Covariate-Assisted Variable Ranking

Size: px
Start display at page:

Download "Covariate-Assisted Variable Ranking"

Transcription

1 Covariate-Assisted Variable Ranking Tracy Ke Department of Statistics Harvard University Louis, Sep. 8, /18

2 Sparse linear regression Y = X β + z, X R n,p, z N(0, σ 2 I n ) Signals (nonzero s of β) are Rare/Weak A column of X may be significantly correlated with a few others Goal: Rank variables so that the top-ranked ones contain as many signals as possible 2/18

3 Ranking by marginal scores In this talk, we assume design is normalized, i.e., x j 2 = 1 T j = (x j, Y ) (x j, x j ) 2 = (x j, Y ) 2, x j : j-th column of X Pros: Computationally efficient Cons: Signal Cancellation (x j, Y ) = β j + k:k j,β k 0 (x j, x k )β k +(x j, z) } {{ } may cancel each other 3/18

4 Multivariate scores P I : projection from R n to span{x j, j I} T j I = P I Y 2 P I\{j} Y 2 Reduce to marginal scores when I = {j} T j I is the log-likelihood-ratio between Supp(β) = I v.s. Supp(β) = I \ {j} 4/18

5 Example: Blockwise diagonal design Gram matrix X X is blockwise diagonal with 2 2 blocks ( ) 1 h, where h ( 1, 1) h 1 5/18

6 Example: Blockwise diagonal design Gram matrix X X is blockwise diagonal with 2 2 blocks ( ) 1 h, where h ( 1, 1) h 1 β has 3 signals: β 1 = τ, β 2 = β 3 = a τ (h, a) = ( 1/3, 1/3), σ 2 = 0 Marginal Bivariate Rank by Rank by Variable Score Score MaS max(mas, BiS) β 1 = τ (8/9)τ (2 2/3)τ 1 1 β 2 = (1/3)τ 0 (2 2/9)τ 4 3 β 3 = (1/3)τ (1/3)τ (2 2/9)τ 2 2 β 4 = 0 (1/9)τ β 5 = /18

7 Blockwise design (noiseless case) Marginal ranking mis-ranks some signals below noise when ah > a h Our proposal: ranking by the maximum of marginal score and bivariate score It correctly ranks all signals above noise if h < 1/ /18

8 Blockwise design (noiseless case) Marginal ranking mis-ranks some signals below noise when ah > a h Our proposal: ranking by the maximum of marginal score and bivariate score It correctly ranks all signals above noise if h < 1/ In the noiseless case, least-squares always gives correct ranking 6/18

9 Rare/Weak signal model and three regions β j = { 0, with prob. 1 ɛp ±τ p, with prob. ɛ p /2 ɛ p = p ϑ, τ p = 2r log(p), 0 < ϑ, r < 1 R α = Rank of j α, j α : variable with rank α s among all s-signals α Exactly Rankable: R α = 1 for all α (0, 1), w.h.p Rankable: 1 < R α 1 + o p (1) for any α (0, 1) Not Rankable. R α 1 for some α (0, 1) 7/18

10 Blockwise design (phase diagram) Our proposal Exactly Rankable Least-squares Exactly Rankable 3.5 r 3 r Rankable Rankable Not Rankable ϑ MR 0.5 Not Rankable ϑ MR (zoom-out) r Rankable Exactly Rankable 10 8 r 6 4 Rankable Exactly Rankable Not Rankable ϑ 2 Not Rankable ϑ /18

11 Graph Of Strong Dependence (GOSD) Define GOSD G = (V, E): V = {1, 2,..., p}: each variable is a node Nodes i and j have an edge iff (xi, x j ) δ, (δ = 1 log(p), say) Under our assumptions, G is sparse 9/18

12 Covariate-Assisted Ranking (CAR) Rank variables by T j = max I A j (m) T j I, T j I = P I Y 2 P I\{j} Y 2 A j (m): size m connected subgraphs containing j 10/18

13 Covariate-Assisted Ranking (CAR) Rank variables by T j = max I A j (m) T j I, T j I = P I Y 2 P I\{j} Y 2 A j (m): size m connected subgraphs containing j Let d be the maximum degree of G. p j=1 A j(m) Cp(2.718d) m m k=1 ( ) p k 10/18

14 A real example Data: gene expression of human immortalized B cells ((p, n) = (4238, 148); Nayak et al. (2009)) Remove the first singular vector: Data = n σ k u k v k = σ 1 u 1 v 1 + k=1 n σ k u k v k k=2 }{{} design matrix X Synthetic data for regression: Y = N(X β, I n ), β j { N(0, η 2 ), 1 j s = 0, otherwise 11/18

15 Comparison of the ROC curve For CAR, (m, δ) = (2, 0.5) β j { N(0, η 2 ), 1 j s = 0, otherwise Left: (η, s) = (0.1, 50). Right: (η, s) = (5, 50) CAR MR CAR MR /18

16 Extensions Gram matrix is non-sparse but is sparsifiable Y = X β + z = HY = HX β + Hz Change-point or time-series design: linear filtering Low-rank plus sparse design: PCA projection Generalized linear models P I y 2 = log-likelihood ˆl I (y) Ke, Jin and Fan (14 ), Ke and Yang (17 ) 13/18

17 CASE for variable selection Screen. Rank variables by CAR and let Ŝ t = {1 j p, T j t} GŜ }{{} = GŜ,1 GŜ,2... GŜ, ˆM }{{} post-screening subgraph small-size components Clean. If j / Ŝ t, set ˆβ j = 0. Otherwise, we must have j GŜ,k for some k. Estimate {β j : j GŜ,k } by minimizing P GŜ,k (Y j GŜ,k β j x j ) 2 + u β 0, s.t. β j = 0 or β j v 14/18

18 Signal archipelago GS {z} signal subgraph = GS,1 GS,2... GS,M, {z } S = S(β) components 15/18

19 Rare/Weak signal model and three regions β = b j µ j, b j iid Bernoulli(ɛ), τ µ j a τ ɛ = ɛ p = p ϑ, τ = τ p = 2r log(p) Hamming distance: Hamm p ( ˆβ, { p ϑ, r) = sup µ j=1 No recovery: Hamm p ( ˆβ, ϑ, r) pɛ p P ( sgn( ˆβ j ) sgn(β j ) )} Almost Full Recovery: 1 Hamm p ( ˆβ, ϑ, r) pɛ p Exact recovery: Hamm p ( ˆβ, ϑ, r) = 0 16/18

20 Phase Diagram (blockwise design) Y N(X β, I n ), rows of X iid N(0, 1 n Ω), Ω = Left: CASE/optimal. Right: Lasso a a a a a a 1 r 5 Exact Recovery Almost Full Recovery 2 Optimal 1 1 No Recovery ϑ rr Exact Recovery Exact Non Recovery optimal Non optimal No No Recovery ϑ 6 Ji and Jin (12 ), Jin, Zhang and Zhang (14 ) 17/18

21 Take-home messages CAR: a variable ranking method that mitigates signal cancellation in marginal ranking Appealing ROC curves CASE: a screen-and-clean method for variable selection Phase transition of Hamming distance 18/18

Graphlet Screening (GS)

Graphlet Screening (GS) Graphlet Screening (GS) Jiashun Jin Carnegie Mellon University April 11, 2014 Jiashun Jin Graphlet Screening (GS) 1 / 36 Collaborators Alphabetically: Zheng (Tracy) Ke Cun-Hui Zhang Qi Zhang Princeton

More information

COVARIATE ASSISTED VARIABLE RANKING. By Zheng Tracy Ke and Fan Yang University of Chicago

COVARIATE ASSISTED VARIABLE RANKING. By Zheng Tracy Ke and Fan Yang University of Chicago Submitted to the Annals of Statistics arxiv: arxiv:0000.0000 COVARIATE ASSISTED VARIABLE RANKING By Zheng Tracy Ke and Fan Yang University of Chicago Consider a linear model y = Xβ + z, z N(0, σ 2 I n).

More information

arxiv: v2 [math.st] 25 Aug 2012

arxiv: v2 [math.st] 25 Aug 2012 Submitted to the Annals of Statistics arxiv: math.st/1205.4645 COVARIANCE ASSISTED SCREENING AND ESTIMATION arxiv:1205.4645v2 [math.st] 25 Aug 2012 By Tracy Ke,, Jiashun Jin and Jianqing Fan Princeton

More information

OPTIMAL PROCEDURES IN HIGH-DIMENSIONAL VARIABLE SELECTION

OPTIMAL PROCEDURES IN HIGH-DIMENSIONAL VARIABLE SELECTION OPTIMAL PROCEDURES IN HIGH-DIMENSIONAL VARIABLE SELECTION by Qi Zhang Bachelor of Science in Math and Applied Math, China Agricultural University, 2008 Submitted to the Graduate Faculty of the Department

More information

COVARIATE ASSISTED SCREENING AND ESTIMATION

COVARIATE ASSISTED SCREENING AND ESTIMATION The Annals of Statistics 2014, Vol. 42, No. 6, 2202 2242 DOI: 10.1214/14-AOS1243 Institute of Mathematical Statistics, 2014 COVARIATE ASSISTED SCREENING AND ESTIMATION BY ZHENG TRACY KE 1,2,3,JIASHUN JIN

More information

Clustering by Important Features PCA (IF-PCA)

Clustering by Important Features PCA (IF-PCA) Clustering by Important Features PCA (IF-PCA) Rare/Weak Signals and Phase Diagrams Jiashun Jin, CMU Zheng Tracy Ke (Univ. of Chicago) Wanjie Wang (Univ. of Pennsylvania) August 5, 2015 Jiashun Jin, CMU

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

High-dimensional Ordinary Least-squares Projection for Screening Variables

High-dimensional Ordinary Least-squares Projection for Screening Variables 1 / 38 High-dimensional Ordinary Least-squares Projection for Screening Variables Chenlei Leng Joint with Xiangyu Wang (Duke) Conference on Nonparametric Statistics for Big Data and Celebration to Honor

More information

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

High-dimensional Covariance Estimation Based On Gaussian Graphical Models High-dimensional Covariance Estimation Based On Gaussian Graphical Models Shuheng Zhou, Philipp Rutimann, Min Xu and Peter Buhlmann February 3, 2012 Problem definition Want to estimate the covariance matrix

More information

arxiv: v1 [math.st] 20 Nov 2009

arxiv: v1 [math.st] 20 Nov 2009 REVISITING MARGINAL REGRESSION arxiv:0911.4080v1 [math.st] 20 Nov 2009 By Christopher R. Genovese Jiashun Jin and Larry Wasserman Carnegie Mellon University May 31, 2018 The lasso has become an important

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Composite Loss Functions and Multivariate Regression; Sparse PCA

Composite Loss Functions and Multivariate Regression; Sparse PCA Composite Loss Functions and Multivariate Regression; Sparse PCA G. Obozinski, B. Taskar, and M. I. Jordan (2009). Joint covariate selection and joint subspace selection for multiple classification problems.

More information

Clustering by Important Features PCA (IF-PCA)

Clustering by Important Features PCA (IF-PCA) Clustering by Important Features PCA (IF-PCA) Rare/Weak Signals and Phase Diagrams Jiashun Jin, CMU David Donoho (Stanford) Zheng Tracy Ke (Univ. of Chicago) Wanjie Wang (Univ. of Pennsylvania) August

More information

Marginal Regression For Multitask Learning

Marginal Regression For Multitask Learning Mladen Kolar Machine Learning Department Carnegie Mellon University mladenk@cs.cmu.edu Han Liu Biostatistics Johns Hopkins University hanliu@jhsph.edu Abstract Variable selection is an important and practical

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Semi-Penalized Inference with Direct FDR Control

Semi-Penalized Inference with Direct FDR Control Jian Huang University of Iowa April 4, 2016 The problem Consider the linear regression model y = p x jβ j + ε, (1) j=1 where y IR n, x j IR n, ε IR n, and β j is the jth regression coefficient, Here p

More information

Sample Size Requirement For Some Low-Dimensional Estimation Problems

Sample Size Requirement For Some Low-Dimensional Estimation Problems Sample Size Requirement For Some Low-Dimensional Estimation Problems Cun-Hui Zhang, Rutgers University September 10, 2013 SAMSI Thanks for the invitation! Acknowledgements/References Sun, T. and Zhang,

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Overlapping Variable Clustering with Statistical Guarantees and LOVE

Overlapping Variable Clustering with Statistical Guarantees and LOVE with Statistical Guarantees and LOVE Department of Statistical Science Cornell University WHOA-PSI, St. Louis, August 2017 Joint work with Mike Bing, Yang Ning and Marten Wegkamp Cornell University, Department

More information

Post-selection Inference for Forward Stepwise and Least Angle Regression

Post-selection Inference for Forward Stepwise and Least Angle Regression Post-selection Inference for Forward Stepwise and Least Angle Regression Ryan & Rob Tibshirani Carnegie Mellon University & Stanford University Joint work with Jonathon Taylor, Richard Lockhart September

More information

DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING. By T. Tony Cai and Linjun Zhang University of Pennsylvania

DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING. By T. Tony Cai and Linjun Zhang University of Pennsylvania Submitted to the Annals of Statistics DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING By T. Tony Cai and Linjun Zhang University of Pennsylvania We would like to congratulate the

More information

High Dimensional Covariance and Precision Matrix Estimation

High Dimensional Covariance and Precision Matrix Estimation High Dimensional Covariance and Precision Matrix Estimation Wei Wang Washington University in St. Louis Thursday 23 rd February, 2017 Wei Wang (Washington University in St. Louis) High Dimensional Covariance

More information

A Comparison of the Lasso and Marginal Regression

A Comparison of the Lasso and Marginal Regression Journal of Machine Learning Research 13 (2012) 2107-2143 Submitted 5/11; Revised 1/12; Published 6/12 A Comparison of the Lasso and Marginal Regression Christopher R. Genovese Jiashun Jin Larry Wasserman

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

(Part 1) High-dimensional statistics May / 41

(Part 1) High-dimensional statistics May / 41 Theory for the Lasso Recall the linear model Y i = p j=1 β j X (j) i + ɛ i, i = 1,..., n, or, in matrix notation, Y = Xβ + ɛ, To simplify, we assume that the design X is fixed, and that ɛ is N (0, σ 2

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Homogeneity Pursuit. Jianqing Fan

Homogeneity Pursuit. Jianqing Fan Jianqing Fan Princeton University with Tracy Ke and Yichao Wu http://www.princeton.edu/ jqfan June 5, 2014 Get my own profile - Help Amazing Follow this author Grace Wahba 9 Followers Follow new articles

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Inference for High Dimensional Robust Regression

Inference for High Dimensional Robust Regression Department of Statistics UC Berkeley Stanford-Berkeley Joint Colloquium, 2015 Table of Contents 1 Background 2 Main Results 3 OLS: A Motivating Example Table of Contents 1 Background 2 Main Results 3 OLS:

More information

High-dimensional statistics: Some progress and challenges ahead

High-dimensional statistics: Some progress and challenges ahead High-dimensional statistics: Some progress and challenges ahead Martin Wainwright UC Berkeley Departments of Statistics, and EECS University College, London Master Class: Lecture Joint work with: Alekh

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Testing Algebraic Hypotheses

Testing Algebraic Hypotheses Testing Algebraic Hypotheses Mathias Drton Department of Statistics University of Chicago 1 / 18 Example: Factor analysis Multivariate normal model based on conditional independence given hidden variable:

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

high-dimensional inference robust to the lack of model sparsity

high-dimensional inference robust to the lack of model sparsity high-dimensional inference robust to the lack of model sparsity Jelena Bradic (joint with a PhD student Yinchu Zhu) www.jelenabradic.net Assistant Professor Department of Mathematics University of California,

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Robust Subspace Clustering

Robust Subspace Clustering Robust Subspace Clustering Mahdi Soltanolkotabi, Ehsan Elhamifar and Emmanuel J. Candès January 23; Revised August, 23 Abstract Subspace clustering refers to the task of finding a multi-subspace representation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem

Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics July 25, 2014 Joint work

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Article Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Fei Jin 1,2 and Lung-fei Lee 3, * 1 School of Economics, Shanghai University of Finance and Economics,

More information

Message passing and approximate message passing

Message passing and approximate message passing Message passing and approximate message passing Arian Maleki Columbia University 1 / 47 What is the problem? Given pdf µ(x 1, x 2,..., x n ) we are interested in arg maxx1,x 2,...,x n µ(x 1, x 2,..., x

More information

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression Cun-hui Zhang and Jian Huang Presenter: Quefeng Li Feb. 26, 2010 un-hui Zhang and Jian Huang Presenter: Quefeng The Sparsity

More information

A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data

A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data S. Nakano (The Institute of Statistical Mathematics) T. Hori (ISEE, Nagoya University) K.

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

CS281A/Stat241A Lecture 17

CS281A/Stat241A Lecture 17 CS281A/Stat241A Lecture 17 p. 1/4 CS281A/Stat241A Lecture 17 Factor Analysis and State Space Models Peter Bartlett CS281A/Stat241A Lecture 17 p. 2/4 Key ideas of this lecture Factor Analysis. Recall: Gaussian

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies July 12, 212 Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies Morteza Mardani Dept. of ECE, University of Minnesota, Minneapolis, MN 55455 Acknowledgments:

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Computational and Statistical Aspects of Statistical Machine Learning. John Lafferty Department of Statistics Retreat Gleacher Center

Computational and Statistical Aspects of Statistical Machine Learning. John Lafferty Department of Statistics Retreat Gleacher Center Computational and Statistical Aspects of Statistical Machine Learning John Lafferty Department of Statistics Retreat Gleacher Center Outline Modern nonparametric inference for high dimensional data Nonparametric

More information

Scale Mixture Modeling of Priors for Sparse Signal Recovery

Scale Mixture Modeling of Priors for Sparse Signal Recovery Scale Mixture Modeling of Priors for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Outline Outline Sparse

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

The Nonparanormal skeptic

The Nonparanormal skeptic The Nonpara skeptic Han Liu Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Fang Han Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Ming Yuan Georgia Institute

More information

Introduction to graphical models: Lecture III

Introduction to graphical models: Lecture III Introduction to graphical models: Lecture III Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Some introductory lectures January 2013 1 / 25 Introduction

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Causal Inference: Discussion

Causal Inference: Discussion Causal Inference: Discussion Mladen Kolar The University of Chicago Booth School of Business Sept 23, 2016 Types of machine learning problems Based on the information available: Supervised learning Reinforcement

More information

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song Presenter: Jiwei Zhao Department of Statistics University of Wisconsin Madison April

More information

Factor Analysis (10/2/13)

Factor Analysis (10/2/13) STA561: Probabilistic machine learning Factor Analysis (10/2/13) Lecturer: Barbara Engelhardt Scribes: Li Zhu, Fan Li, Ni Guan Factor Analysis Factor analysis is related to the mixture models we have studied.

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

De-biasing the Lasso: Optimal Sample Size for Gaussian Designs

De-biasing the Lasso: Optimal Sample Size for Gaussian Designs De-biasing the Lasso: Optimal Sample Size for Gaussian Designs Adel Javanmard USC Marshall School of Business Data Science and Operations department Based on joint work with Andrea Montanari Oct 2015 Adel

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Robust and sparse Gaussian graphical modelling under cell-wise contamination

Robust and sparse Gaussian graphical modelling under cell-wise contamination Robust and sparse Gaussian graphical modelling under cell-wise contamination Shota Katayama 1, Hironori Fujisawa 2 and Mathias Drton 3 1 Tokyo Institute of Technology, Japan 2 The Institute of Statistical

More information

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001)

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Presented by Yang Zhao March 5, 2010 1 / 36 Outlines 2 / 36 Motivation

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Variable Selection in Structured High-dimensional Covariate Spaces

Variable Selection in Structured High-dimensional Covariate Spaces Variable Selection in Structured High-dimensional Covariate Spaces Fan Li 1 Nancy Zhang 2 1 Department of Health Care Policy Harvard University 2 Department of Statistics Stanford University May 14 2007

More information

Variable Selection for Highly Correlated Predictors

Variable Selection for Highly Correlated Predictors Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu arxiv:1709.04840v1 [stat.me] 14 Sep 2017 Abstract Penalty-based variable selection methods are powerful in selecting relevant covariates

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

19.1 Problem setup: Sparse linear regression

19.1 Problem setup: Sparse linear regression ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 19: Minimax rates for sparse linear regression Lecturer: Yihong Wu Scribe: Subhadeep Paul, April 13/14, 2016 In

More information

A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models

A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models A Consistent Model Selection Criterion for L 2 -Boosting in High-Dimensional Sparse Linear Models Tze Leung Lai, Stanford University Ching-Kang Ing, Academia Sinica, Taipei Zehao Chen, Lehman Brothers

More information

ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang 1, Joel L. Horowitz 2, and Shuangge Ma 3 1 Department of Statistics and Actuarial Science, University

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Feature selection with high-dimensional data: criteria and Proc. Procedures

Feature selection with high-dimensional data: criteria and Proc. Procedures Feature selection with high-dimensional data: criteria and Procedures Zehua Chen Department of Statistics & Applied Probability National University of Singapore Conference in Honour of Grace Wahba, June

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider variable

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model

Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model Kai Yu Joint work with John Lafferty and Shenghuo Zhu NEC Laboratories America, Carnegie Mellon University First Prev Page

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square

Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square Yuxin Chen Electrical Engineering, Princeton University Coauthors Pragya Sur Stanford Statistics Emmanuel

More information

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Qiwei Yao Department of Statistics, London School of Economics q.yao@lse.ac.uk Joint work with: Hongzhi An, Chinese Academy

More information