Evolution Strategies and Covariance Matrix Adaptation

Size: px
Start display at page:

Download "Evolution Strategies and Covariance Matrix Adaptation"

Transcription

1 Evolution Strategies and Covariance Matrix Adaptation Cours Contrôle Avancé - Ecole Centrale Paris Anne Auger January 2014 INRIA Research Centre Saclay Île-de-France University Paris-Sud, LRI (UMR 8623), Bat ORSAY Cedex, France Slides from A. Auger, N. Hansen GECCO 2013 Tutorial on ES and CMA-ES January / 82

2 Content 1 Problem Statement Black Box Optimization and Its Difficulties Non-Separable Problems Ill-Conditioned Problems 2 Evolution Strategies A Search Template The Normal Distribution Invariance 3 Step-Size Control Why Step-Size Control One-Fifth Success Rule Path Length Control (CSA) 4 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Cumulation the Evolution Path Covariance Matrix Rank-µ Update 5 CMA-ES Summary 6 Theoretical Foundations 7 Comparing Experiments 8 Summary and Final Remarks January / 82

3 Problem Statement Problem Statement Continuous Domain Search/Optimization Black Box Optimization and Its Difficulties Task: minimize an objective function (fitness function, loss function) in continuous domain f : X R n R, Black Box scenario (direct search scenario) x x f (x) f(x) gradients are not available or not useful problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding Search costs: number of function evaluations January / 82

4 Problem Statement Problem Statement Continuous Domain Search/Optimization Black Box Optimization and Its Difficulties Goal fast convergence to the global optimum... or to a robust solution x solution x with small function value f (x) with least search cost there are two conflicting objectives Typical Examples shape optimization (e.g. using CFD) model calibration parameter calibration curve fitting, airfoils biological, physical controller, plants, images Problems exhaustive search is infeasible naive random search takes too long deterministic search is not successful / takes too long Approach: stochastic search, Evolutionary Algorithms January / 82

5 Problem Statement Problem Statement Continuous Domain Search/Optimization Black Box Optimization and Its Difficulties Goal fast convergence to the global optimum... or to a robust solution x solution x with small function value f (x) with least search cost there are two conflicting objectives Typical Examples shape optimization (e.g. using CFD) model calibration parameter calibration curve fitting, airfoils biological, physical controller, plants, images Problems exhaustive search is infeasible naive random search takes too long deterministic search is not successful / takes too long Approach: stochastic search, Evolutionary Algorithms January / 82

6 Problem Statement Problem Statement Continuous Domain Search/Optimization Black Box Optimization and Its Difficulties Goal fast convergence to the global optimum... or to a robust solution x solution x with small function value f (x) with least search cost there are two conflicting objectives Typical Examples shape optimization (e.g. using CFD) model calibration parameter calibration curve fitting, airfoils biological, physical controller, plants, images Problems exhaustive search is infeasible naive random search takes too long deterministic search is not successful / takes too long Approach: stochastic search, Evolutionary Algorithms January / 82

7 Problem Statement Black Box Optimization and Its Difficulties Objective Function Properties We assume f : X R n R to be non-linear, non-separable and to have at least moderate dimensionality, say n 10. Additionally, f can be non-convex multimodal non-smooth discontinuous, plateaus ill-conditioned noisy... there are possibly many local optima derivatives do not exist Goal : cope with any of these function properties they are related to real-world problems January / 82

8 Problem Statement Black Box Optimization and Its Difficulties Objective Function Properties We assume f : X R n R to be non-linear, non-separable and to have at least moderate dimensionality, say n 10. Additionally, f can be non-convex multimodal non-smooth discontinuous, plateaus ill-conditioned noisy... there are possibly many local optima derivatives do not exist Goal : cope with any of these function properties they are related to real-world problems January / 82

9 Problem Statement Black Box Optimization and Its Difficulties What Makes a Function Difficult to Solve? Why stochastic search? non-linear, non-quadratic, non-convex on linear and quadratic functions much better search policies are available ruggedness non-smooth, discontinuous, multimodal, and/or noisy function dimensionality (size of search space) non-separability (considerably) larger than three dependencies between the objective variables ill-conditioning gradient direction Newton direction January / 82

10 Problem Statement Black Box Optimization and Its Difficulties Ruggedness non-smooth, discontinuous, multimodal, and/or noisy Fitness cut from a 5-D example, (easily) solvable with evolution strategies January / 82

11 Problem Statement Curse of Dimensionality Black Box Optimization and Its Difficulties The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space. Example: Consider placing 100 points onto a real interval, say [0, 1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space [0, 1] 10 would require = points. A 100 points appear now as isolated points in a vast empty space. Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in) Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. January / 82

12 Problem Statement Curse of Dimensionality Black Box Optimization and Its Difficulties The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space. Example: Consider placing 100 points onto a real interval, say [0, 1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space [0, 1] 10 would require = points. A 100 points appear now as isolated points in a vast empty space. Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in) Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. January / 82

13 Problem Statement Curse of Dimensionality Black Box Optimization and Its Difficulties The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space. Example: Consider placing 100 points onto a real interval, say [0, 1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space [0, 1] 10 would require = points. A 100 points appear now as isolated points in a vast empty space. Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in) Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. January / 82

14 Problem Statement Curse of Dimensionality Black Box Optimization and Its Difficulties The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space. Example: Consider placing 100 points onto a real interval, say [0, 1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space [0, 1] 10 would require = points. A 100 points appear now as isolated points in a vast empty space. Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in) Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. January / 82

15 Separable Problems Problem Statement Non-Separable Problems Definition (Separable Problem) A function f is separable if arg min (x 1,...,x n) f (x 1,..., x n ) = ( ) arg min f (x 1,...),..., arg min f (..., x n ) x 1 x n it follows that f can be optimized in a sequence of n independent 1-D optimization processes Example: Additively decomposable functions n f (x 1,..., x n ) = f i (x i ) i=1 Rastrigin function January / 82

16 Non-Separable Problems Problem Statement Non-Separable Problems Building a non-separable problem from a separable one (1,2) Rotating the coordinate system f : x f (x) separable f : x f (Rx) non-separable R rotation matrix R Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp , Morgan Kaufmann 2 Salomon (1996). Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3): January / 82

17 Problem Statement Ill-Conditioned Problems Curvature of level sets Ill-Conditioned Problems Consider the convex-quadratic function f (x) = 1 2 (x x ) T H(x x ) = 1 2 i h i,i xi i j h i,j x i x j H is Hessian matrix of f and symmetric positive definite gradient direction f (x) T Newton direction H 1 f (x) T Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to are not unusual in real world problems. If H I (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H 1 ) is necessary. January / 82

18 Problem Statement Ill-Conditioned Problems What Makes a Function Difficult to Solve?... and what can be done The Problem Dimensionality Ill-conditioning Possible Approaches exploiting the problem structure separability, locality/neighborhood, encoding second order approach changes the neighborhood metric Ruggedness non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed population-based method, stochastic, non-elitistic recombination operator serves as repair mechanism restarts... metaphors January / 82

19 Problem Statement Ill-Conditioned Problems What Makes a Function Difficult to Solve?... and what can be done The Problem Dimensionality Ill-conditioning Possible Approaches exploiting the problem structure separability, locality/neighborhood, encoding second order approach changes the neighborhood metric Ruggedness non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed population-based method, stochastic, non-elitistic recombination operator serves as repair mechanism restarts... metaphors January / 82

20 Problem Statement Ill-Conditioned Problems What Makes a Function Difficult to Solve?... and what can be done The Problem Dimensionality Ill-conditioning Possible Approaches exploiting the problem structure separability, locality/neighborhood, encoding second order approach changes the neighborhood metric Ruggedness non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed population-based method, stochastic, non-elitistic recombination operator serves as repair mechanism restarts... metaphors January / 82

21 Metaphors Problem Statement Ill-Conditioned Problems Evolutionary Computation Optimization/Nonlinear Programmin individual, offspring, parent candidate solution decision variables design variables object variables population set of candidate solutions fitness function objective function loss function cost function error function generation iteration... methods: ESs January / 82

22 Evolution Strategies 1 Problem Statement Black Box Optimization and Its Difficulties Non-Separable Problems Ill-Conditioned Problems 2 Evolution Strategies A Search Template The Normal Distribution Invariance 3 Step-Size Control Why Step-Size Control One-Fifth Success Rule Path Length Control (CSA) 4 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Cumulation the Evolution Path Covariance Matrix Rank-µ Update 5 CMA-ES Summary 6 Theoretical Foundations 7 Comparing Experiments 8 Summary and Final Remarks January / 82

23 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

24 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

25 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

26 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

27 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

28 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

29 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

30 Evolution Strategies A Search Template Stochastic Search A black box search template to minimize f : R n R Initialize distribution parameters θ, set population size λ N While not terminate 1 Sample distribution P (x θ) x 1,..., x λ R n 2 Evaluate x 1,..., x λ on f 3 Update parameters θ F θ (θ, x 1,..., x λ, f (x 1 ),..., f (x λ )) Everything depends on the definition of P and F θ deterministic algorithms are covered as well In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation Natural template for (incremental) Estimation of Distribution Algorithms January / 82

31 The CMA-ES Evolution Strategies A Search Template Input: m R n, σ R +, λ Initialize: C = I, and p c = 0, p σ = 0, Set: c c 4/n, c σ 4/n, c 1 2/n 2, c µ µ w /n 2, c 1 + c µ 1, d σ 1 + µ w 1 and w i=1...λ such that µ w = µ 0.3 λ i=1 wi2 While not terminate x i = m + σ y i, y i N i (0, C), for i = 1,..., λ sampling m µ i=1 w i x i:λ = m + σy w where y w = µ i=1 w i y i:λ update mean p c (1 c c ) p c + 1I { pσ <1.5 n} 1 (1 cc ) 2 µ w y w cumulation for C p σ (1 c σ ) p σ + 1 (1 c σ ) 2 µ w C 1 2 y w C (1 c 1 c µ ) C + c 1 p c p T µ c + c µ i=1 w i y i:λ y T i:λ ( ( )) c σ σ exp σ pσ d σ E N(0,I) 1 n, cumulation for σ update C update of σ Not covered on this slide: termination, restarts, useful output, boundaries and encoding January / 82

32 Evolution Strategies A Search Template Evolution Strategies New search points are sampled normally distributed x i m + σ N i (0, C) for i = 1,..., λ as perturbations of m, where where x i, m R n, σ R +, C R n n the mean vector m R n represents the favorite solution the so-called step-size σ R + controls the step length the covariance matrix C R n n determines the shape of the distribution ellipsoid here, all new points are sampled with the same parameters The question remains how to update m, C, and σ. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

33 Evolution Strategies A Search Template Evolution Strategies New search points are sampled normally distributed x i m + σ N i (0, C) for i = 1,..., λ as perturbations of m, where where x i, m R n, σ R +, C R n n the mean vector m R n represents the favorite solution the so-called step-size σ R + controls the step length the covariance matrix C R n n determines the shape of the distribution ellipsoid here, all new points are sampled with the same parameters The question remains how to update m, C, and σ. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

34 Evolution Strategies The Normal Distribution Why Normal Distributions? 1 widely observed in nature, for example as phenotypic traits 2 only stable distribution with finite variance stable means that the sum of normal variates is again normal: N (x, A) + N (y, B) N (x + y, A + B) helpful in design and analysis of algorithms related to the central limit theorem 3 most convenient way to generate isotropic search points the isotropic distribution does not favor any direction, rotational invariant 4 maximum entropy distribution with finite variance the least possible assumptions on f in the distribution shape January / 82

35 Normal Distribution Evolution Strategies The Normal Distribution 0.4 Standard Normal Distribution probability density probability density of the 1-D standard normal distribution D Normal Distribution probability density of a 2-D normal distribution January / 82

36 Evolution Strategies The Normal Distribution The Multi-Variate (n-dimensional) Normal Distribution Any multi-variate normal distribution N (m, C) is uniquely determined by its mean value m R n and its symmetric positive definite n n covariance matrix C. The mean value m determines the displacement (translation) value with the largest density (modal value) the distribution is symmetric about the distribution mean D Normal Distribution January / 82

37 Evolution Strategies The Normal Distribution The Multi-Variate (n-dimensional) Normal Distribution Any multi-variate normal distribution N (m, C) is uniquely determined by its mean value m R n and its symmetric positive definite n n covariance matrix C. The mean value m determines the displacement (translation) value with the largest density (modal value) the distribution is symmetric about the distribution mean D Normal Distribution The covariance matrix C determines the shape geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid {x R n (x m) T C 1 (x m) = 1} January / 82

38 Evolution Strategies The Normal Distribution... any covariance matrix can be uniquely identified with the iso-density ellipsoid {x R n (x m) T C 1 (x m) = 1} Lines of Equal Density N ( m, σ 2 I ) m + σn (0, I) one degree of freedom σ components are independent standard normally distributed N ( m, D 2) m + D N (0, I) n degrees of freedom components are independent, scaled N (m, C) m + C 1 2 N (0, I) (n 2 + n)/2 degrees of freedom components are correlated where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and A N (0, I) N ( 0, AA T) holds for all A. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

39 Evolution Strategies The Normal Distribution... any covariance matrix can be uniquely identified with the iso-density ellipsoid {x R n (x m) T C 1 (x m) = 1} Lines of Equal Density N ( m, σ 2 I ) m + σn (0, I) one degree of freedom σ components are independent standard normally distributed N ( m, D 2) m + D N (0, I) n degrees of freedom components are independent, scaled N (m, C) m + C 1 2 N (0, I) (n 2 + n)/2 degrees of freedom components are correlated where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and A N (0, I) N ( 0, AA T) holds for all A. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

40 Evolution Strategies The Normal Distribution... any covariance matrix can be uniquely identified with the iso-density ellipsoid {x R n (x m) T C 1 (x m) = 1} Lines of Equal Density N ( m, σ 2 I ) m + σn (0, I) one degree of freedom σ components are independent standard normally distributed N ( m, D 2) m + D N (0, I) n degrees of freedom components are independent, scaled N (m, C) m + C 1 2 N (0, I) (n 2 + n)/2 degrees of freedom components are correlated where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and A N (0, I) N ( 0, AA T) holds for all A. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

41 Evolution Strategies Effect of Dimensionality The Normal Distribution 2 D Normal Distribution N (0, I) N (0, I) / ( n ) 2 N (0, I) N 1/2, 1/2, with modal value: n 1 yet: maximum entropy distribution January ESs / 82

42 Evolution Strategies Terminology Evolution Strategies The Normal Distribution Let µ: # of parents, λ: # of offspring Plus (elitist) and comma (non-elitist) selection (µ + λ)-es: selection in {parents} {offspring} (µ, λ)-es: selection in {offspring} (1 + 1)-ES Sample one offspring from parent m If x better than m select x = m + σ N (0, C) m x... why? January / 82

43 Evolution Strategies The Normal Distribution The (µ/µ, λ)-es Non-elitist selection and intermediate (weighted) recombination Given the i-th solution point x i = m + σ N i (0, C) = m + σ y }{{} i =: y i Let x i:λ the i-th ranked solution point, such that f (x 1:λ ) f (x λ:λ ). The new mean reads µ m w i x i:λ i=1 where w 1 w µ > 0, µ i=1 w i = 1, 1 µ i=1 w i 2 =: µ w λ 4 The best µ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

44 Evolution Strategies The Normal Distribution The (µ/µ, λ)-es Non-elitist selection and intermediate (weighted) recombination Given the i-th solution point x i = m + σ N i (0, C) = m + σ y }{{} i =: y i Let x i:λ the i-th ranked solution point, such that f (x 1:λ ) f (x λ:λ ). The new mean reads µ m w i x i:λ i=1 where w 1 w µ > 0, µ i=1 w i = 1, 1 µ i=1 w i 2 =: µ w λ 4 The best µ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

45 Evolution Strategies The Normal Distribution The (µ/µ, λ)-es Non-elitist selection and intermediate (weighted) recombination Given the i-th solution point x i = m + σ N i (0, C) = m + σ y }{{} i =: y i Let x i:λ the i-th ranked solution point, such that f (x 1:λ ) f (x λ:λ ). The new mean reads µ µ m w i x i:λ = m + σ w i y i:λ where i=1 i=1 } {{ } =: y w w 1 w µ > 0, µ i=1 w i = 1, 1 µ i=1 w i 2 =: µ w λ 4 The best µ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

46 Evolution Strategies Invariance Invariance Under Monotonically Increasing Functions Rank-based algorithms Update of all parameters uses only the ranks f (x 1:λ ) f (x 2:λ )... f (x λ:λ ) 3 g(f (x 1:λ )) g(f (x 2:λ ))... g(f (x λ:λ )) g g is strictly monotonically increasing g preserves ranks 3 Whitley The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best, ICGA January / 82

47 Evolution Strategies Invariance Basic Invariance in Search Space translation invariance is true for most optimization algorithms f (x) f (x a) Identical behavior on f and f a f : x f (x), x (t=0) = x 0 f a : x f (x a), x (t=0) = x 0 + a No difference can be observed w.r.t. the argument of f January / 82

48 Evolution Strategies Invariance Rotational Invariance in Search Space invariance to orthogonal (rigid) transformations R, where RR T = I e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance f (x) f (Rx) Identical behavior on f and f R 45 f : x f (x), x (t=0) = x 0 f R : x f (Rx), x (t=0) = R 1 (x 0 ) No difference can be observed w.r.t. the argument of f 4 Salomon Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3): Hansen Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI January / 82

49 Invariance Evolution Strategies Invariance The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms. Albert Einstein Empirical performance results, for example from benchmark functions from solved real world problems are only useful if they do generalize to other problems Invariance is a strong non-empirical statement about generalization generalizing (identical) performance from a single function to a whole class of functions consequently, invariance is important for the evaluation of search algorithms January / 82

50 Step-Size Control 1 Problem Statement Black Box Optimization and Its Difficulties Non-Separable Problems Ill-Conditioned Problems 2 Evolution Strategies A Search Template The Normal Distribution Invariance 3 Step-Size Control Why Step-Size Control One-Fifth Success Rule Path Length Control (CSA) 4 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Cumulation the Evolution Path Covariance Matrix Rank-µ Update 5 CMA-ES Summary 6 Theoretical Foundations 7 Comparing Experiments 8 Summary and Final Remarks January / 82

51 Step-Size Control Evolution Strategies Recalling New search points are sampled normally distributed x i m + σ N i (0, C) for i = 1,..., λ as perturbations of m, where where x i, m R n, σ R +, C R n n the mean vector m R n represents the favorite solution and m µ i=1 w i x i:λ the so-called step-size σ R + controls the step length the covariance matrix C R n n determines the shape of the distribution ellipsoid The remaining question is how to update σ and C. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

52 Step-Size Control Why Step-Size Control? Why Step-Size Control 10 0 step size too small random search function value optimal step size (scale invariant) constant step size step size too large function evaluations x 10 4 (1+1)-ES (red & green) f (x) = n i=1 x 2 i in [ 2.2, 0.8] n for n = 10 January / 82

53 Step-Size Control Why Step-Size Control Why Step-Size Control? (5/5 w, 10)-ES, 11 runs 10 0 with optimal step-size with step-size control m x = f (x) f (x) = n i=1 x 2 i for n = 10 and x 0 [ 0.2, 0.8] n function evaluations with optimal step-size σ January / 82

54 Step-Size Control Why Step-Size Control Why Step-Size Control? (5/5 w, 10)-ES, 2 11 runs 10 0 with optimal step-size with step-size control m x = f (x) f (x) = n i=1 x 2 i for n = 10 and x 0 [ 0.2, 0.8] n function evaluations with optimal versus adaptive step-size σ with too small initial σ January / 82

55 Step-Size Control Why Step-Size Control? (5/5 w, 10)-ES Why Step-Size Control m x = f (x) 10 0 with optimal step-size with step-size control respective step-size f (x) = n i=1 x 2 i for n = 10 and x 0 [ 0.2, 0.8] n function evaluations comparing number of f -evals to reach m = 10 5 : January / 82

56 Step-Size Control Why Step-Size Control? (5/5 w, 10)-ES Why Step-Size Control m x = f (x) 10 0 with optimal step-size with step-size control respective step-size f (x) = n i=1 x 2 i in [ 0.2, 0.8] n for n = function evaluations comparing optimal versus default damping parameter d σ : January / 82

57 Step-Size Control Why Step-Size Control? Why Step-Size Control 10 0 random search constant σ 0.2 function value normalized progress optimal step size (scale invariant) adaptive step size σ function evaluations normalized step size σ σ opt parent ϕ n σ opt ϕ evolution window refers to the step-size interval ( is observed ) where reasonable performance January / 82

58 Step-Size Control Methods for Step-Size Control Why Step-Size Control 1/5-th success rule ab, often applied with + -selection increase step-size if more than 20% of the new solutions are successful, decrease otherwise σ-self-adaptation c, applied with, -selection mutation is applied to the step-size and the better, according to the objective function value, is selected simplified global self-adaptation path length control d (Cumulative Step-size Adaptation, CSA) e self-adaptation derandomized and non-localized a Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog b Schumer and Steiglitz Adaptive step size random search. IEEE TAC c Schwefel 1981, Numerical Optimization of Computer Models, Wiley d Hansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput. 9(2) Cours Contrôle e Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

59 One-fifth success rule Step-Size Control One-Fifth Success Rule increase σ decrease σ January / 82

60 One-fifth success rule Step-Size Control One-Fifth Success Rule Probability of success (p s ) 1/2 1/5 Probability of success (p s ) too small January / 82

61 One-fifth success rule Step-Size Control One-Fifth Success Rule p s : # of successful offspring / # offspring (per generation) ( 1 σ σ exp 3 p ) s p target Increase σ if p s > p target 1 p target Decrease σ if p s < p target (1 + 1)-ES p target = 1/5 IF offspring better parent p s = 1, σ σ exp(1/3) ELSE p s = 0, σ σ/ exp(1/3) 1/4 January / 82

62 Step-Size Control Path Length Control (CSA) The Concept of Cumulative Step-Size Adaptation Path Length Control (CSA) Measure the length of the evolution path the pathway of the mean vector m in the generation sequence x i = m + σ y i m m + σy w decrease σ increase σ loosely speaking steps are perpendicular under random selection (in expectation) perpendicular in the desired situation (to be most efficient) January / 82

63 Step-Size Control Path Length Control (CSA) The Equations Path Length Control (CSA) Initialize m R n, σ R +, evolution path p σ = 0, set c σ 4/n, d σ 1. m m + σy w where y w = µ i=1 w i y i:λ update mean p σ (1 c σ ) p σ + 1 (1 c σ ) 2 µw y w }{{}}{{} accounts for 1 c σ accounts for w ( ( )) i cσ p σ σ σ exp d σ E N (0, I) 1 update step-size }{{} >1 p σ is greater than its expectation January / 82

64 Step-Size Control Path Length Control (CSA) The Equations Path Length Control (CSA) Initialize m R n, σ R +, evolution path p σ = 0, set c σ 4/n, d σ 1. m m + σy w where y w = µ i=1 w i y i:λ update mean p σ (1 c σ ) p σ + 1 (1 c σ ) 2 µw y w }{{}}{{} accounts for 1 c σ accounts for w ( ( )) i cσ p σ σ σ exp d σ E N (0, I) 1 update step-size }{{} >1 p σ is greater than its expectation January / 82

65 Step-Size Control (5/5, 10)-CSA-ES, default parameters Path Length Control (CSA) with optimal step-size 10 0 with step-size control respective step-size 10-1 m x f (x) = n i=1 x 2 i in [ 0.2, 0.8] n for n = function evaluations ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

66 Covariance Matrix Adaptation 1 Problem Statement 2 Evolution Strategies 3 Step-Size Control 4 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Cumulation the Evolution Path Covariance Matrix Rank-µ Update 5 CMA-ES Summary 6 Theoretical Foundations 7 Comparing Experiments 8 Summary and Final Remarks January / 82

67 Covariance Matrix Adaptation Evolution Strategies Recalling New search points are sampled normally distributed x i m + σ N i (0, C) for i = 1,..., λ as perturbations of m, where where x i, m R n, σ R +, C R n n the mean vector m R n represents the favorite solution the so-called step-size σ R + controls the step length the covariance matrix C R n n determines the shape of the distribution ellipsoid The remaining question is how to update C. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

68 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) initial distribution, C = I... equations January / 82

69 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) initial distribution, C = I... equations January / 82

70 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) y w, movement of the population mean m (disregarding σ)... equations January / 82

71 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) mixture of distribution C and step y w, C 0.8 C y w y T w... equations January / 82

72 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) new distribution (disregarding σ)... equations January / 82

73 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) new distribution (disregarding σ)... equations January / 82

74 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) movement of the population mean m... equations January / 82

75 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) mixture of distribution C and step y w, C 0.8 C y w y T w... equations January / 82

76 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Covariance Matrix Adaptation Rank-One Update m m + σy w, y w = µ i=1 w i y i:λ, y i N i (0, C) new distribution, C 0.8 C y w y T w the ruling principle: the adaptation increases the likelihood of successful steps, y w, to appear again another viewpoint: the adaptation follows a natural gradient approximation of the expected fitness... equations January / 82

77 Covariance Matrix Adaptation Covariance Matrix Adaptation Rank-One Update Covariance Matrix Rank-One Update Initialize m R n, and C = I, set σ = 1, learning rate c cov 2/n 2 While not terminate x i = m + σ y i, y i N i (0, C), µ m m + σy w where y w = w i y i:λ i=1 C (1 c cov )C + c cov µ w y w y T w }{{} rank-one where µ w = 1 µ i=1 w i 2 1 The rank-one update has been found independently in several domains Kjellström&Taxén Stochastic Optimization in System Design, IEEE TCS 7 Hansen&Ostermeier Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation, ICEC 8 Ljung System Identification: Theory for the User 9 Haario et al An adaptive Metropolis algorithm, JSTOR January / 82

78 Covariance Matrix Adaptation Covariance Matrix Rank-One Update covariance matrix adaptation C (1 c cov)c + c covµ wy wy T w learns all pairwise dependencies between variables off-diagonal entries in the covariance matrix reflect the dependencies conducts a principle component analysis (PCA) of steps y w, sequentially in time and space eigenvectors of the covariance matrix C are the principle components / the principle axes of the mutation ellipsoid learns a new rotated problem representation components are independent (only) in the new representation learns a new (Mahalanobis) metric variable metric method approximates the inverse Hessian on quadratic functions transformation into the sphere function for µ = 1: conducts a natural gradient ascent on the distribution N entirely independent of the given coordinate system... cumulation, rank-µ January / 82

79 Covariance Matrix Adaptation Covariance Matrix Rank-One Update 1 Problem Statement 2 Evolution Strategies 3 Step-Size Control 4 Covariance Matrix Adaptation Covariance Matrix Rank-One Update Cumulation the Evolution Path Covariance Matrix Rank-µ Update 5 CMA-ES Summary 6 Theoretical Foundations 7 Comparing Experiments 8 Summary and Final Remarks January / 82

80 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation The Evolution Path Evolution Path Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m. An exponentially weighted sum of steps y w is used g p c The recursive construction of the evolution path (cumulation): i=0 (1 c c) g i }{{} exponentially fading weights y (i) w p c (1 c c) }{{} decay factor p c + 1 (1 c c) 2 µ w y w }{{}}{{} normalization factor input = m m old σ where µ w = 1 wi 2, c c 1. History information is accumulated in the evolution path. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

81 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation The Evolution Path Evolution Path Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m. An exponentially weighted sum of steps y w is used g p c The recursive construction of the evolution path (cumulation): i=0 (1 c c) g i }{{} exponentially fading weights y (i) w p c (1 c c) }{{} decay factor p c + 1 (1 c c) 2 µ w y w }{{}}{{} normalization factor input = m m old σ where µ w = 1 wi 2, c c 1. History information is accumulated in the evolution path. ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

82 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation is a widely used technique and also know as exponential smoothing in time series, forecasting exponentially weighted mooving average iterate averaging in stochastic approximation momentum in the back-propagation algorithm for ANNs... Cumulation conducts a low-pass filtering, but there is more to it why? January / 82

83 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation Utilizing the Evolution Path We used y wy T w for updating C. Because y wy T w = y w( y w) T the sign of y w is lost. The sign information (signifying correlation between steps) is (re-)introduced by using the evolution path. p c (1 c c) p c + 1 (1 c c) }{{} 2 µ w }{{} decay factor normalization factor C T (1 c cov)c + c cov p c p c }{{} rank-one where µ w = 1 wi 2, c cov c c 1 such that 1/c c is the backward time horizon. y w January resulting 52 in/ 82

84 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation Utilizing the Evolution Path We used y wy T w for updating C. Because y wy T w = y w( y w) T the sign of y w is lost. The sign information (signifying correlation between steps) is (re-)introduced by using the evolution path. p c (1 c c) p c + 1 (1 c c) }{{} 2 µ w }{{} decay factor normalization factor C T (1 c cov)c + c cov p c p c }{{} rank-one where µ w = 1 wi 2, c cov c c 1 such that 1/c c is the backward time horizon. y w January resulting 52 in/ 82

85 Covariance Matrix Adaptation Cumulation the Evolution Path Cumulation Utilizing the Evolution Path We used y wy T w for updating C. Because y wy T w = y w( y w) T the sign of y w is lost. The sign information (signifying correlation between steps) is (re-)introduced by using the evolution path. p c (1 c c) p c + 1 (1 c c) }{{} 2 µ w }{{} decay factor normalization factor C T (1 c cov)c + c cov p c p c }{{} rank-one where µ w = 1 wi 2, c cov c c 1 such that 1/c c is the backward time horizon. y w January resulting 52 in/ 82

86 Covariance Matrix Adaptation Cumulation the Evolution Path Using an evolution path for the rank-one update of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge from about O(n 2 ) to O(n). (a) a Hansen, Müller and Koumoutsakos Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp Number of f -evaluations divided by dimension on the cigar function f (x) = x n i=2 x2 i 10 4 c c = 1 (no cumulation) 10 3 c c = 1/ n c c = 1/n dimension The overall model complexity is n 2 but important parts of the model can be learned in time of order n January / 82

87 Rank-µ Update Covariance Matrix Adaptation Covariance Matrix Rank-µ Update x i = m + σ y i, y i N i (0, C), m m + σy w y w = µ i=1 w i y i:λ The rank-µ update extends the update rule for large population sizes λ using µ > 1 vectors to update C at each generation step. The weighted empirical covariance matrix C µ = µ w i y i:λ y T i:λ i=1 computes a weighted mean of the outer products of the best µ steps and has rank min(µ, n) with probability one. with µ = λ weights can be negative 10 The rank-µ update then reads C (1 c cov ) C + c cov C µ where c cov µ w /n 2 and c cov Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC. January / 82

88 Rank-µ Update Covariance Matrix Adaptation Covariance Matrix Rank-µ Update x i = m + σ y i, y i N i (0, C), m m + σy w y w = µ i=1 w i y i:λ The rank-µ update extends the update rule for large population sizes λ using µ > 1 vectors to update C at each generation step. The weighted empirical covariance matrix C µ = µ w i y i:λ y T i:λ i=1 computes a weighted mean of the outer products of the best µ steps and has rank min(µ, n) with probability one. with µ = λ weights can be negative 10 The rank-µ update then reads C (1 c cov ) C + c cov C µ where c cov µ w /n 2 and c cov Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC. January / 82

89 Rank-µ Update Covariance Matrix Adaptation Covariance Matrix Rank-µ Update x i = m + σ y i, y i N i (0, C), m m + σy w y w = µ i=1 w i y i:λ The rank-µ update extends the update rule for large population sizes λ using µ > 1 vectors to update C at each generation step. The weighted empirical covariance matrix C µ = µ w i y i:λ y T i:λ i=1 computes a weighted mean of the outer products of the best µ steps and has rank min(µ, n) with probability one. with µ = λ weights can be negative 10 The rank-µ update then reads C (1 c cov ) C + c cov C µ where c cov µ w /n 2 and c cov Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC. January / 82

90 Covariance Matrix Adaptation Covariance Matrix Rank-µ Update x i = m + σ y i, y i N (0, C) C µ = 1 yi:λ µ y T i:λ C (1 1) C + 1 C µ m new m + 1 µ yi:λ sampling of λ = 150 solutions where C = I and σ = 1 calculating C where µ = 50, w 1 = = w µ = 1 µ, and c cov = 1 new distribution ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

91 Covariance Matrix Adaptation Covariance Matrix Rank-µ Update Rank-µ CMA versus Estimation of Multivariate Normal Algorithm EMNA global 11 x i = m old + y i, y i N (0, C) C µ 1 (xi:λ m old )(x i:λ m old ) T m new = m old + 1 µ yi:λ rank-µ CMA conducts a PCA of steps x i = m old + y i, y i N (0, C) C µ 1 (xi:λ m new)(x i:λ m new) T sampling of λ = 150 calculating C from µ = 50 solutions (dots) solutions m new is the minimizer for the variances when calculating C m new = m old + 1 µ yi:λ new distribution EMNA global conducts a PCA of points 11 Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp January / 82

92 Covariance Matrix Adaptation Covariance Matrix Rank-µ Update The rank-µ update increases the possible learning rate in large populations roughly from 2/n 2 to µ w/n 2 can reduce the number of necessary generations roughly from O(n 2 ) to O(n) (12) given µ w λ n Therefore the rank-µ update is the primary mechanism whenever a large population size is used say λ 3 n + 10 The rank-one update uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from O(n 2 ) to O(n). Rank-one update and rank-µ update can be combined 12 Hansen, Müller, and Koumoutsakos Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp all equations ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

93 Covariance Matrix Adaptation Covariance Matrix Rank-µ Update The rank-µ update increases the possible learning rate in large populations roughly from 2/n 2 to µ w/n 2 can reduce the number of necessary generations roughly from O(n 2 ) to O(n) (12) given µ w λ n Therefore the rank-µ update is the primary mechanism whenever a large population size is used say λ 3 n + 10 The rank-one update uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from O(n 2 ) to O(n). Rank-one update and rank-µ update can be combined 12 Hansen, Müller, and Koumoutsakos Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp all equations ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

94 Covariance Matrix Adaptation Covariance Matrix Rank-µ Update The rank-µ update increases the possible learning rate in large populations roughly from 2/n 2 to µ w/n 2 can reduce the number of necessary generations roughly from O(n 2 ) to O(n) (12) given µ w λ n Therefore the rank-µ update is the primary mechanism whenever a large population size is used say λ 3 n + 10 The rank-one update uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from O(n 2 ) to O(n). Rank-one update and rank-µ update can be combined 12 Hansen, Müller, and Koumoutsakos Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp all equations ours Contrôle Avancé - Ecole Centrale Paris[0.8cm] Anne Auger CMA-ES January 2014 () January / 82

95 CMA-ES Summary Summary of Equations The Covariance Matrix Adaptation Evolution Strategy Input: m R n, σ R +, λ Initialize: C = I, and p c = 0, p σ = 0, Set: c c 4/n, c σ 4/n, c 1 2/n 2, c µ µ w /n 2, c 1 + c µ 1, d σ 1 + µ w 1 and w i=1...λ such that µ w = µ 0.3 λ i=1 wi2 While not terminate x i = m + σ y i, y i N i (0, C), for i = 1,..., λ sampling m µ i=1 w i x i:λ = m + σy w where y w = µ i=1 w i y i:λ update mean p c (1 c c ) p c + 1I { pσ <1.5 n} 1 (1 cc ) 2 µ w y w cumulation for C p σ (1 c σ ) p σ + 1 (1 c σ ) 2 µ w C 1 2 y w C (1 c 1 c µ ) C + c 1 p c p T µ c + c µ i=1 w i y i:λ y T i:λ ( ( )) c σ σ exp σ pσ d σ E N(0,I) 1 n, cumulation for σ update C update of σ Not covered on this slide: termination, restarts, useful output, boundaries and encoding January / 82

96 Source Code Snippet CMA-ES Summary January / 82

Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation

Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation Anne Auger & Nikolaus Hansen INRIA Research Centre Saclay Île-de-France Project team TAO University Paris-Sud, LRI (UMR 8623), Bat.

More information

Problem Statement Continuous Domain Search/Optimization. Tutorial Evolution Strategies and Related Estimation of Distribution Algorithms.

Problem Statement Continuous Domain Search/Optimization. Tutorial Evolution Strategies and Related Estimation of Distribution Algorithms. Tutorial Evolution Strategies and Related Estimation of Distribution Algorithms Anne Auger & Nikolaus Hansen INRIA Saclay - Ile-de-France, project team TAO Universite Paris-Sud, LRI, Bat. 49 945 ORSAY

More information

Stochastic Methods for Continuous Optimization

Stochastic Methods for Continuous Optimization Stochastic Methods for Continuous Optimization Anne Auger et Dimo Brockhoff Paris-Saclay Master - Master 2 Informatique - Parcours Apprentissage, Information et Contenu (AIC) 2016 Slides taken from Auger,

More information

Advanced Optimization

Advanced Optimization Advanced Optimization Lecture 3: 1: Randomized Algorithms for for Continuous Discrete Problems Problems November 22, 2016 Master AIC Université Paris-Saclay, Orsay, France Anne Auger INRIA Saclay Ile-de-France

More information

Introduction to Black-Box Optimization in Continuous Search Spaces. Definitions, Examples, Difficulties

Introduction to Black-Box Optimization in Continuous Search Spaces. Definitions, Examples, Difficulties 1 Introduction to Black-Box Optimization in Continuous Search Spaces Definitions, Examples, Difficulties Tutorial: Evolution Strategies and CMA-ES (Covariance Matrix Adaptation) Anne Auger & Nikolaus Hansen

More information

Stochastic optimization and a variable metric approach

Stochastic optimization and a variable metric approach The challenges for stochastic optimization and a variable metric approach Microsoft Research INRIA Joint Centre, INRIA Saclay April 6, 2009 Content 1 Introduction 2 The Challenges 3 Stochastic Search 4

More information

Numerical optimization Typical di culties in optimization. (considerably) larger than three. dependencies between the objective variables

Numerical optimization Typical di culties in optimization. (considerably) larger than three. dependencies between the objective variables 100 90 80 70 60 50 40 30 20 10 4 3 2 1 0 1 2 3 4 0 What Makes a Function Di cult to Solve? ruggedness non-smooth, discontinuous, multimodal, and/or noisy function dimensionality non-separability (considerably)

More information

Introduction to Randomized Black-Box Numerical Optimization and CMA-ES

Introduction to Randomized Black-Box Numerical Optimization and CMA-ES Introduction to Randomized Black-Box Numerical Optimization and CMA-ES July 3, 2017 CEA/EDF/Inria summer school "Numerical Analysis" Université Pierre-et-Marie-Curie, Paris, France Anne Auger, Asma Atamna,

More information

Addressing Numerical Black-Box Optimization: CMA-ES (Tutorial)

Addressing Numerical Black-Box Optimization: CMA-ES (Tutorial) Addressing Numerical Black-Box Optimization: CMA-ES (Tutorial) Anne Auger & Nikolaus Hansen INRIA Research Centre Saclay Île-de-France Project team TAO University Paris-Sud, LRI (UMR 8623), Bat. 490 91405

More information

Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation

Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation Tutorial CMA-ES Evolution Strategies and Covariance Matrix Adaptation Anne Auger & Nikolaus Hansen INRIA Research Centre Saclay Île-de-France Project team TAO University Paris-Sud, LRI (UMR 8623), Bat.

More information

Optimisation numérique par algorithmes stochastiques adaptatifs

Optimisation numérique par algorithmes stochastiques adaptatifs Optimisation numérique par algorithmes stochastiques adaptatifs Anne Auger M2R: Apprentissage et Optimisation avancés et Applications anne.auger@inria.fr INRIA Saclay - Ile-de-France, project team TAO

More information

Mirrored Variants of the (1,4)-CMA-ES Compared on the Noiseless BBOB-2010 Testbed

Mirrored Variants of the (1,4)-CMA-ES Compared on the Noiseless BBOB-2010 Testbed Author manuscript, published in "GECCO workshop on Black-Box Optimization Benchmarking (BBOB') () 9-" DOI :./8.8 Mirrored Variants of the (,)-CMA-ES Compared on the Noiseless BBOB- Testbed [Black-Box Optimization

More information

Empirical comparisons of several derivative free optimization algorithms

Empirical comparisons of several derivative free optimization algorithms Empirical comparisons of several derivative free optimization algorithms A. Auger,, N. Hansen,, J. M. Perez Zerpa, R. Ros, M. Schoenauer, TAO Project-Team, INRIA Saclay Ile-de-France LRI, Bat 90 Univ.

More information

Bio-inspired Continuous Optimization: The Coming of Age

Bio-inspired Continuous Optimization: The Coming of Age Bio-inspired Continuous Optimization: The Coming of Age Anne Auger Nikolaus Hansen Nikolas Mauny Raymond Ros Marc Schoenauer TAO Team, INRIA Futurs, FRANCE http://tao.lri.fr First.Last@inria.fr CEC 27,

More information

A Restart CMA Evolution Strategy With Increasing Population Size

A Restart CMA Evolution Strategy With Increasing Population Size Anne Auger and Nikolaus Hansen A Restart CMA Evolution Strategy ith Increasing Population Size Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005 c IEEE A Restart CMA Evolution Strategy

More information

How information theory sheds new light on black-box optimization

How information theory sheds new light on black-box optimization How information theory sheds new light on black-box optimization Anne Auger Colloque Théorie de l information : nouvelles frontières dans le cadre du centenaire de Claude Shannon IHP, 26, 27 and 28 October,

More information

Experimental Comparisons of Derivative Free Optimization Algorithms

Experimental Comparisons of Derivative Free Optimization Algorithms Experimental Comparisons of Derivative Free Optimization Algorithms Anne Auger Nikolaus Hansen J. M. Perez Zerpa Raymond Ros Marc Schoenauer TAO Project-Team, INRIA Saclay Île-de-France, and Microsoft-INRIA

More information

CMA-ES a Stochastic Second-Order Method for Function-Value Free Numerical Optimization

CMA-ES a Stochastic Second-Order Method for Function-Value Free Numerical Optimization CMA-ES a Stochastic Second-Order Method for Function-Value Free Numerical Optimization Nikolaus Hansen INRIA, Research Centre Saclay Machine Learning and Optimization Team, TAO Univ. Paris-Sud, LRI MSRC

More information

The CMA Evolution Strategy: A Tutorial

The CMA Evolution Strategy: A Tutorial The CMA Evolution Strategy: A Tutorial Nikolaus Hansen November 6, 205 Contents Nomenclature 3 0 Preliminaries 4 0. Eigendecomposition of a Positive Definite Matrix... 5 0.2 The Multivariate Normal Distribution...

More information

Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed

Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed Benchmarking a BI-Population CMA-ES on the BBOB- Function Testbed Nikolaus Hansen Microsoft Research INRIA Joint Centre rue Jean Rostand Orsay Cedex, France Nikolaus.Hansen@inria.fr ABSTRACT We propose

More information

Surrogate models for Single and Multi-Objective Stochastic Optimization: Integrating Support Vector Machines and Covariance-Matrix Adaptation-ES

Surrogate models for Single and Multi-Objective Stochastic Optimization: Integrating Support Vector Machines and Covariance-Matrix Adaptation-ES Covariance Matrix Adaptation-Evolution Strategy Surrogate models for Single and Multi-Objective Stochastic Optimization: Integrating and Covariance-Matrix Adaptation-ES Ilya Loshchilov, Marc Schoenauer,

More information

Black-Box Optimization Benchmarking the IPOP-CMA-ES on the Noisy Testbed

Black-Box Optimization Benchmarking the IPOP-CMA-ES on the Noisy Testbed Black-Box Optimization Benchmarking the IPOP-CMA-ES on the Noisy Testbed Raymond Ros To cite this version: Raymond Ros. Black-Box Optimization Benchmarking the IPOP-CMA-ES on the Noisy Testbed. Genetic

More information

Evolution Strategies. Nikolaus Hansen, Dirk V. Arnold and Anne Auger. February 11, 2015

Evolution Strategies. Nikolaus Hansen, Dirk V. Arnold and Anne Auger. February 11, 2015 Evolution Strategies Nikolaus Hansen, Dirk V. Arnold and Anne Auger February 11, 2015 1 Contents 1 Overview 3 2 Main Principles 4 2.1 (µ/ρ +, λ) Notation for Selection and Recombination.......................

More information

Principled Design of Continuous Stochastic Search: From Theory to

Principled Design of Continuous Stochastic Search: From Theory to Contents Principled Design of Continuous Stochastic Search: From Theory to Practice....................................................... 3 Nikolaus Hansen and Anne Auger 1 Introduction: Top Down Versus

More information

Adaptive Coordinate Descent

Adaptive Coordinate Descent Adaptive Coordinate Descent Ilya Loshchilov 1,2, Marc Schoenauer 1,2, Michèle Sebag 2,1 1 TAO Project-team, INRIA Saclay - Île-de-France 2 and Laboratoire de Recherche en Informatique (UMR CNRS 8623) Université

More information

Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Function Testbed

Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Function Testbed Benchmarking the (+)-CMA-ES on the BBOB-9 Function Testbed Anne Auger, Nikolaus Hansen To cite this version: Anne Auger, Nikolaus Hansen. Benchmarking the (+)-CMA-ES on the BBOB-9 Function Testbed. ACM-GECCO

More information

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem Verena Heidrich-Meisner and Christian Igel Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany {Verena.Heidrich-Meisner,Christian.Igel}@neuroinformatik.rub.de

More information

A comparative introduction to two optimization classics: the Nelder-Mead and the CMA-ES algorithms

A comparative introduction to two optimization classics: the Nelder-Mead and the CMA-ES algorithms A comparative introduction to two optimization classics: the Nelder-Mead and the CMA-ES algorithms Rodolphe Le Riche 1,2 1 Ecole des Mines de Saint Etienne, France 2 CNRS LIMOS France March 2018 MEXICO

More information

Cumulative Step-size Adaptation on Linear Functions

Cumulative Step-size Adaptation on Linear Functions Cumulative Step-size Adaptation on Linear Functions Alexandre Chotard, Anne Auger, Nikolaus Hansen To cite this version: Alexandre Chotard, Anne Auger, Nikolaus Hansen. Cumulative Step-size Adaptation

More information

Benchmarking a Weighted Negative Covariance Matrix Update on the BBOB-2010 Noiseless Testbed

Benchmarking a Weighted Negative Covariance Matrix Update on the BBOB-2010 Noiseless Testbed Benchmarking a Weighted Negative Covariance Matrix Update on the BBOB- Noiseless Testbed Nikolaus Hansen, Raymond Ros To cite this version: Nikolaus Hansen, Raymond Ros. Benchmarking a Weighted Negative

More information

Covariance Matrix Adaptation in Multiobjective Optimization

Covariance Matrix Adaptation in Multiobjective Optimization Covariance Matrix Adaptation in Multiobjective Optimization Dimo Brockhoff INRIA Lille Nord Europe October 30, 2014 PGMO-COPI 2014, Ecole Polytechnique, France Mastertitelformat Scenario: Multiobjective

More information

BI-population CMA-ES Algorithms with Surrogate Models and Line Searches

BI-population CMA-ES Algorithms with Surrogate Models and Line Searches BI-population CMA-ES Algorithms with Surrogate Models and Line Searches Ilya Loshchilov 1, Marc Schoenauer 2 and Michèle Sebag 2 1 LIS, École Polytechnique Fédérale de Lausanne 2 TAO, INRIA CNRS Université

More information

Bounding the Population Size of IPOP-CMA-ES on the Noiseless BBOB Testbed

Bounding the Population Size of IPOP-CMA-ES on the Noiseless BBOB Testbed Bounding the Population Size of OP-CMA-ES on the Noiseless BBOB Testbed Tianjun Liao IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium tliao@ulb.ac.be Thomas Stützle IRIDIA, CoDE, Université

More information

Natural Evolution Strategies for Direct Search

Natural Evolution Strategies for Direct Search Tobias Glasmachers Natural Evolution Strategies for Direct Search 1 Natural Evolution Strategies for Direct Search PGMO-COPI 2014 Recent Advances on Continuous Randomized black-box optimization Thursday

More information

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Yong Wang and Zhi-Zhong Liu School of Information Science and Engineering Central South University ywang@csu.edu.cn

More information

A CMA-ES for Mixed-Integer Nonlinear Optimization

A CMA-ES for Mixed-Integer Nonlinear Optimization A CMA-ES for Mixed-Integer Nonlinear Optimization Nikolaus Hansen To cite this version: Nikolaus Hansen. A CMA-ES for Mixed-Integer Nonlinear Optimization. [Research Report] RR-, INRIA.. HAL Id: inria-

More information

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Yong Wang and Zhi-Zhong Liu School of Information Science and Engineering Central South University ywang@csu.edu.cn

More information

Completely Derandomized Self-Adaptation in Evolution Strategies

Completely Derandomized Self-Adaptation in Evolution Strategies Completely Derandomized Self-Adaptation in Evolution Strategies Nikolaus Hansen and Andreas Ostermeier In Evolutionary Computation 9(2) pp. 159-195 (2001) Errata Section 3 footnote 9: We use the expectation

More information

Real-Parameter Black-Box Optimization Benchmarking 2010: Presentation of the Noiseless Functions

Real-Parameter Black-Box Optimization Benchmarking 2010: Presentation of the Noiseless Functions Real-Parameter Black-Box Optimization Benchmarking 2010: Presentation of the Noiseless Functions Steffen Finck, Nikolaus Hansen, Raymond Ros and Anne Auger Report 2009/20, Research Center PPE, re-compiled

More information

The Dispersion Metric and the CMA Evolution Strategy

The Dispersion Metric and the CMA Evolution Strategy The Dispersion Metric and the CMA Evolution Strategy Monte Lunacek Department of Computer Science Colorado State University Fort Collins, CO 80523 lunacek@cs.colostate.edu Darrell Whitley Department of

More information

A (1+1)-CMA-ES for Constrained Optimisation

A (1+1)-CMA-ES for Constrained Optimisation A (1+1)-CMA-ES for Constrained Optimisation Dirk Arnold, Nikolaus Hansen To cite this version: Dirk Arnold, Nikolaus Hansen. A (1+1)-CMA-ES for Constrained Optimisation. Terence Soule and Jason H. Moore.

More information

Comparison-Based Optimizers Need Comparison-Based Surrogates

Comparison-Based Optimizers Need Comparison-Based Surrogates Comparison-Based Optimizers Need Comparison-Based Surrogates Ilya Loshchilov 1,2, Marc Schoenauer 1,2, and Michèle Sebag 2,1 1 TAO Project-team, INRIA Saclay - Île-de-France 2 Laboratoire de Recherche

More information

A CMA-ES with Multiplicative Covariance Matrix Updates

A CMA-ES with Multiplicative Covariance Matrix Updates A with Multiplicative Covariance Matrix Updates Oswin Krause Department of Computer Science University of Copenhagen Copenhagen,Denmark oswin.krause@di.ku.dk Tobias Glasmachers Institut für Neuroinformatik

More information

Efficient Covariance Matrix Update for Variable Metric Evolution Strategies

Efficient Covariance Matrix Update for Variable Metric Evolution Strategies Efficient Covariance Matrix Update for Variable Metric Evolution Strategies Thorsten Suttorp, Nikolaus Hansen, Christian Igel To cite this version: Thorsten Suttorp, Nikolaus Hansen, Christian Igel. Efficient

More information

Parameter Estimation of Complex Chemical Kinetics with Covariance Matrix Adaptation Evolution Strategy

Parameter Estimation of Complex Chemical Kinetics with Covariance Matrix Adaptation Evolution Strategy MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 68 (2012) 469-476 ISSN 0340-6253 Parameter Estimation of Complex Chemical Kinetics with Covariance Matrix

More information

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes Investigating the Local-Meta-Model CMA-ES for Large Population Sizes Zyed Bouzarkouna, Anne Auger, Didier Yu Ding To cite this version: Zyed Bouzarkouna, Anne Auger, Didier Yu Ding. Investigating the Local-Meta-Model

More information

CLASSICAL gradient methods and evolutionary algorithms

CLASSICAL gradient methods and evolutionary algorithms IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 2, JULY 1998 45 Evolutionary Algorithms and Gradient Search: Similarities and Differences Ralf Salomon Abstract Classical gradient methods and

More information

Computational Intelligence Winter Term 2017/18

Computational Intelligence Winter Term 2017/18 Computational Intelligence Winter Term 2017/18 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund mutation: Y = X + Z Z ~ N(0, C) multinormal distribution

More information

A0M33EOA: EAs for Real-Parameter Optimization. Differential Evolution. CMA-ES.

A0M33EOA: EAs for Real-Parameter Optimization. Differential Evolution. CMA-ES. A0M33EOA: EAs for Real-Parameter Optimization. Differential Evolution. CMA-ES. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Many parts adapted

More information

Noisy Optimization: A Theoretical Strategy Comparison of ES, EGS, SPSA & IF on the Noisy Sphere

Noisy Optimization: A Theoretical Strategy Comparison of ES, EGS, SPSA & IF on the Noisy Sphere Noisy Optimization: A Theoretical Strategy Comparison of ES, EGS, SPSA & IF on the Noisy Sphere S. Finck Vorarlberg University of Applied Sciences Hochschulstrasse 1 Dornbirn, Austria steffen.finck@fhv.at

More information

Benchmarking Gaussian Processes and Random Forests on the BBOB Noiseless Testbed

Benchmarking Gaussian Processes and Random Forests on the BBOB Noiseless Testbed Benchmarking Gaussian Processes and Random Forests on the BBOB Noiseless Testbed Lukáš Bajer,, Zbyněk Pitra,, Martin Holeňa Faculty of Mathematics and Physics, Charles University, Institute of Computer

More information

Viability Principles for Constrained Optimization Using a (1+1)-CMA-ES

Viability Principles for Constrained Optimization Using a (1+1)-CMA-ES Viability Principles for Constrained Optimization Using a (1+1)-CMA-ES Andrea Maesani and Dario Floreano Laboratory of Intelligent Systems, Institute of Microengineering, Ecole Polytechnique Fédérale de

More information

Comparison of NEWUOA with Different Numbers of Interpolation Points on the BBOB Noiseless Testbed

Comparison of NEWUOA with Different Numbers of Interpolation Points on the BBOB Noiseless Testbed Comparison of NEWUOA with Different Numbers of Interpolation Points on the BBOB Noiseless Testbed Raymond Ros To cite this version: Raymond Ros. Comparison of NEWUOA with Different Numbers of Interpolation

More information

Tuning Parameters across Mixed Dimensional Instances: A Performance Scalability Study of Sep-G-CMA-ES

Tuning Parameters across Mixed Dimensional Instances: A Performance Scalability Study of Sep-G-CMA-ES Université Libre de Bruxelles Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle Tuning Parameters across Mixed Dimensional Instances: A Performance Scalability

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Blackbox Optimization Marc Toussaint U Stuttgart Blackbox Optimization The term is not really well defined I use it to express that only f(x) can be evaluated f(x) or 2 f(x)

More information

Benchmarking Natural Evolution Strategies with Adaptation Sampling on the Noiseless and Noisy Black-box Optimization Testbeds

Benchmarking Natural Evolution Strategies with Adaptation Sampling on the Noiseless and Noisy Black-box Optimization Testbeds Benchmarking Natural Evolution Strategies with Adaptation Sampling on the Noiseless and Noisy Black-box Optimization Testbeds Tom Schaul Courant Institute of Mathematical Sciences, New York University

More information

Challenges in High-dimensional Reinforcement Learning with Evolution Strategies

Challenges in High-dimensional Reinforcement Learning with Evolution Strategies Challenges in High-dimensional Reinforcement Learning with Evolution Strategies Nils Müller and Tobias Glasmachers Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany {nils.mueller, tobias.glasmachers}@ini.rub.de

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531

TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 TECHNISCHE UNIVERSITÄT DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 5 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence

More information

Evolutionary Gradient Search Revisited

Evolutionary Gradient Search Revisited !"#%$'&(! )*+,.-0/214365879/;:!=0? @B*CEDFGHC*I>JK9ML NPORQTS9UWVRX%YZYW[*V\YP] ^`_acb.d*e%f`gegih jkelm_acnbpò q"r otsvu_nxwmybz{lm }wm~lmw gih;g ~ c ƒwmÿ x }n+bp twe eˆbkea} }q k2špe oœ Ek z{lmoenx

More information

Local-Meta-Model CMA-ES for Partially Separable Functions

Local-Meta-Model CMA-ES for Partially Separable Functions Local-Meta-Model CMA-ES for Partially Separable Functions Zyed Bouzarkouna, Anne Auger, Didier Yu Ding To cite this version: Zyed Bouzarkouna, Anne Auger, Didier Yu Ding. Local-Meta-Model CMA-ES for Partially

More information

Stochastic Search using the Natural Gradient

Stochastic Search using the Natural Gradient Keywords: stochastic search, natural gradient, evolution strategies Sun Yi Daan Wierstra Tom Schaul Jürgen Schmidhuber IDSIA, Galleria 2, Manno 6928, Switzerland yi@idsiach daan@idsiach tom@idsiach juergen@idsiach

More information

Gradient-based Adaptive Stochastic Search

Gradient-based Adaptive Stochastic Search 1 / 41 Gradient-based Adaptive Stochastic Search Enlu Zhou H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology November 5, 2014 Outline 2 / 41 1 Introduction

More information

Genetic Algorithm: introduction

Genetic Algorithm: introduction 1 Genetic Algorithm: introduction 2 The Metaphor EVOLUTION Individual Fitness Environment PROBLEM SOLVING Candidate Solution Quality Problem 3 The Ingredients t reproduction t + 1 selection mutation recombination

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Chapter 10. Theory of Evolution Strategies: A New Perspective

Chapter 10. Theory of Evolution Strategies: A New Perspective A. Auger and N. Hansen Theory of Evolution Strategies: a New Perspective In: A. Auger and B. Doerr, eds. (2010). Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific

More information

Evolutionary Ensemble Strategies for Heuristic Scheduling

Evolutionary Ensemble Strategies for Heuristic Scheduling 0 International Conference on Computational Science and Computational Intelligence Evolutionary Ensemble Strategies for Heuristic Scheduling Thomas Philip Runarsson School of Engineering and Natural Science

More information

arxiv: v4 [math.oc] 28 Apr 2017

arxiv: v4 [math.oc] 28 Apr 2017 Journal of Machine Learning Research 18 (2017) 1-65 Submitted 11/14; Revised 10/16; Published 4/17 Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles arxiv:1106.3708v4

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

Benchmarking Projection-Based Real Coded Genetic Algorithm on BBOB-2013 Noiseless Function Testbed

Benchmarking Projection-Based Real Coded Genetic Algorithm on BBOB-2013 Noiseless Function Testbed Benchmarking Projection-Based Real Coded Genetic Algorithm on BBOB-2013 Noiseless Function Testbed Babatunde Sawyerr 1 Aderemi Adewumi 2 Montaz Ali 3 1 University of Lagos, Lagos, Nigeria 2 University

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

arxiv: v1 [cs.ne] 9 May 2016

arxiv: v1 [cs.ne] 9 May 2016 Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES) arxiv:1605.02720v1 [cs.ne] 9 May 2016 ABSTRACT Ilya Loshchilov University of Freiburg Freiburg, Germany ilya.loshchilov@gmail.com

More information

arxiv: v1 [cs.ne] 29 Jul 2014

arxiv: v1 [cs.ne] 29 Jul 2014 A CUDA-Based Real Parameter Optimization Benchmark Ke Ding and Ying Tan School of Electronics Engineering and Computer Science, Peking University arxiv:1407.7737v1 [cs.ne] 29 Jul 2014 Abstract. Benchmarking

More information

Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions

Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions Youhei Akimoto, Anne Auger, Nikolaus Hansen To cite this version: Youhei Akimoto, Anne Auger,

More information

Optimization using derivative-free and metaheuristic methods

Optimization using derivative-free and metaheuristic methods Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Kateřina Márová Optimization using derivative-free and metaheuristic methods Department of Numerical Mathematics Supervisor

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Decomposition and Metaoptimization of Mutation Operator in Differential Evolution

Decomposition and Metaoptimization of Mutation Operator in Differential Evolution Decomposition and Metaoptimization of Mutation Operator in Differential Evolution Karol Opara 1 and Jaros law Arabas 2 1 Systems Research Institute, Polish Academy of Sciences 2 Institute of Electronic

More information

Particle Swarm Optimization with Velocity Adaptation

Particle Swarm Optimization with Velocity Adaptation In Proceedings of the International Conference on Adaptive and Intelligent Systems (ICAIS 2009), pp. 146 151, 2009. c 2009 IEEE Particle Swarm Optimization with Velocity Adaptation Sabine Helwig, Frank

More information

The particle swarm optimization algorithm: convergence analysis and parameter selection

The particle swarm optimization algorithm: convergence analysis and parameter selection Information Processing Letters 85 (2003) 317 325 www.elsevier.com/locate/ipl The particle swarm optimization algorithm: convergence analysis and parameter selection Ioan Cristian Trelea INA P-G, UMR Génie

More information

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN ,

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN , ESANN'200 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 25-27 April 200, D-Facto public., ISBN 2-930307-0-3, pp. 79-84 Investigating the Influence of the Neighborhood

More information

THIS paper considers the general nonlinear programming

THIS paper considers the general nonlinear programming IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 1 Search Biases in Constrained Evolutionary Optimization Thomas Philip Runarsson, Member, IEEE, and Xin

More information

Power Prediction in Smart Grids with Evolutionary Local Kernel Regression

Power Prediction in Smart Grids with Evolutionary Local Kernel Regression Power Prediction in Smart Grids with Evolutionary Local Kernel Regression Oliver Kramer, Benjamin Satzger, and Jörg Lässig International Computer Science Institute, Berkeley CA 94704, USA, {okramer, satzger,

More information

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz In Neurocomputing 2(-3): 279-294 (998). A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models Isabelle Rivals and Léon Personnaz Laboratoire d'électronique,

More information

arxiv: v6 [math.oc] 11 May 2018

arxiv: v6 [math.oc] 11 May 2018 Quality Gain Analysis of the Weighted Recombination Evolution Strategy on General Convex Quadratic Functions Youhei Akimoto a,, Anne Auger b, Nikolaus Hansen b a Faculty of Engineering, Information and

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Investigation of Mutation Strategies in Differential Evolution for Solving Global Optimization Problems

Investigation of Mutation Strategies in Differential Evolution for Solving Global Optimization Problems Investigation of Mutation Strategies in Differential Evolution for Solving Global Optimization Problems Miguel Leon Ortiz and Ning Xiong Mälardalen University, Västerås, SWEDEN Abstract. Differential evolution

More information

Efficient Natural Evolution Strategies

Efficient Natural Evolution Strategies Efficient Natural Evolution Strategies Evolution Strategies and Evolutionary Programming Track ABSTRACT Yi Sun Manno 698, Switzerland yi@idsiach Tom Schaul Manno 698, Switzerland tom@idsiach Efficient

More information

BBOB-Benchmarking Two Variants of the Line-Search Algorithm

BBOB-Benchmarking Two Variants of the Line-Search Algorithm BBOB-Benchmarking Two Variants of the Line-Search Algorithm Petr Pošík Czech Technical University in Prague, Faculty of Electrical Engineering, Dept. of Cybernetics Technická, Prague posik@labe.felk.cvut.cz

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed

Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed Lukáš Bajer Institute of Computer Science Academy of Sciences of the Czech Republic and Faculty of Mathematics

More information

Evolutionary Algorithms

Evolutionary Algorithms Evolutionary Algorithms a short introduction Giuseppe Narzisi Courant Institute of Mathematical Sciences New York University 31 January 2008 Outline 1 Evolution 2 Evolutionary Computation 3 Evolutionary

More information

Natural Evolution Strategies

Natural Evolution Strategies Natural Evolution Strategies Daan Wierstra, Tom Schaul, Jan Peters and Juergen Schmidhuber Abstract This paper presents Natural Evolution Strategies (NES), a novel algorithm for performing real-valued

More information

A Method for Handling Uncertainty in Evolutionary Optimization with an Application to Feedback Control of Combustion

A Method for Handling Uncertainty in Evolutionary Optimization with an Application to Feedback Control of Combustion A Method for Handling Uncertainty in Evolutionary Optimization with an Application to Feedback Control of Combustion Nikolaus Hansen, Andre Niederberger, Lino Guzzella, Petros Koumoutsakos To cite this

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information