscillatory flow of a jeffrey fluid in an elastic tube of

More information

Effects of wall properties and heat transfer on the peristaltic transport of a jeffrey fluid in a channel

Effects of wall properties and heat transfer on the peristaltic transport of a jeffrey fluid in a channel Available online at www.pelagiaresearchlibrar.com Advances in Applied Science Research,, 4(6):59-7 ISSN: 976-86 CODEN (USA): AASRFC Effects of wall properties and heat transfer on the peristaltic transport

More information

Research Article Effects of Heat Transfer and an Endoscope on Peristaltic Flow of a Fractional Maxwell Fluid in a Vertical Tube

Research Article Effects of Heat Transfer and an Endoscope on Peristaltic Flow of a Fractional Maxwell Fluid in a Vertical Tube Abstract and Applied Analysis Volume 215, Article ID 36918, 9 pages http://dx.doi.org/1.1155/215/36918 Research Article Effects of Heat Transfer and an Endoscope on Peristaltic Flow of a Fractional Maxwell

More information

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(5), 2016, Available online through   ISSN International Journal of Mathematical Archive-7(5), 6, 8-89 Available online through www.ijma.info ISSN 9 546 MHD AND HEAT TRANSFER EFFECTS ON AN OSCILLATORY FLOW OF JEFFREY FLUID IN A CIRCULAR TUBE K.

More information

A BIVARIATE VISCOSITY FUNCTION ON THE PERISTALTIC MOTION IN AN ASYMMETRIC CHANNEL

A BIVARIATE VISCOSITY FUNCTION ON THE PERISTALTIC MOTION IN AN ASYMMETRIC CHANNEL A BIVARIATE VISCOSITY FUNCTION ON THE PERISTALTIC MOTION IN AN ASYMMETRIC CHANNEL Mehdi Lachiheb M. Lachiheb Faculty of Sciences Taibah University Kingdom of Saudi Arabia E-Mail: lachiheb006@gmail.com

More information

072 B.P. 50 Cotonou, Republic of Benin 2 Laboratory for Applied Mechanics and Energetic (LEMA), Ecole Polytechnique d Abomey-Calavi,

072 B.P. 50 Cotonou, Republic of Benin 2 Laboratory for Applied Mechanics and Energetic (LEMA), Ecole Polytechnique d Abomey-Calavi, Bulletin of Mathematical Sciences and Applications Online: -- ISSN: 78-9634, Vol., pp 3-37 doi:.85/www.scipress.com/bmsa..3 SciPress Ltd., Switzerland Solving the Navier Stokes Flow Equations of Micro-Polar

More information

ENTROPY PRODUCTION IN PERISTALTIC FLOW OF A SPACE DEPENDENT VISCOSITY FLUID IN ASYMMETRIC CHANNEL. Najma SALEEM

ENTROPY PRODUCTION IN PERISTALTIC FLOW OF A SPACE DEPENDENT VISCOSITY FLUID IN ASYMMETRIC CHANNEL. Najma SALEEM ENTROPY PRODUCTION IN PERISTALTIC FLOW OF A SPACE DEPENDENT VISCOSITY FLUID IN ASYMMETRIC CHANNEL Najma SALEEM Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Khobar,

More information

NUMERICAL SOLUTION OF HYDROMAGNETIC PERISTALTIC FLOW IN A POROUS-SATURATED HEATED CHANNEL by Raheel Ahmed * and Nasir Ali

NUMERICAL SOLUTION OF HYDROMAGNETIC PERISTALTIC FLOW IN A POROUS-SATURATED HEATED CHANNEL by Raheel Ahmed * and Nasir Ali NUMERICAL SOLUTION OF HYDROMAGNETIC PERISTALTIC FLOW IN A POROUS-SATURATED HEATED CHANNEL by Raheel Ahmed and Nasir Ali Department of Mathematics & Statistics, IIU, Islamabad 44, Pakistan. Abstract: The

More information

Transient free convective flow of a micropolar fluid between two vertical walls

Transient free convective flow of a micropolar fluid between two vertical walls Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 5, No. 2, 2013 Article ID IJIM-00311, 9 pages Research Article Transient free convective flow of a micropolar

More information

HEAT AND MASS TRANSFER EFFECTS ON THE PERISTALTIC FLOW OF SISKO FLUID IN A CURVED CHANNEL

HEAT AND MASS TRANSFER EFFECTS ON THE PERISTALTIC FLOW OF SISKO FLUID IN A CURVED CHANNEL HEAT AND MASS TRANSFER EFFECTS ON THE PERISTALTIC FLOW OF SISKO FLUID IN A CURVED CHANNEL by Raheel AHMED, Nasir ALI and Khurram JAVID Department of Mathematics & Statistics, IIU, Islamabad 44000, Pakistan.

More information

Peristaltic Flow of Non-Newtonian Fluids through Curved Channels: a Numerical Study

Peristaltic Flow of Non-Newtonian Fluids through Curved Channels: a Numerical Study ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 1, 13 Peristaltic Flow of Non-Newtonian Fluids through Curved Channels: a Numerical Study Alireza Kalantari 1, Kayvan Sadeghy 1, and Soheil Sadeqi

More information

EFFECT OF COMPLAINT WALLS ON MAGNETO-HYDRODYNAMIC PERISTALTIC PUMPING OF AN INCOMPRESSIBLE VISCOUS FLUID WITH CHEMICAL REACTIONS

EFFECT OF COMPLAINT WALLS ON MAGNETO-HYDRODYNAMIC PERISTALTIC PUMPING OF AN INCOMPRESSIBLE VISCOUS FLUID WITH CHEMICAL REACTIONS EFFECT OF COMPLAINT WALLS ON MAGNETO-HYDRODYNAMIC PERISTALTIC PUMPING OF AN INCOMPRESSIBLE VISCOUS FLUID WITH CHEMICAL REACTIONS G. C. Sankad and M. Y. Dhange Department of Mathematics, (Affiliated to

More information

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Muhim Chutia Department of Mathematics, Mariani College, Assam-785634, India ABSTRACT: In this paper, a numerical

More information

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe T S L Radhika**, M B Srinivas, T Raja Rani*, A. Karthik BITS Pilani- Hyderabad campus, Hyderabad, Telangana, India. *MTC, Muscat,

More information

Influence of Lateral Walls on Peristaltic Flow of a Couple Stress Fluid in a Non-Uniform Rectangular Duct

Influence of Lateral Walls on Peristaltic Flow of a Couple Stress Fluid in a Non-Uniform Rectangular Duct Appl. Math. Inf. Sci. 8, No. 3, 1127-1133 214 1127 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/1.12785/amis/8323 Influence of Lateral Walls on Peristaltic Flow

More information

Hydromagnetic Peristaltic Transport of Variable Viscosity Fluid with Heat Transfer and Porous Medium

Hydromagnetic Peristaltic Transport of Variable Viscosity Fluid with Heat Transfer and Porous Medium Appl. Math. Inf. Sci. 10, No. 6, 2173-2181 (2016) 2173 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/100619 Hydromagnetic Peristaltic Transport of

More information

Effects of Magnetic Field and Slip on a Two-Fluid Model for Couple Stress Fluid Flow through a Porous Medium

Effects of Magnetic Field and Slip on a Two-Fluid Model for Couple Stress Fluid Flow through a Porous Medium Inter national Journal of Pure and Applied Mathematics Volume 113 No. 11 2017, 65 74 ISSN: 1311-8080 printed version; ISSN: 1314-3395 on-line version url: http://www.ijpam.eu ijpam.eu Effects of Magnetic

More information

CHAPTER-I1 UNSTEADY PERISTALTIC FLOW OF A JEFFREY FLUID IN AN ASYMMETRIC CHANNEL

CHAPTER-I1 UNSTEADY PERISTALTIC FLOW OF A JEFFREY FLUID IN AN ASYMMETRIC CHANNEL CHAPTER-I1 UNSTEADY PERISTALTIC FLOW OF A JEFFREY FLUID IN AN ASYMMETRIC CHANNEL 1. INTRODUCTION Peristaltic pumping is a form of fluid transport that occurs when a progressive wave of area of contraction

More information

K.Kumara Swamy Naidu. E. Sudhakara

K.Kumara Swamy Naidu. E. Sudhakara International Journal of Scientific and Innovative Mathematical Research (IJSIMR) olume, Issue 7, July 4, 67-636 ISSN 347-37X (rint) & ISSN 347-34 (Online) www.arcjournals.org The Effect of the Thickness

More information

International Journal of Applied Mathematics and Physics, 3(2), July-December 2011, pp Global Research Publications, India

International Journal of Applied Mathematics and Physics, 3(2), July-December 2011, pp Global Research Publications, India International Journal of Applied Mathematics and Phsics, 3(), Jul-December 0, pp. 55-67 Global Research Publications, India Effects of Chemical Reaction with Heat and Mass Transfer on Peristaltic Flow

More information

Research Article Peristaltic Flow of a Magneto-Micropolar Fluid: Effect of Induced Magnetic Field

Research Article Peristaltic Flow of a Magneto-Micropolar Fluid: Effect of Induced Magnetic Field Journal of Applied Mathematics Volume 28, Article ID 57825, 23 pages doi:55/28/57825 Research Article Peristaltic Flow of a Magneto-Micropolar Fluid: Effect of Induced Magnetic Field Kh. S. Mekheimer Department

More information

Applied Mathematics and Computation

Applied Mathematics and Computation Applied Mathematics and Computation 244 (214) 761 771 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Effect of coupled radial

More information

Heat and Mass Transfer Effects of Peristaltic Transport of a Nano Fluid in Peripheral layer

Heat and Mass Transfer Effects of Peristaltic Transport of a Nano Fluid in Peripheral layer Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 2, Issue 2 (December 207, pp. 968-987 Applications and Applied Mathematics: An International Journal (AAM Heat and Mass Transfer

More information

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Commun. Theor. Phys. 57 (2012) 133 140 Vol. 57 No. 1 January 15 2012 Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Noreen Sher Akbar 1

More information

A. Afsar Khan 1, A. Sohail 2, S. Rashid 1, M. Mehdi Rashidi 3,4 and N. Alam Khan 5

A. Afsar Khan 1, A. Sohail 2, S. Rashid 1, M. Mehdi Rashidi 3,4 and N. Alam Khan 5 Journal of Applied Fluid Mechanics Vol. 9 No. 3 pp. 3-393 6. Available online at www.jafmonline.net ISSN 735-357 EISSN 735-3645. DOI:.69/acadpub.jafm.6..447 Effects of Slip Condition Variable Viscosity

More information

PERISTALTIC MOTION OF AN ELLIS FLUID MODEL IN A VERTICAL UNIFORM TUBE WITH WALL PROPERTIES

PERISTALTIC MOTION OF AN ELLIS FLUID MODEL IN A VERTICAL UNIFORM TUBE WITH WALL PROPERTIES International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue, January 08, pp. 847 856, Article ID: IJCIET_09_0_08 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July ISSN International Journal of Scientific & Engineering Research Volume Issue 7 Jul- 69 ISSN 9-8 Peristaltic transport of MHD Carreau fluid under the effect of partial slip with different wave forms M Sukumar*

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

Nabil T. M. EL-DABE, Galal M. MOATIMID, Mona A. A. MOHAMED, Yasmeen M. MOHAMED *

Nabil T. M. EL-DABE, Galal M. MOATIMID, Mona A. A. MOHAMED, Yasmeen M. MOHAMED * EFFECTS OF HALLCURRENTS WITH HEAT AND MASS TRANSFER ON THE PERISTALTIC TRANSPORT OF A CASSON FLUID THROUGH A POROUS MEDIUM IN A VERTICAL CIRCULAR CYLINDER Nabil T. M. EL-DABE, Galal M. MOATIMID, Mona A.

More information

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1) Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University,

More information

Analytical Solutions of Unsteady Blood Flow of Jeffery Fluid Through Stenosed Arteries with Permeable Walls

Analytical Solutions of Unsteady Blood Flow of Jeffery Fluid Through Stenosed Arteries with Permeable Walls Analytical Solutions of Unsteady Blood Flow of Jeffery Fluid Through Stenosed Arteries with Permeable Walls Rahmat Ellahi a,b, Shafiq-Ur-Rahman b, and Sohail Nadeem c a Department of Mechanical Engineering,

More information

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 8 No. 1 Sep. 2014, pp. 394-407 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Biomagnetic

More information

Peristaltic Pumping of a Non-Newtonian Fluid

Peristaltic Pumping of a Non-Newtonian Fluid Available at ttp://pvamu.edu/aam Appl. Appl. Mat. ISSN: 93-9466 Vol. 3, Issue (June 8), pp. 37 48 (Previously, Vol. 3, No. ) Applications and Applied Matematics: An International Journal (AAM) Peristaltic

More information

Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through a porous medium

Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through a porous medium Akram et al., Cogent Engineering 04, : 980770 http://dx.doi.org/0.080/3396.04.980770 BIOMEDICAL ENGINEERING RESEARCH ARTICLE Peristaltic transport of a Maxwell fluid in a porous asymmetric channel through

More information

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 088 Volume 4, Issue 6, June 05 67 Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

A Computational study of Bingham plastic flow of Blood through an artery by multiple stenoses and post dilatation

A Computational study of Bingham plastic flow of Blood through an artery by multiple stenoses and post dilatation Available online at www.pelagiaresearchlibrary.com Advances in Applied Science esearch, 22, (5):285-29 ISSN: 976-86 CODEN (USA): AASFC A Computational study of Bingham plastic flow of Blood through an

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Magnetic Field and Chemical Reaction Effects on Convective Flow of

Magnetic Field and Chemical Reaction Effects on Convective Flow of Communications in Applied Sciences ISSN 221-7372 Volume 1, Number 1, 213, 161-187 Magnetic Field and Chemical Reaction Effects on Convective Flow of Dust Viscous Fluid P. Mohan Krishna 1, Dr.V.Sugunamma

More information

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 04 ISSN 3-707 MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA Samuel Olumide ADESANYA, Oluwole Daniel MAKINDE This paper deals

More information

MHD Free convection flow of couple stress fluid in a vertical porous layer

MHD Free convection flow of couple stress fluid in a vertical porous layer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, (6:5- ISSN: 976-86 CODEN (USA: AASRFC MHD Free convection flow of couple stress fluid in a vertical porous layer

More information

Peristaltic transport of two-layered blood flow using Herschel Bulkley Model

Peristaltic transport of two-layered blood flow using Herschel Bulkley Model BIOMEDICAL ENGINEERING RESEARCH ARTICLE Peristaltic transport of two-layered blood flow using Herschel Bulkley Model C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Divya and Hanumesh Vaidya Cogent

More information

Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects

Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects Journal of Applied Science and Engineering, Vol. 15, No. 4, pp. 415422 (2012 415 Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects D. Srinivasacharya*

More information

CHAPTER 2 THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS

CHAPTER 2 THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS CHAPTER THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS MEDIUM. Introduction The theory of micropolar fluids introduced by Eringen [34,35], deals with a class

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

The Peristaltic Motion inside a Vertical Cylindrical Tube Surrounded Vapour Bubble with Two-Phase Density Flow

The Peristaltic Motion inside a Vertical Cylindrical Tube Surrounded Vapour Bubble with Two-Phase Density Flow Advances in Bioscience and Bioengineering 2017; 5(4): 71-77 http://www.sciencepublishinggroup.com/j/abb doi: 10.11648/j.abb.20170504.14 ISSN: 2330-4154 (Print); ISSN: 2330-4162 (Online) The Peristaltic

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (4):2169-2178 ISSN: 0976-8610 CODEN (USA): AASRFC Hydromagnetic oscillatory flow through a porous medium

More information

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature Journal of Applied Science and Engineering, Vol. 20, No. 3, pp. 277 282 (2017) DOI: 10.6180/jase.2017.20.3.01 Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature U S Rajput*

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information

Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow

Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow ISSN: 319-8753 (An ISO 397: 7 Certified Organization) Vol. 3, Issue 8, August 14 Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow B.R Sharma 1, Hemanta

More information

A NUMERICAL STUDY OF COUPLED NON-LINEAR EQUATIONS OF THERMO-VISCOUS FLUID FLOW IN CYLINDRICAL GEOMETRY

A NUMERICAL STUDY OF COUPLED NON-LINEAR EQUATIONS OF THERMO-VISCOUS FLUID FLOW IN CYLINDRICAL GEOMETRY Int. J. of Applied Mechanics and Engineering, 7, vol., No., pp.9-979 DOI:./ijame-7- A NUMERICAL STUDY OF COUPLED NON-LINEAR EQUATIONS OF THERMO-VISCOUS FLUID FLOW IN CYLINDRICAL GEOMETRY N. POTHANNA and

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India.

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India. Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5965-5975 Research India Publications http://www.ripublication.com Effect of partial slip and convective boundary

More information

Flow of a Newtonian fluid in a non-uniform wavy and permeable tube

Flow of a Newtonian fluid in a non-uniform wavy and permeable tube NTMSCI 5, No. 4, 12-23 (2017) 12 New Trends in Mathematical Sciences http://.doi.org/10.20852/ntmsci.2017.210 Flow of a Newtonian fluid in a non-uniform wavy and permeable tube Tesfahun Berhane Bahir Dar

More information