Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Size: px
Start display at page:

Download "Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field"

Transcription

1 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field Rakesh Kumar Department of Mathematics, Central University of Himachal Pradesh, India ABSTRACT An analysis is carried out to study the effects of variable magnetic field on the flow field and heat transfer over an exponentially shrinking sheet. Using the exponential similarity transformations, the governing equations are transformed into self similar nonlinear ordinary differential equations. The transformed differential equations are solved using a power series expansion to obtain a closed form solution. The numerical results are depicted through graphs to illustrate the influence of pertinent parameters of the problem. It is found that suction parameter and magnetic field have substantial effect on velocity and temperature profiles. Keywords: Exponentially shrinking sheet, variable magnetic field, Heat transfer. I. INTRODUCTION The study of boundary layer flow and heat transfer over a stretching/shrinking surface has attracted the attention of several researchers due to its various applications in the fields of technology and industry. The extraction and manufacturing of polymer sheets, hot rolling and glass-fiber production, paper production, cooling of metallic sheets or electronic chips, processing of magnetic materials, MHD electrical power generation and purification of crude oil are some examples for the application of these flows (Fang et al.[]). In shrinking sheet problems, the surface is stretched towards a slot, causing a velocity away from the sheet. The physical grounds reveals that vorticity flow over the shrinking sheet does not remain confined and the flow is unlikely to exist (ok et al.[]). Mahapatra and Nandy [3] in their stability analysis found that an adequate suction or stagnation flow is required to confine the vorticity with in the boundary layer. Wang [4] during his investigation of liquid film behaviour on an unsteady stretching sheet observed this unusual flow due to shrinking surface. Miklavcic and Wang [5] obtained the existence and uniqueness conditions for the similarity solution of viscous fluid over shrinking surfaces and showed that the behaviour of fluid depends on the externally imposed mass suction. A new of Blasius solution over shrinking sheet was reported by Fang et al. [6]. Hayat et al. [7] analyzed the three dimensional rotating flow due to a shrinking sheet. Fang [8] also presented a solution for the boundary layer flow over a shrinking sheet with power law velocity. Fang and Zhang [9] obtained an analytical solution for the heat transfer over a shrinking sheet. VanGorder and Vajravelu [0] discussed about the multiple solutions for the MHD flow over a stretching or shrinking sheet. The dual and triple solutions for MHD slip flow of non-newtonian fluid over a shrinking surface were obtained by Turkyilmazoglu []. Further, the dual solutions for unsteady stagnation flow over a shrinking sheet were investigated by Bhattacharyya []. In the above research paper, the authors consider either linear or non-linear sheets, and there is lesser number of research papers available in literature for flows over exponentially shrinking surfaces. Moreover, the dynamics of fluid flows over shrinking surfaces is still unknown. Magyari and Keller [3] are assumed to be the first one to study the boundary flow over an exponentially stretching sheet. In this sequence, the other paper on the boundary layer flow and heat transfer over an exponentially shrinking sheet was reported by Bhattacharyya [4]. Bachok et al. [5] considers an exponentially stretching/shrinking sheet in nanofluids to study the stagnation point flow and corresponding heat transfer. The stagnation point flow and heat transfer over an exponentially shrinking sheet was investigated by Bhattacharyya and Vajravelu [6] and was extended by Rohni et al. [7] by considering the effects of free convection and mass suction. Bhattacharyya et al. [8] in his paper found that a strong magnetic field has predominant effect on the flow field and due to this; the similarity solution of the flow over a shrinking sheet is always unique. In some of the above said papers the uniform strength of magnetic field was assumed. But in general, its non-linear characteristics can be utilized to predict and control the behaviour of fluid flows over shrinking surfaces. Motivated by this, the objective of the present study is to analyze the effect of variable magnetic field on the flow and heat transfer of a viscous fluid over an exponentially shrinking sheet.

2 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June II. MATHEMATICA FORMUATION A steady two-dimensional boundary layer flow of a viscous, incompressible, electrically conducting fluid is considered over an exponentially shrinking sheet. A magnetic field of the following exponential type B 0, By,0 where By B0 expx / and B 0 is a constant is applied normal to the plane of the sheet. The magnetic Reynolds number is assumed to be small to neglect the induced magnetic field. The governing boundary layer equations of the present problem are Equation of continuity: u u 0 () x y Equation of momentum: u u u By u v u () x y y Equation of energy: T T k T u v (3) x y C p y The boundary conditions are given by u U w x, v v w, T T w x T T0 exp x / at y 0 (4) u 0, T 0 as y The shrinking sheet velocity U w is given by U wx c exp x /, where c 0 is shrinking constant. Here,,, k, C p, T 0, T w and T are the electrical conductivity, kinematic viscosity, density, thermal conductivity, specific heat at constant pressure, characteristic length of the sheet, mean temperature, temperature of the sheet and ambient temperature of the fluid respectively. We introduce the following similarity variables c f expx /, T T Tw T, (5) where is the similarity variable defined by c y expx / (6) and is the stream function which is defined in the classical form as following expressions as u cexp x / f ' and v expx / f f ' u and y c (7) where prime denotes differentiation with respect to. This suggests that, we can assume c vwx expx / S, (8) where S 0 is the dimensionless suction parameter. Using equation (5) to (7) in equations () and (3), we obtain the following ordinary differential equations f ff f Mf 0 (9) Pr f f 0 (0) The boundary conditions transform to v.thus we have the x

3 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June f f S, f, at 0 0, 0 as 0 The physical parameters of interest in the present problem, the skin friction coefficient C f and the Nusselt number Nu, are defined by u C f () U y w y0 T Nu (3) Tw T y y0 Substituting (5) to (7) into above two equations, we get the following expressions of skin friction and Nusselt number: C f Re expx / f '' 0 (4) / Nu ' 0 / Re exp x (5) B Here M 0 C p c (Hartmann number), Pr (Prandtl number) and Re (Reynolds number) are the c k dimensionless parameters introduced in the above equations. The differential equations (9) and (0) under the boundary conditions () are solved using the series expansion method as suggested by Singh and Dikshit [9]. et us define S, f S F and (6) The equations (9) to () becomes F FF F M F 0 (7) G Pr FG FG (8) F F 0 S, F, G at 0 0, G 0 as 0 where prime denotes the differentiation with respect to. For large suction, S assumes large positive values so that is small. Therefore, F and G can be expanded in terms of small perturbation quantity as F F 3 0 F F F3... (0) G G 3 0 G G G3... () Substituting (0) and () into (7),(8) and (9), we obtain the following sets of ordinary differential equations along with the corresponding boundary conditions : Zeroth Order O(): F 0 F0 F0 F 0 0 () G 0 PrF0G0 F0 G0 0 (3) F0 0, F0 0 0, F0 0 G00, G0 0 (4) First-OrderO : F F0 F F F0 M F0 0 (5) () (9)

4 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June PrF G0 F0G F0 G F G , F 0, F 0 0 0, G 0 G (6) F G (7) Second-OrderO : F F F0 F0 F F F 4F0 F F M F 0 (8) G PrF0G F G FG0 F0 G F G F G0 0 (9) F 0 0, F 0 0, F 0 G0 0, G 0 (30) Third-OrderO 3 : F 3 F0 F3 F F F F F3 F0 4F F M F 0 (3) G 3 PrF0G3 F G FG F3G0 F0 G3 F G F G F3 G0 0 (3) F3 0 0, F3 0, F3 0 G30 0, G3 0 (33) The obtained solutions of the above equations under the corresponding boundary conditions are: F 0 (34) F exp (35) 5 8M 3 4M F exp exp 4 4 (36) M exp F exp 4 exp exp exp (37) 6 4 exp 7 exp G 0 exp Pr (38) Pr Pr G exp exp Pr Pr exp Pr (39) Pr G exp Pr 9 exp Pr 0 exp Pr exp (40) Pr The velocity and temperature profiles can be calculated from the following expressions f F F F3, (4) G 0 G G. (4) In order to obtain more accurate results for velocity and temperature profiles, we have evaluated the expression up to the third order. III. RESUTS AND DISCUSSION The numerical values of the similarity solutions obtained in the previous section are computed to demonstrate the effects of suction parameter and magnetic field on the velocity, temperature profiles, skin-friction coefficient and Nusselt number. Since the momentum equation is independent from the Prandtl number, therefore it has no effect on velocity profiles. The

5 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June 05 6 influence of Prandtl number on the temperature profiles and heat flux are also targeted. The pertinent parameters of the problem are given arbitrary values. The Figures and present the influence of suction parameter on velocity profiles. It is found that the velocity is increased with the increasing suction parameter. Further, it is clear from these Figures that boundary layer thickness decreases with the increasing suction when for S. 0(app.), whereas it is increased when S. 0. Thus, the critical suction parameter determines the transition in boundary layer thickness. The effect of magnetic field on velocity profiles with certain combination of suction parameter has been depicted by the Figures 3, 4 and 5. The Figures 3 and 4 shows that the velocity profiles are enhanced with the increasing strength of the magnetic field. These Figures also reveal that the boundary layer thickness becomes thinner with the increasing magnetic field for S 4 and M 4. 8(app.), and becomes thicker for S 4 and M 4. 8(app.). However, the Figure 5 is illustrating the opposite behaviour as the velocity profiles are reduced with the increase of magnetic field strength when S. Hence, the stronger magnetic field along with certain range of suction parameter can be utilized in removing the uncertainty in the flow dynamics due to its resisting nature, that is, it makes the similarity solution unique. Figure : Velocity profiles for suction parameter with M Figure : Velocity profiles for suction parameter with M The Figures 6 and 7 are plotted to ensure the smallness of skin-friction coefficients with respect to the suction parameter. The Figure 6 demonstrates the decreasing nature of skin-friction when the strength of magnetic field is enhanced up to M.6(app.). Whereas the Figure 7 is depicting the reverse process, that is, the skin-friction increases for M.76 (app.). Also at certain distance from the sheet, the behaviour is again noted to be reversed. Thus, the critical magnetic parameter is also helpful in diminishing the skin-friction coefficient.

6 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June 05 6 Figure 3: Velocity profiles for Hartmann number with S 4 Figure 4: Velocity profiles for Hartmann number with S 4 Figure 5: Velocity profiles for Hartmann number with S Figure 6: Skin friction coefficient

7 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June Figure 7: Skin friction coefficient Figure 8: Temperature profiles with M and Pr 0. 7 The Figures 8 and 9 cover the effects of suction parameter and Prandtl number S on temperature profiles respectively. In both the Figures, the temperature profiles are found to be reduced with their increasing strength. Also the thermal boundary layer thickness is decreased with the increasing suction and Prandtl number. In general, the thermal boundary layer thickness becomes thinner with the increase in Prandtl number. This is due to the physical fact that the increasing Prandtl number decreases the thermal conductivity of the fluid, hence causes a reduction in the thermal boundary layer thickness. Figure 9: Temperature profiles with M and S 3

8 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June Figure 0: Rate of heat transfer with Pr 0. 7 The rate of heat transfer with the effect of magnetic field and Prandtl number with respect to suction parameter is shown in Figures 0 and. The Figure 0 clearly shows that Nusselt number increases for magnetic of strength up to M , thereafter it decreases. The Figure shows that Nusselt number increases with the increase in Prandtl number. Figure : Rate of heat transfer with M IV. CONCUSION The effects of suction parameter, magnetic field, and Prandtl number on the boundary layer flow and heat transfer over shrinking sheet has been investigated. The closed form similarity solutions have obtained by perturbation technique. The conclusions of the study are: The velocity profiles are increased for all range of suction parameters, but the boundary layer thickness decreases when the suction is greater than the critical suction parameter, and it is reversed for suction less the critical value. The magnetic field is found to have both the increasing and decreasing effects on the velocity profiles with certain combination of suction parameter. The temperature profiles are reduced with the suction and Prandtl number. The rate of heat transfer is enhanced for magnetic fields of weaker strength, and reduced for strong magnetic field. However, the opposite phenomenon is observed for skin-friction coefficient. V. APPENDIX Pr PrPr Pr, 5 8M 3 4M, 3, 4, Pr Pr 4 5 M, 6 Pr Pr 4, 7 Pr Pr 4 Pr 9 Pr 3 Pr, 7 0, 4 3Pr, Pr Pr, 8 5

9 International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN Volume 4, Issue 6, June Pr 6 Pr 3 Pr8,, Pr Pr Pr, M 5, 4 M 3 M, 5 M 4 M, 6 5, 6 7, , , , 5 7, 4 6. REFERENCES [] Fang, T.; Yao, S.; Pop, I., (0). Flow and Heat transfer over a generalized stretching/shrinking wall problemexact solution of the Navier-Stokes equations. Int. J. of Nonlinear Mech., 46, 6-7. [] ok, Y. Y.; Ishak, A.; Pop, I., (0). Stagnation point flow with suction towards a shrinking sheet. Sains Malays., 40, [3] Mahapatra, T. R.; Nandy, S. K., (03). Stability of dual solutions in stagnation point flow and heat transfer over a porous shrinking sheet with thermal radiation. Meccanica, 48, 3-3. [4] Wang, C. Y., (990). iquid film on an unsteady stretching sheet. Q. Appl. Math., 48, [5] Miklavcic, M.; Wang, C. Y.; (006). Viscous flow due to a shrinking sheet. Q. Appl. Math., 64, [6] Fang, T.; iang, W.; ee, C. F., (008). A new solution branch for the Blasius equation-a shrinking sheet problem. Computat, Math. Appl., 56, [7] Hayat, T.; Abbas, Z.; Javed, T.; Sajad, M., (009). Three dimensional rotating flow induced by a shrinking sheet for suction. Chaos Solitons fractals, 39, [8] Fang, T., (008). Boundary layer flow over a shrinking sheet with power law velocity. Int. J. Heat Mass Transfer, 5, [9] Fang, T.; Zhang, J., (00). Heat transfer over shrinking sheet-an analytical solution. Acta Mechanica, 09, [0] VanGorder, R. A.; Vajravelu, K., (0). Multiple solutions for hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet. Quart. Appl. Math., 69, [] Turkyilmazoglu, M., (0). Dual and triple solution for MHD slip flow on non-newtonian fluid over a shrinking surface. Computers and Fluids, 70, [] Bhattacharyya, K., (0). Dual solutions in unsteady stagnation point flow over a shrinking sheet. Chin. Phy. ett., 8(8), [3] Magyari, E.; keller, B., (999). Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D. Appl. Phys., 3, [4] Bhattacharyya, K., (0). Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chin. Phy. ett., 8(7), [5] Bachok, N.; Ishak, A.; Pop, I., (0). Boundary layer stagnation point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. Int. J. Heat Mass Trans., 55, 8-8. [6] Bhattacharyya, K.; Vajravelu, K., (0). Stagnation point flow and heat transfer over an exponentially sheet. Comm. Nonlin. Sci. Numer. Simul., 7, [7] Rohni, A. M.; Ahmed, S.; Pop, I., (04). Flow and heat transfer at a stagnation-point over an exponentially shrinking sheet with suction. Int. J. of Thermal Sci., 75, [8] Bhattacharyya, K.; Hayat, T.; Alsaedi, A., (03). Analytic solution for Magnetohydrodynamic boundary layer flow of casson fluid over a stretching/shrinking sheet with mass transfer. Chin. Phys. B., (), [9] Singh, A. K.; Dikshit, C. K., (988). Hydromagnetic flow past a continuously moving semi-infinite plate for large suction. Astrophysics and Space Science, 48,

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet

Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet American Journal of Fluid Dynamics 013, 3(4): 87-95 DOI: 10.593/j.ajfd.0130304.01 Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet

Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet Engineering Volume 216, Article ID 6722, 8 pages http://dx.doi.org/1.11/216/6722 Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface Journal of Applied Fluid Mechanics, Vol. 8, No. 3, pp. 613-61, 015. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.38.636 Nonlinear Radiation Effects

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information

Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid (GNF): Application to optimal energy

Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid (GNF): Application to optimal energy Pramana J. Phys. (2018) 90:64 https://doi.org/10.1007/s12043-018-1557-6 Indian Academy of Sciences Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

MHD Boundary Layer Flow of Casson Fluid Over a Stretching/Shrinking Sheet Through Porous Medium

MHD Boundary Layer Flow of Casson Fluid Over a Stretching/Shrinking Sheet Through Porous Medium ISSN 2224-7467 (Paper) ISSN 2225-93 (Online) Vol.47, 27 MHD Boundary Layer Flow of Casson Fluid Over a Stretching/Shrinking Sheet Through Porous Medium * M. Eswara Rao S. Sreenadh Department of Mathematics,

More information

Department of mathematics, Osmania University, Hyderabad, Telangana , India.

Department of mathematics, Osmania University, Hyderabad, Telangana , India. ISSN(online)- 2378-74X Volume 2, 26 5 Pages Research Article Introduction Open Access MHD Flow of Casson Fluid With Slip Effects over an Exponentially Porous Stretching Sheet in Presence of Thermal Radiation,

More information

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet International Journal of Fluid Mechanics & Thermal Sciences 2017; 3(3): 25-31 http://www.sciencepublishinggroup.com/j/ijfmts doi: 10.11648/j.ijfmts.20170303.11 ISSN: 2469-8105 (Print); ISSN: 2469-8113

More information

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 2 (27), pp. 647-66 Research India Publications http://www.ripublication.com Effect of Magnetic Field on Steady Boundary Layer

More information

Numerical Analysis of Magneto-Hydrodynamic Flow of Non-Newtonian Fluid Past Over a Sharp Wedge in Presence of Thermal Boundary Layer

Numerical Analysis of Magneto-Hydrodynamic Flow of Non-Newtonian Fluid Past Over a Sharp Wedge in Presence of Thermal Boundary Layer Numerical Analysis of Magneto-Hydrodynamic Flow of Non-Newtonian Fluid Past Over a Sharp Wedge in Presence of Thermal Boundary Layer Ramesh Yadav *, Santosh Kumar Dixit # and Navneet Kumar Singh #3 * Assistant

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium

MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium Global Journal of Pure and Applied Mathematics. ISSN 973-1768 Volume 13, Number 6 (17), pp. 33-56 Research India Publications http://www.ripublication.com MHD Stagnation Point Flow and Heat Transfer of

More information

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature 37 Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature M. Y. Akl Department of Basic Science, Faculty of Engineering (Shopra Branch),

More information

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X. Volume 2, Issue 4 Ver. III (Jul. - Aug.26), PP 66-77 www.iosrjournals.org Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer

More information

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface International Journal of Advances in Applied Mathematics and Mechanics Volume, Issue : (3) pp. 39-5 Available online at www.ijaamm.com IJAAMM ISSN: 347-59 A new approach for local similarity solutions

More information

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 1, DECEMBER 014 ISSN 77-8616 Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective

More information

Influence of non-uniform heat source/sink on stagnation point flow of a MHD Casson nanofluid flow over an exponentially stretching surface

Influence of non-uniform heat source/sink on stagnation point flow of a MHD Casson nanofluid flow over an exponentially stretching surface Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number (27), pp. 79-733 Research India Publications http://www.ripublication.com Influence of non-uniform heat source/sink on stagnation

More information

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Mahantesh.M.Nandeppanavar *,1 Shilpa.J.M 1,2 1. Department of PG and UG studies and research

More information

MHD Stagnation Point Flow and Heat Transfer Due to Nano Fluid over Exponential Radiating Stretching Sheet

MHD Stagnation Point Flow and Heat Transfer Due to Nano Fluid over Exponential Radiating Stretching Sheet Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 6 (7), pp. 593-6 Research India Publications http://www.ripublication.com MHD Stagnation Point Flow and Heat Transfer Due to

More information

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation Applied and Computational Mathematics 014; 3(5): 191-196 Published online September 0, 014 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0140305.11 ISSN: 38-5605 (Print); ISSN:38-5613

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 119-18 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE

More information

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK Journal of Rajasthan Academy of Physical Sciences ISSN : 097-6306; URL : http:raops.org.in Vol.16, No.1&, March-June, 017, 1-39 UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE

More information

EffectofVariableThermalConductivityHeatSourceSinkNearaStagnationPointonaLinearlyStretchingSheetusingHPM

EffectofVariableThermalConductivityHeatSourceSinkNearaStagnationPointonaLinearlyStretchingSheetusingHPM Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume Issue Version. Year Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information

V. SINGH and *Shweta AGARWAL

V. SINGH and *Shweta AGARWAL NUMERICAL SOLUTION OF MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM V. SINGH and *Shweta AGARWAL Department of

More information

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX American Journal of Applied Sciences 11 (9): 148-1485, 14 ISSN: 1546-939 14 P. Geetha et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3. license doi:1.3844/ajassp.14.148.1485

More information

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface Gen. Math. Notes, Vol. 4, No., October 014, pp. 97-10 ISSN 19-7184; Copyright ICSRS Publication, 014 www.i-csrs.org Available free online at http://www.geman.in Similarity Flow Solution of MHD Boundary

More information

Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink

Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink Sekhar Kuppala R Viswanatha Reddy G Sri Venkateswara University,

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014 HOMOTOPY ANALYSIS TO THERMAL RADIATION EFFECTS ON HEAT TRANSFER OF WALTERS LIQUID-B FLOW OVER A STRETCHING SHEET FOR LARGE PRANDTL NUMBERS HYMAVATHI TALLA* P.VIJAY KUMAR** V.MALLIPRIYA*** *Dept. of Mathematics,

More information

Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink

Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink International Journal of Applied Science and Engineering 2013. 11, 3: 331-341 Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink J.

More information

Three-dimensional MHD Mixed Convection Casson Fluid Flow over an Exponential Stretching Sheet with the Effect of Heat Generation

Three-dimensional MHD Mixed Convection Casson Fluid Flow over an Exponential Stretching Sheet with the Effect of Heat Generation British Journal of Mathematics & Computer Science 19(6): 1-8, 2016; Article no.bjmcs.29454 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Three-dimensional MHD Mixed Convection Casson

More information

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1) Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University,

More information

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field Appl. Math. Mech. -Engl. Ed., 32(4), 409 418 (2011) DOI 10.1007/s10483-011-1426-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) MHD

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Department of Mathematics, The University of Burdwan, Burdwan , West Bengal, India

Department of Mathematics, The University of Burdwan, Burdwan , West Bengal, India Journal of Bangladesh Academy of Sciences, Vol. 35, No. 1, 43-50, 011 APPLICATION OF SCALING GROUP OF TRANSFORMATIONS TO STEADY BOUNDARY LAYER FLOW OF NEWTONIAN FLUID OVER A STRETCHING SHEET IN PRESENCE

More information

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (4):2169-2178 ISSN: 0976-8610 CODEN (USA): AASRFC Hydromagnetic oscillatory flow through a porous medium

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 117 No. 11 2017, 317-325 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu MHD Flow of a Nanofluid and Heat transfer over an Exponentially Shrinking

More information

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium.

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium. IOSR Journal of Engineering (IOSRJEN) e-issn: 50-301, p-issn: 78-8719, Volume, Issue 9 (September 01), PP 50-59 Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In

More information

Available online at (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012)

Available online at  (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012) 10809 P. Sreenivasulu et al./ Elixir Appl. Math. 51 (01) 10809-10816 Available online at www.elixirpublishers.com (Elixir International Journal) Applied Mathematics Elixir Appl. Math. 51 (01) 10809-10816

More information

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate Daffodil International University Institutional Repository DIU Journal of Science and Technology Volume 1, Issue 1, January 17 17-1 Finite Difference Solution of Unsteady Free Convection Heat and Mass

More information

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect Finite difference solution of the mixed convection flo of MHD micropolar fluid past a moving surface ith radiation effect LOKENDRA KUMAR, G. SWAPNA, BANI SINGH Department of Mathematics Jaypee Institute

More information

The Chemical Diffusion and Bouyancy Effects on MHD Flow of Casson Fluids Past a Stretching Inclined Plate with Non-Uniform Heat Source

The Chemical Diffusion and Bouyancy Effects on MHD Flow of Casson Fluids Past a Stretching Inclined Plate with Non-Uniform Heat Source J. Appl. Environ. Biol. Sci., 7(6)135-14, 017 017, TextRoad Publication ISSN: 090-474 Journal of Applied Environmental and Biological Sciences www.textroad.com The Chemical Diffusion and Bouyancy Effects

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 5(7): 8-87 Journal Scholarlink of Emerging Research Trends Institute in Engineering Journals, 4 and (ISSN: Applied 4-76) Sciences

More information

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Dulal Pal 1 Department of Mathematics, Visva-Bharati University, Institute

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation DOI 10.1186/s40064-016-2655-x RESEARCH Open Access Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation Shimaa E. Waheed 1,2* *Correspondence:

More information

MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING

MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 371-382 371 MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING by Tasawar HAYAT a,b, Zakir HUSSAIN a*, Muhammad

More information

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

More information

MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM

MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM S599 MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM by Vijendra SINGH a and Shweta AGARWAL b * a Department of Applied

More information

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface Applied Mathematics Volume 01, Article ID 13185, 9 pages doi:10.1155/01/13185 Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface Fatheah A. Hendi 1 and Majid Hussain 1 Department

More information

Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream Applied Mathematics Volume 2012, Article ID 372623, 10 pages doi:10.1155/2012/372623 Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

Corresponding Author: Kandie K.Joseph. DOI: / Page

Corresponding Author: Kandie K.Joseph. DOI: / Page IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. 1 (Sep. - Oct. 2017), PP 37-47 www.iosrjournals.org Solution of the Non-Linear Third Order Partial Differential

More information

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 235242 (2010) 235 Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical

More information

Mixed convection of Non-Newtonian fluid flow and heat transfer over a Non-linearly stretching surface

Mixed convection of Non-Newtonian fluid flow and heat transfer over a Non-linearly stretching surface Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 28 35 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Mixed convection of Non-Newtonian

More information

MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION

MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION THERMAL SCIENCE: Year 0, Vol. 7, No., pp. 865-875 865 MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION by Tasawar HAYAT a, b, Zahid

More information

MHD flow and heat transfer due to a linearly stretching sheet. with induced magnetic field: Exact solution. Tarek M. A.

MHD flow and heat transfer due to a linearly stretching sheet. with induced magnetic field: Exact solution. Tarek M. A. MHD flow and heat transfer due to a linearly stretching sheet with induced magnetic field: Exact solution Tarek M. A. El-Mistikawy Dept. Eng. Math. & Phys., Faculty of Engineering, Cairo University, Giza

More information

MHD flow and heat transfer near the stagnation point of a micropolar fluid over a stretching surface with heat generation/absorption

MHD flow and heat transfer near the stagnation point of a micropolar fluid over a stretching surface with heat generation/absorption Indian Journal of Pure & Applied Physics Vol. 5, October 3, pp. 683-689 MHD flo and heat transfer near the stagnation point of a micropolar fluid over a stretching surface ith heat generation/absorption

More information

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media Nonlinear Analysis: Modelling and Control, 2010, Vol. 15, No. 3, 257 270 Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous

More information

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Srinivas Maripala 1 and Kishan Naikoti 2 1Department of mathematics, Sreenidhi Institute

More information

ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE

ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE 5 Kragujevac J. Sci. 3 (29) 5-9. UDC 532.5:536.24 ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE Hazem A.

More information

MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS

MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS THERMAL SCIENCE, Year 016, Vol. 0, No. 6, pp. 1835-1845 1835 MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS by Tasawar HAYAT a,b, Maria IMTIAZ

More information

Porous Plate In The Presence of Magnetic Field

Porous Plate In The Presence of Magnetic Field ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Impact of Suction on A Stagnation Point Flow of Copper Nanofluids Over A Vertical Porous Plate In The

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

MHD Flow of Micropolar Fluid due to a Curved Stretching Sheet with Thermal Radiation

MHD Flow of Micropolar Fluid due to a Curved Stretching Sheet with Thermal Radiation Journal of Applied Fluid Mechanics, Vol. 9, No. 1, pp. 131-138, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. MHD Flow of Micropolar Fluid due to a Curved Stretching Sheet

More information

The three-dimensional flow of a non-newtonian fluid over a stretching flat surface through a porous medium with surface convective conditions

The three-dimensional flow of a non-newtonian fluid over a stretching flat surface through a porous medium with surface convective conditions Global Journal of Pure and Applied Mathematics. ISSN 973-1768 Volume 13, Number 6 (217), pp. 2193-2211 Research India Publications http://www.ripublication.com The three-dimensional flow of a non-newtonian

More information

Transient free convective flow of a micropolar fluid between two vertical walls

Transient free convective flow of a micropolar fluid between two vertical walls Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 5, No. 2, 2013 Article ID IJIM-00311, 9 pages Research Article Transient free convective flow of a micropolar

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects

Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 243 252 (2010) 243 Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects G. S. Seth, Raj Nandkeolyar*

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

Research Article Lie Group Analysis of Unsteady Flow and Heat Transfer over a Porous Surface for a Viscous Fluid

Research Article Lie Group Analysis of Unsteady Flow and Heat Transfer over a Porous Surface for a Viscous Fluid Journal of Applied Mathematics Volume 202, Article ID 675287, 7 pages doi:0.55/202/675287 Research Article Lie Group Analysis of Unsteady Flow and Heat Transfer over a Porous Surface for a Viscous Fluid

More information

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2016, No. 5, pp. 875-887 875 UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM by Fazal GHANI a, Taza

More information

Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation

Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation Appl. Math. Mech. -Engl. Ed., 356, 717 728 2014 DOI 10.1007/s10483-014-1824-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2014 Applied Mathematics and Mechanics English Edition Flow of

More information

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article Journal of Engineering Science and Technology Review 2 (1) (2009) 118-122 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Thin film flow of non-newtonian fluids on a

More information

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago Unsteady MHD Free Convection Couette Flow Through a Vertical Channel in the Presence of Thermal Radiation With Viscous and Joule Dissipation Effects Using Galerkin's Finite Element Method Victor M. Job

More information

Viscous Dissipation Effect on Steady free Convection and Mass Transfer Flow past a Semi-Infinite Flat Plate

Viscous Dissipation Effect on Steady free Convection and Mass Transfer Flow past a Semi-Infinite Flat Plate Journal of Computer Science 7 (7): 3-8, 0 ISSN 549-3636 0 Science Publications Viscous Dissipation Effect on Steady free Convection and Mass Transfer Flo past a Semi-Infinite Flat Plate Palanisamy Geetha

More information

Department of Mathematic, Ganjdundwara (P.G.) College, Ganjdundwara (Kashiram Nagar) (U.P.)

Department of Mathematic, Ganjdundwara (P.G.) College, Ganjdundwara (Kashiram Nagar) (U.P.) International Journal of Stability and Fluid Mechanics July- December 1, Volume 1, No., pp. 319-33 ISSN(Print)-975-8399, (Online) -31-475X AACS. All rights reserved IJS M Effect Of Hall Current On Mhd

More information

Axisymmetric compressible boundary layer on a long thin moving cylinder

Axisymmetric compressible boundary layer on a long thin moving cylinder Acta Mechanica 138,255 260 (1999) ACTA MECHANICA 9 Springer-Verlag 1999 Note Axisymmetric compressible boundary layer on a long thin moving cylinder T.-Y. Na, Dearborn, Michigan, and I. Pop, Cluj, Romania

More information

UNSTEADY MHD FORCED CONVECTION FLOW AND MASS TRANSFER ALONG A VERTICAL STRETCHING SHEET WITH HEAT SOURCE / SINK AND VARIABLE FLUID PROPERTIES

UNSTEADY MHD FORCED CONVECTION FLOW AND MASS TRANSFER ALONG A VERTICAL STRETCHING SHEET WITH HEAT SOURCE / SINK AND VARIABLE FLUID PROPERTIES International Research Journal of Engineering and echnology (IRJE) e-issn: 395-56 Volume: Issue: 3 June-15.irjet.net p-issn: 395-7 UNSEADY MHD FORCED CONVECION FLOW AND MASS RANSFER ALONG A VERICAL SRECHING

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge

Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge Heat Transfer Asian Research, 42 (8), 2013 Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge Swati Mukhopadhyay, 1 Iswar Chandra Mondal, 1 and Ali J. Chamkha 2 1 Department of Mathematics, The

More information

Radiation and Magneticfield Effects on Unsteady Mixed Convection Flow over a Vertical Stretching/Shrinking Surface with Suction/Injection

Radiation and Magneticfield Effects on Unsteady Mixed Convection Flow over a Vertical Stretching/Shrinking Surface with Suction/Injection Radiation and Magneticfield Effects on Unsteady Mixed Convection Flow over a Vertical Stretching/Shrinking Surface with Suction/Injection N.Sandeep C.Sulochana V.Sugunamma.Department of Mathematics, Gulbarga

More information

ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION

ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION Kragujevac J. Sci. 35 (23) 5-25. UDC 532.527 ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION Krishan Dev Singh Wexlow Bldg, Lower Kaithu, Shimla-73, India e-mail: kdsinghshimla@gmail.com (Received

More information

Thermal radiation effect on MHD stagnation point flow of a Carreau fluid with convective boundary condition

Thermal radiation effect on MHD stagnation point flow of a Carreau fluid with convective boundary condition Proceedings of ICFM International Conference on Frontiers in Mathematics March 6-8,, Gauhati University, Guahati, Assam, India Available online at http://.gauhati.ac.in/icfmgu Thermal radiation effect

More information

Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid

Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid Appl. Math. Mech. -Engl. Ed., 33(10), 1301 1312 (2012) DOI 10.1007/s10483-012-1623-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2012 Applied Mathematics and Mechanics (English Edition)

More information

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 04 ISSN 3-707 MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA Samuel Olumide ADESANYA, Oluwole Daniel MAKINDE This paper deals

More information

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids Applied Mathematical Sciences, Vol. 6, 2012, no. 128, 6365-6379 Variable Viscosity Effect on Heat Transfer over a Continuous Moving Surface ith Variable Internal Heat Generation in Micropolar Fluids M.

More information

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Engineering, 010,, 99-305 doi:10.436/eng.010.4039 Published Online April 010 (http://www. SciRP.org/journal/eng) 99 Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Abstract T. R.

More information

EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE

EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE THERMAL SCIENCE, Year 206, Vol. 20, No. 6, pp. 80-8 80 EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE by Kishan NAIKOTI

More information

Chapter Introduction

Chapter Introduction Chapter 4 Mixed Convection MHD Flow and Heat Transfer of Nanofluid over an Exponentially Stretching Sheet with Effects of Thermal Radiation and Viscous Dissipation 4.1 Introduction The study of boundary

More information

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India.

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India. Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5965-5975 Research India Publications http://www.ripublication.com Effect of partial slip and convective boundary

More information

Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous Medium

Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous Medium Journal of Applied Science and Engineering, Vol. 15, No. 1, pp. 1 10 (2012) 1 Magnetohydrodynamic Convection Effects with Viscous and Ohmic Dissipation in a Vertical Channel Partially Filled by a Porous

More information