Department of Statistics. Bayesian Modeling for a Generalized Social Relations Model. Tyler McCormick. Introduction.

Size: px
Start display at page:

Download "Department of Statistics. Bayesian Modeling for a Generalized Social Relations Model. Tyler McCormick. Introduction."

Transcription

1 A University of Connecticut and Columbia University A models for dyadic data are extensions of the (). y i,j = a i + b j + γ i,j (1) Here, y i,j is a measure of the tie from actor i to actor j. The random effects a i and b j are for actors i and j respectively and a random interaction γ i,j describes the adjustment that actor i makes when interacting with j. This model can be easily generalized to include fixed effects, generating the following form of the linear mixed model. tmccormick@stat.uconn.edu y i,j = β x i,j + ɛ i,j ɛ i,j = a i + b j + γ i,j () 1 / 17 / 17 A The can also be equivalently parameterized using a grand-mean parametrization as in Gill and Swartz (006). In this case all random effects are assumed to have zero mean. The distributions of the random effects are assumed to be as follows: ( σ (a i, b j ) MVN(0, Σ a,b ), Σ a,b = a ρσa,b ) ρσa,b σb ( σ (γ i,j, γ j,i ) MVN(0, Σ γ ), Σ γ = γ ρσγ ρσγ σγ ) (3) A Typically, these variance/covariance parameters are of primary interest and define the dependence structure of the observations. Dyadic dependence in the form of mutuality or reciprocity is modeled by ρ. The same general form of the model can be applied to dichotomous our count data via the Linear (see for example McCullagh and Nelder, 1989). 3 / 17 4 / 17

2 Typically we would fit this model using: A Analysis of Variance (ANOVA) Maximum Likelihood (ML) or Restricted Maximum Likelihood (RML) Let s consider another option, fully Analysis A A demonstration of the paradigm. 5 / 17 6 / 17 A A potential limitation of the is its inability to consider third or higher order dependence structure. The is generalized by Hoff 1 (005). In the, we assume that the dependence between i and j is modeled based on the ɛ i,j parameter. We say that ɛ i,j is composed of three dyad-specific components, each of which is an unobserved random effect, and the dependence between these components determines the nature of the dependence of the responses. A We here generalize this notion by adding f, a function of k-dimensional latent variables {z i, z j }. In other words, {z i, z j } are characteristics of the actors that are not observed, but define the dependence between the y i,j s when subjected to some function f. ing these latent variables is less straightforward than the unobserved dyad-specific effects presented in the. If we assume, however, that actors that are more similar in the unobserved variables {z i, z j } are more likely to have similar y i,j s, then there are certain functions that will induce the desired type of dependence. 7 / 17 1 Software to fit the model described here using the statistical software R is available from Peter Hoff s website at 8 / 17

3 A The full parametrization of our model thus becomes: θ i,j = β 0 + β d x i,j + β s x i + β r x j + ɛ i,j ɛ i,j = a i + b j + γ i,j + f (z i, z j ) f (z i, z j ) = z i z j (4) A Transitivity is induced via the triangle inequality. Consider the case where f is simple distance, then z i z j z i z k + z k z j (5) Notice that z i z k and z k z j are small when strong ties are present from i to k and from k to j. From the triangle inequality, z i z j must also be small, an indicator of strong ties between i and j. We choose f (z i, z j ) = z i z j or the inner product. In addition to transitivity, using the inner product also allows a representation of clustering and balance. 9 / / 17 -Roommates A 11 / 17 To determine the potential contribution of higher-order effects to the, we undertake a model-selection experiment using the Curry and Emerson data. If adding higher-order effects via the latent dimension represents a significant improvement to the, we would expect our model selection criterion to prefer models with latent dimension greater than zero. We use a four-fold cross validation procedure that is typically used to assess the predictive ability of the model. We chose this procedure because it is simple to implement and is consistent with the method proposed by Hoff (005). Higher (or less negative) values of our selection criteria (log posterior predictive probability) are preferred. A 1 / 17

4 -Log Posterior Predictive Probability - A Group k0 k1 k Table: Log Posterior Predictive Probability, with roommates A 13 / / 17 - A Group k0 k1 k Table: -Log Posterior Predictive Probability, No Roommates A A few references- Hoff, P.D. (005) Bilinear Mixed-Effects s for Dyadic Data Journal of the American Statistical Association, vol. 100, no. 469, Shortreed, S., Handcock, M.S. and Hoff, P.D. (006) Positional estimation within the latent space model for networks Methodology, vol. no. 1, Hoff, P.D., Raftery, A.E., and Handcock, M.S. (00) Latent Space es to Network Analysis Journal of the American Statistical Association, vol. 97, no. 460, / / 17

5 A A few more- Gill, P. S. and Swartz, T. B. (006) analysis of dyadic data. Gill, P. S. and Swartz, T. B. (004). analysis of directed graphs data with applications to social networks. Applied Statistics: Journal of the Royal Statistical Society Series C, 53, Gill, P. S. and Swartz, T. B. (001) Statistical analyses for round robin interaction data, The Canadian Journal of Statistics,Vol. 9, No, pp / 17

Random Effects Models for Network Data

Random Effects Models for Network Data Random Effects Models for Network Data Peter D. Hoff 1 Working Paper no. 28 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 January 14, 2003 1 Department of

More information

Appendix: Modeling Approach

Appendix: Modeling Approach AFFECTIVE PRIMACY IN INTRAORGANIZATIONAL TASK NETWORKS Appendix: Modeling Approach There is now a significant and developing literature on Bayesian methods in social network analysis. See, for instance,

More information

Statistical Model for Soical Network

Statistical Model for Soical Network Statistical Model for Soical Network Tom A.B. Snijders University of Washington May 29, 2014 Outline 1 Cross-sectional network 2 Dynamic s Outline Cross-sectional network 1 Cross-sectional network 2 Dynamic

More information

Specification and estimation of exponential random graph models for social (and other) networks

Specification and estimation of exponential random graph models for social (and other) networks Specification and estimation of exponential random graph models for social (and other) networks Tom A.B. Snijders University of Oxford March 23, 2009 c Tom A.B. Snijders (University of Oxford) Models for

More information

Australian & New Zealand Journal of Statistics

Australian & New Zealand Journal of Statistics Australian & New Zealand Journal of Statistics Aust.N.Z.J.Stat.52(3), 2010, 289 302 doi: 10.1111/j.1467-842X.2010.00583.x A SEMIPARAMETRIC BAYESIAN APPROACH TO NETWORK MODELLING USING DIRICHLET PROCESS

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Modeling Organizational Positions Chapter 2

Modeling Organizational Positions Chapter 2 Modeling Organizational Positions Chapter 2 2.1 Social Structure as a Theoretical and Methodological Problem Chapter 1 outlines how organizational theorists have engaged a set of issues entailed in the

More information

Agent-Based Methods for Dynamic Social Networks. Duke University

Agent-Based Methods for Dynamic Social Networks. Duke University Agent-Based Methods for Dynamic Social Networks Eric Vance Institute of Statistics & Decision Sciences Duke University STA 395 Talk October 24, 2005 Outline Introduction Social Network Models Agent-based

More information

Conditional Marginalization for Exponential Random Graph Models

Conditional Marginalization for Exponential Random Graph Models Conditional Marginalization for Exponential Random Graph Models Tom A.B. Snijders January 21, 2010 To be published, Journal of Mathematical Sociology University of Oxford and University of Groningen; this

More information

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University Likelihood, MLE & EM for Gaussian Mixture Clustering Nick Duffield Texas A&M University Probability vs. Likelihood Probability: predict unknown outcomes based on known parameters: P(x q) Likelihood: estimate

More information

Assessing Goodness of Fit of Exponential Random Graph Models

Assessing Goodness of Fit of Exponential Random Graph Models International Journal of Statistics and Probability; Vol. 2, No. 4; 2013 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Assessing Goodness of Fit of Exponential Random

More information

University of Groningen. The multilevel p2 model Zijlstra, B.J.H.; van Duijn, Maria; Snijders, Thomas. Published in: Methodology

University of Groningen. The multilevel p2 model Zijlstra, B.J.H.; van Duijn, Maria; Snijders, Thomas. Published in: Methodology University of Groningen The multilevel p2 model Zijlstra, B.J.H.; van Duijn, Maria; Snijders, Thomas Published in: Methodology IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

arxiv: v1 [stat.me] 3 Apr 2017

arxiv: v1 [stat.me] 3 Apr 2017 A two-stage working model strategy for network analysis under Hierarchical Exponential Random Graph Models Ming Cao University of Texas Health Science Center at Houston ming.cao@uth.tmc.edu arxiv:1704.00391v1

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts p. 1/2 Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts Department of Sociology and Institute for Mathematical Behavioral Sciences

More information

Modeling heterogeneity in random graphs

Modeling heterogeneity in random graphs Modeling heterogeneity in random graphs Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry (Soon: Laboratoire de Probabilités et Modèles Aléatoires, Paris) http://stat.genopole.cnrs.fr/ cmatias

More information

Maintaining Nets and Net Trees under Incremental Motion

Maintaining Nets and Net Trees under Incremental Motion Maintaining Nets and Net Trees under Incremental Motion Minkyoung Cho, David Mount, and Eunhui Park Department of Computer Science University of Maryland, College Park August 25, 2009 Latent Space Embedding

More information

Introduction to statistical analysis of Social Networks

Introduction to statistical analysis of Social Networks The Social Statistics Discipline Area, School of Social Sciences Introduction to statistical analysis of Social Networks Mitchell Centre for Network Analysis Johan Koskinen http://www.ccsr.ac.uk/staff/jk.htm!

More information

Modeling tie duration in ERGM-based dynamic network models

Modeling tie duration in ERGM-based dynamic network models University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 Modeling tie duration in ERGM-based dynamic

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Multiresolution network models

Multiresolution network models Multiresolution network models arxiv:1608.07618v4 [stat.me] 26 Sep 2017 Bailey K. Fosdick Colorado State University Thomas Brendan Murphy University College Dublin Ted Westling University of Washington

More information

FAILURE-TIME WITH DELAYED ONSET

FAILURE-TIME WITH DELAYED ONSET REVSTAT Statistical Journal Volume 13 Number 3 November 2015 227 231 FAILURE-TIME WITH DELAYED ONSET Authors: Man Yu Wong Department of Mathematics Hong Kong University of Science and Technology Hong Kong

More information

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation Bayesian Analysis of Network Data Model Selection and Evaluation of the Exponential Random Graph Model Dissertation Presented to the Faculty for Social Sciences, Economics, and Business Administration

More information

Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling

Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling Harry Crane Based on Chapter 3 of Probabilistic Foundations of Statistical Network Analysis Book website: http://wwwharrycranecom/networkshtml

More information

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu Lecture 16-17: Bayesian Nonparametrics I STAT 6474 Instructor: Hongxiao Zhu Plan for today Why Bayesian Nonparametrics? Dirichlet Distribution and Dirichlet Processes. 2 Parameter and Patterns Reference:

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data Combining Data IB/NRES 509 Statistical Modeling What is a? A quantitative synthesis of previous research Studies as individual observations, weighted by n, σ 2, quality, etc. Can combine heterogeneous

More information

Overview course module Stochastic Modelling

Overview course module Stochastic Modelling Overview course module Stochastic Modelling I. Introduction II. Actor-based models for network evolution III. Co-evolution models for networks and behaviour IV. Exponential Random Graph Models A. Definition

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

Ideology and Social Networks in the U.S. Congress

Ideology and Social Networks in the U.S. Congress Ideology and Social Networks in the U.S. Congress James H. Fowler University of California, San Diego July 11, 2007 Improve connectedness scores (Fowler 2005) Cosponsorship is about 2 things: The idea

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA.

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA. Analysis of Variance Read Chapter 14 and Sections 15.1-15.2 to review one-way ANOVA. Design of an experiment the process of planning an experiment to insure that an appropriate analysis is possible. Some

More information

c Copyright 2015 Ke Li

c Copyright 2015 Ke Li c Copyright 2015 Ke Li Degeneracy, Duration, and Co-evolution: Extending Exponential Random Graph Models (ERGM) for Social Network Analysis Ke Li A dissertation submitted in partial fulfillment of the

More information

Determining the number of components in mixture models for hierarchical data

Determining the number of components in mixture models for hierarchical data Determining the number of components in mixture models for hierarchical data Olga Lukočienė 1 and Jeroen K. Vermunt 2 1 Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000

More information

Latent Stochastic Actor Oriented Models for Relational Event Data

Latent Stochastic Actor Oriented Models for Relational Event Data Latent Stochastic Actor Oriented Models for Relational Event Data J.A. Lospinoso 12 J.H. Koskinen 2 T.A.B. Snijders 2 1 Network Science Center United States Military Academy 2 Department of Statistics

More information

Statistical Models for Social Networks with Application to HIV Epidemiology

Statistical Models for Social Networks with Application to HIV Epidemiology Statistical Models for Social Networks with Application to HIV Epidemiology Mark S. Handcock Department of Statistics University of Washington Joint work with Pavel Krivitsky Martina Morris and the U.

More information

Delayed Rejection Algorithm to Estimate Bayesian Social Networks

Delayed Rejection Algorithm to Estimate Bayesian Social Networks Dublin Institute of Technology ARROW@DIT Articles School of Mathematics 2014 Delayed Rejection Algorithm to Estimate Bayesian Social Networks Alberto Caimo Dublin Institute of Technology, alberto.caimo@dit.ie

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

More on Unsupervised Learning

More on Unsupervised Learning More on Unsupervised Learning Two types of problems are to find association rules for occurrences in common in observations (market basket analysis), and finding the groups of values of observational data

More information

MULTILEVEL LONGITUDINAL NETWORK ANALYSIS

MULTILEVEL LONGITUDINAL NETWORK ANALYSIS MULTILEVEL LONGITUDINAL NETWORK ANALYSIS Tom A.B. Snijders University of Oxford, Nuffield College ICS, University of Groningen Version December, 2013 Tom A.B. Snijders Multilevel Longitudinal Network Analysis

More information

Clustering on Unobserved Data using Mixture of Gaussians

Clustering on Unobserved Data using Mixture of Gaussians Clustering on Unobserved Data using Mixture of Gaussians Lu Ye Minas E. Spetsakis Technical Report CS-2003-08 Oct. 6 2003 Department of Computer Science 4700 eele Street orth York, Ontario M3J 1P3 Canada

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Assessing the Goodness-of-Fit of Network Models

Assessing the Goodness-of-Fit of Network Models Assessing the Goodness-of-Fit of Network Models Mark S. Handcock Department of Statistics University of Washington Joint work with David Hunter Steve Goodreau Martina Morris and the U. Washington Network

More information

Sampling and incomplete network data

Sampling and incomplete network data 1/58 Sampling and incomplete network data 567 Statistical analysis of social networks Peter Hoff Statistics, University of Washington 2/58 Network sampling methods It is sometimes difficult to obtain a

More information

Overview of Stochastic Approaches to Social Network Analysis

Overview of Stochastic Approaches to Social Network Analysis Overview of Stochastic Approaches to Social Network Analysis Wasserman and Faust, Chapter 13-16. Anderson, Carolyn J., Stanley Wasserman, and Bradley Crouch. 1999. A p* primer: Logit models for social

More information

Continuous-time Statistical Models for Network Panel Data

Continuous-time Statistical Models for Network Panel Data Continuous-time Statistical Models for Network Panel Data Tom A.B. Snijders University of Groningen University of Oxford September, 2016 1 / 45 Overview 1 Models for network panel data 2 Example 3 Co-evolution

More information

Regression Clustering

Regression Clustering Regression Clustering In regression clustering, we assume a model of the form y = f g (x, θ g ) + ɛ g for observations y and x in the g th group. Usually, of course, we assume linear models of the form

More information

GRAVITY S RAINBOW: MODELING THE WORLD TRADE NETWORK

GRAVITY S RAINBOW: MODELING THE WORLD TRADE NETWORK GRAVITY S RAINBOW: MODELING THE WORLD TRADE NETWORK MICHAEL D. WARD AND JOHN S. AHLQUIST Abstract. The gravity model, long the empirical workhorse for modeling international trade, has recently been put

More information

Modeling homophily and stochastic equivalence in symmetric relational data

Modeling homophily and stochastic equivalence in symmetric relational data Modeling homophily and stochastic equivalence in symmetric relational data Peter D. Hoff Departments of Statistics and Biostatistics University of Washington Seattle, WA 98195-4322. hoff@stat.washington.edu

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

Bayesian Inference for Contact Networks Given Epidemic Data

Bayesian Inference for Contact Networks Given Epidemic Data Bayesian Inference for Contact Networks Given Epidemic Data Chris Groendyke, David Welch, Shweta Bansal, David Hunter Departments of Statistics and Biology Pennsylvania State University SAMSI, April 17,

More information

Statistical Practice. Selecting the Best Linear Mixed Model Under REML. Matthew J. GURKA

Statistical Practice. Selecting the Best Linear Mixed Model Under REML. Matthew J. GURKA Matthew J. GURKA Statistical Practice Selecting the Best Linear Mixed Model Under REML Restricted maximum likelihood (REML) estimation of the parameters of the mixed model has become commonplace, even

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Bayesian nonparametric models for bipartite graphs

Bayesian nonparametric models for bipartite graphs Bayesian nonparametric models for bipartite graphs François Caron Department of Statistics, Oxford Statistics Colloquium, Harvard University November 11, 2013 F. Caron 1 / 27 Bipartite networks Readers/Customers

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Tom A.B. Snijders Christian E.G. Steglich Michael Schweinberger Mark Huisman

Tom A.B. Snijders Christian E.G. Steglich Michael Schweinberger Mark Huisman Manual for SIENA version 3.3 Provisional version Tom A.B. Snijders Christian E.G. Steglich Michael Schweinberger Mark Huisman University of Groningen: ICS, Department of Sociology Grote Rozenstraat 31,

More information

Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff

Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff David Gerard Department of Statistics University of Washington gerard2@uw.edu May 2, 2013 David Gerard (UW)

More information

Bayes Model Selection with Path Sampling: Factor Models

Bayes Model Selection with Path Sampling: Factor Models with Path Sampling: Factor Models Ritabrata Dutta and Jayanta K Ghosh Purdue University 07/02/11 Factor Models in Applications Factor Models in Applications Factor Models Factor Models and Factor analysis

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW SSC Annual Meeting, June 2015 Proceedings of the Survey Methods Section ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW Xichen She and Changbao Wu 1 ABSTRACT Ordinal responses are frequently involved

More information

Models for Longitudinal Network Data

Models for Longitudinal Network Data Models for Longitudinal Network Data Tom A.B. Snijders ICS, Department of Sociology University of Groningen November 23, 2006 Abstract This chapter treats statistical methods for network evolution. It

More information

Using Potential Games to Parameterize ERG Models

Using Potential Games to Parameterize ERG Models Carter T. Butts p. 1/2 Using Potential Games to Parameterize ERG Models Carter T. Butts Department of Sociology and Institute for Mathematical Behavioral Sciences University of California, Irvine buttsc@uci.edu

More information

A Bayesian Approach for the Analysis of Triadic Data in Cognitive Social Structures

A Bayesian Approach for the Analysis of Triadic Data in Cognitive Social Structures A Bayesian Approach for the Analysis of Triadic Data in Cognitive Social Structures Tim B. Swartz, Paramjit S. Gill and Saman Muthukumarana Abstract This paper proposes a fully Bayesian approach for the

More information

Hierarchical longitudinal models of relationships in social networks

Hierarchical longitudinal models of relationships in social networks Appl. Statist. (2013) 62, Part 5, pp. 705 722 Hierarchical longitudinal models of relationships in social networks Sudeshna Paul and A. James O Malley Harvard Medical School, Boston, USA [Received September

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Actor-Based Models for Longitudinal Networks

Actor-Based Models for Longitudinal Networks See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/269691376 Actor-Based Models for Longitudinal Networks CHAPTER JANUARY 2014 DOI: 10.1007/978-1-4614-6170-8_166

More information

Hierarchical Models for Social Networks

Hierarchical Models for Social Networks Hierarchical Models for Social Networks Tracy M. Sweet University of Maryland Innovative Assessment Collaboration November 4, 2014 Acknowledgements Program for Interdisciplinary Education Research (PIER)

More information

Model-Based Clustering for Social Networks

Model-Based Clustering for Social Networks Model-Based Clustering for Social Networks Mark S. Handcock, Adrian E. Raftery and Jeremy M. Tantrum University of Washington Technical Report no. 42 Department of Statistics University of Washington April

More information

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Maksym Byshkin 1, Alex Stivala 4,1, Antonietta Mira 1,3, Garry Robins 2, Alessandro Lomi 1,2 1 Università della Svizzera

More information

Approximate Likelihoods

Approximate Likelihoods Approximate Likelihoods Nancy Reid July 28, 2015 Why likelihood? makes probability modelling central l(θ; y) = log f (y; θ) emphasizes the inverse problem of reasoning y θ converts a prior probability

More information

What is Latent Class Analysis. Tarani Chandola

What is Latent Class Analysis. Tarani Chandola What is Latent Class Analysis Tarani Chandola methods@manchester Many names similar methods (Finite) Mixture Modeling Latent Class Analysis Latent Profile Analysis Latent class analysis (LCA) LCA is a

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES

SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES JIANG ZHU, SHILIANG SUN Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai 20024, P. R. China E-MAIL:

More information

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model EPSY 905: Multivariate Analysis Lecture 1 20 January 2016 EPSY 905: Lecture 1 -

More information

Overview course module Stochastic Modelling. I. Introduction II. Actor-based models for network evolution

Overview course module Stochastic Modelling. I. Introduction II. Actor-based models for network evolution Overview course module Stochastic Modelling I. Introduction II. Actor-based models for network evolution A. Data requirements B. Modelling principles & assumptions C. The network evolution algorithm D.

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Overview. and data transformations of gene expression data. Toy 2-d Clustering Example. K-Means. Motivation. Model-based clustering

Overview. and data transformations of gene expression data. Toy 2-d Clustering Example. K-Means. Motivation. Model-based clustering Model-based clustering and data transformations of gene expression data Walter L. Ruzzo University of Washington UW CSE Computational Biology Group 2 Toy 2-d Clustering Example K-Means? 3 4 Hierarchical

More information

General structural model Part 2: Categorical variables and beyond. Psychology 588: Covariance structure and factor models

General structural model Part 2: Categorical variables and beyond. Psychology 588: Covariance structure and factor models General structural model Part 2: Categorical variables and beyond Psychology 588: Covariance structure and factor models Categorical variables 2 Conventional (linear) SEM assumes continuous observed variables

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

QTL Mapping I: Overview and using Inbred Lines

QTL Mapping I: Overview and using Inbred Lines QTL Mapping I: Overview and using Inbred Lines Key idea: Looking for marker-trait associations in collections of relatives If (say) the mean trait value for marker genotype MM is statisically different

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation Statistics 62: L p spaces, metrics on spaces of probabilites, and connections to estimation Moulinath Banerjee December 6, 2006 L p spaces and Hilbert spaces We first formally define L p spaces. Consider

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

The analysis of social network data: an exciting frontier for statisticians

The analysis of social network data: an exciting frontier for statisticians The analysis of social network data: an exciting frontier for statisticians The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation

More information

Bilinear Mixed Effects Models for Dyadic Data

Bilinear Mixed Effects Models for Dyadic Data Bilinear Mixed Effects Models for Dyadic Data Peter D. Hoff 1 Working Paper no. 3 Center for Statistics and the Social Sciences University of Washington July 3, 003 1 Peter D. Hoff is Assistant Professor

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

Kruskal-Wallis and Friedman type tests for. nested effects in hierarchical designs 1

Kruskal-Wallis and Friedman type tests for. nested effects in hierarchical designs 1 Kruskal-Wallis and Friedman type tests for nested effects in hierarchical designs 1 Assaf P. Oron and Peter D. Hoff Department of Statistics, University of Washington, Seattle assaf@u.washington.edu, hoff@stat.washington.edu

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008 Readings: K&F: 16.3, 16.4, 17.3 Bayesian Param. Learning Bayesian Structure Learning Graphical Models 10708 Carlos Guestrin Carnegie Mellon University October 6 th, 2008 10-708 Carlos Guestrin 2006-2008

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Using a Bilinear Mixed Effects Model to Elicit. Quantifying Elephant Social Structure: Qualities of Elephant Behavior. Duke University.

Using a Bilinear Mixed Effects Model to Elicit. Quantifying Elephant Social Structure: Qualities of Elephant Behavior. Duke University. Quantifying Elephant Social Structure: Using a Bilinear Mixed Effects Model to Elicit Qualities of Elephant Behavior Eric Vance Institute of Statistics & Decision Sciences Duke University Preliminary Exam

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET

TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET 1 TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET Prof. Steven Goodreau Prof. Martina Morris Prof. Michal Bojanowski Prof. Mark S. Handcock Source for all things STERGM Pavel N.

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Error analysis for efficiency

Error analysis for efficiency Glen Cowan RHUL Physics 28 July, 2008 Error analysis for efficiency To estimate a selection efficiency using Monte Carlo one typically takes the number of events selected m divided by the number generated

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Predicting unobserved links in incompletely observed networks

Predicting unobserved links in incompletely observed networks Computational Statistics & Data Analysis 52 (2008) 1373 1386 www.elsevier.com/locate/csda Predicting unobserved links in incompletely observed networks David J. Marchette a,, Carey E. Priebe b a Naval

More information