Pattern Formation: from Turing to Nanoscience

Size: px
Start display at page:

Download "Pattern Formation: from Turing to Nanoscience"

Transcription

1 IV GEFENOL School September 2014 Pattern Formation: from Turing to Nanoscience D. - Mallorca - Spain Mallorca - Spain

2 Why is it interesting to study pattern formation in nonequilibrium systems? The Universe is full of spatio-temporal structures with striking similarities. Where do they come from? Can we understand them, including the similarities? Are there unifying concepts? Are quantitative modeling and predictions possible? Nonequilibrium spatio-temporal patterns are technologically important in various domains. In materials, for example, they result from instabilities, self-assembling, self-organization, Their understanding may lead to the tailoring of on-demand devices but also to the control of their lifetime They induced the search for specific mathematical and numerical methods for the understanding of complex systems. Many of them are described by PDEs, for which qualitative insights are needed to corroborate numerical simulations or experimental results, the effect of boundaries, noise, etc. which is by no means an easy task and requires strong interactions between theory, experiment and computation. In these lectures, I will review some basic aspects of instability and pattern formation theory. Their application in materials modeling will be illustrated in a few examples.

3 Summary Introduction, historical background, methods, benefits and perils of self-organization. Instabilities and bifurcations, reaction-diffusion dynamics. Pattern formation, selection and stability in amplitude and model equations. Applications in materials design and nanotechnology: - self-organization of surface atoms in thin film growth - surface roughening and cracks - mechanical instabilities and deformation localization. Conclusion

4 Introduction. Two paradigms of instabilities and spatio-temporal pattern formation. A. Rayleigh-Bénard (and Bénard-Marangoni) convection C.Marangoni 1865, H. Bénard 1900, J.Pearson 1958, E. Koschmieder 1991, G. Ahlers et al

5 1900 H. Bénard: first quantitative measurements 1916 Lord Rayleigh: linear stability analysis (free b.c.) 1926 H. Jeffreys: linear stability analysis (rigid b.c.) Conduction state: =0, = h, = Dimensionless perturbations dynamics (Navier-Stokes for incompressible Boussinesq fluid): P = silicon oil: 10.3 water: 6.99 air: 0.72 α: expansion coefficient g: acceleration of gravity κ: thermal diffusivity ν: kinematic viscosity

6 stress free b.c. =0,1 = =0,1 =0, =0,1 =0 "# =0,1 =0 "#, sin(())exp-../ + eliminate 4 linear evolution: 9 :; <,=,> = ( # ) # +. #. #.=,> + ( # ) # +. # =,> < =,> = ( # ) # +. # =,> +?,=,> instability for A> (CD +E D ) F rigid(no slip) b.c.: =0,1 = =0,1 =0 = QR S Q =0,1 =0? G =1708,. G =3.12 A= stress-free B= rigid (no slip) E D? G = 27 4 )K ~ 657.5,. G = ) 2

7 Busse Koschmieder Ahlers 1965: Schluter. Lorz, Busse : weakly nonlinear analysis 1977: Swift-Hohenberg: amplitude equation, effect of noise : detailed experimental analysis, secondary bifurcations, Pattern competition (rolls, hexagons, squares, ), spatio-temporal chaos, phase dynamics, defects, numerical simulations, SH equation (P>>1, stressfree,elimination of ): Amplitude equation: (multiple scale analysis Newell, Whitehead,Segel) Swift Hohenberg Newell Lyapunov functional relaxational stationary patterns cf. 2d solid P nonlinearitiesin thevelocityfield non relaxational effects spatio temporal chaos (cf. turbulence)

8 hexagons rolls G.Ahlers Bifurcation diagram from SH eq. ε = 0.008, , Dislocations in Rayleigh-Benard convection (Pantaloni et al.)

9 Atacama desert λ~meter Mushroom pore λ~ µ m Coral λ~mm Death Valley Void lattice in Mo λ~ 20 nm Quantum dots lattice λ~ 10 nm Universality? Generic vs non generic aspects? Minimal models?

10 B. Chemical instabilities, patterns and oscillations : Turing, Hopf, 1921 : Bray: chemical clock 1952: Turing instability mechanism (besides his activity as the father of modern computer science) A.Turing ( )

11 Reaction-diffusion equations, linear stability analysis instabilities symmetry breaking linear growth of patterns of different types (6). nonlinear analysis? numerical analysis? pattern selection? Z=ν,\=],unstable uniform Z=ν,\= ],unstable uniform oscillatory(cf.hopf) _ inhibitor,` activator,z>ν,unstable vs spatial modes 2 remaining types: traveling waves require at least 3 equations Kele s science blog

12 1950: Belousov: chemical oscillations in the oxidation of malonic acid, rejected paper for thermodynamic impossibility? 1956: Prigogine & Balescu: nonequilibrium thermodynamics (extending Th. de Donder s work on chemical affinity (1923)) : Zhabotinsky: confirmation of oscillations, chemical waves,.. Prigogine Belousov Balescu Zhabotinsky 1966: Prigogine and the Brussel s school, dissipative structures Concept of dissipative structure : a state reflecting the ability of a system to utilize the dissipation generated out of equilibrium to open novel evolutionary pathways, separated from the "thermodynamic branch" of equilibrium-like states by an instability (I. Prigogine, 1969). Universal role of the distance from equilibrium as a source of order, unifying framework for the understanding of diverse self-organization phenomena.

13 1967: the Brusselator model of autocatalytic chemical reactions (Prigogine, Nicolis and Lefever) Nicolis 1967: concept of synergetics (H.Haken) Concept of synergetics : in a system, consisting of many nonlinearly interacting subsystems, depending on the external control parameters (environment, energy-fluxes) self-organization takes place. Interdisciplinary, far from thermal equilibriun dynamics (H. Haken,1969). 1990: Experimental observation of Turing patterns in a chemical system (Bordeaux group, Texas group) (why so late?) Lefever Haken De Kepper Swinney

14 In the mean time: chemical chaos (1980, Roux-Swinney), spatio-temporal chaos, (exp.: J. Gollub, 1994; G. Ahlers, 1998.) patterns in biological systems (A.T. Winfree, The geometry of biological time, 1980), bifurcation and dynamical systems theory (H.Poincare, 1885; V.I. Arnold, 1978;J. Guckenheimer, P. Holmes, 1983, G. Iooss, D.Joseph, 1980, etc. weakly nonlinear analysis (A. Newell, 1974; J.Swift, P. Hohenberg, 1977,) numerical simulations,(cell. automata, mol. dynamics, PDE, ) Nowadays: Studies and modeling of pattern formation in hydrodynamics (including non Newtonian fluids), chemistry, biology, mechanics, nonlinear optics, insect and bacterial colonies, materials science, ecology, sociology,.

15 The Brusselator model for autocatalytic chemical reactions a _, 2_+` 3_, b+_ `+c, _ f unstable < _=a b+1 _+_ #`+c d _ < `=b_ _ #`+c e ` unstable D X < D Y stable < σ (r,t) = [ε - (q c 2 + ) 2 ] σ (r,t) + v σ 2 (r,t) - u σ 3 (r,t)

16 Codimension 2 bifurcation: Coupling between oscillatory and spatial modes, e. g Brusselator with j k j l = η = ; m 1+a # 1 b G n =b G o b complex spatio-temporal patterns b G n =b G o p G p coupling between Turing and Hopf bifurcations, simultaneous growth of oscillatory and spatial modes, nonlinear couplings make selection, possibility of localized states Ex.1D: < a=za+ 1+-s < t # a 1+-u a # a w+-x? # a <?=y?+4p G # < t #?? #? z a #? (/,{)=?(/,{)exp-p G / + a /,{ exp-ν{+].]. w, x, z monitor pattern selection and stability

17 t x Matkovsky et al. Tozas et al. b b G n b G o Turing mixed Hopf stable uniform DeWit et al. η

18 A. De Wit 3D lamellar domains t Leppanen et al. Turing-Hopf cod 2 x

19 Other Instabilities Faraday instability in granular materials Viscous fingering + chemistry RB convection in liquid crystal Patterns and quasipatterns in nonlinear optical system

20 Materials Instabilities Defect patterning: PSB in Cu during fatigue exp. PbSe/PbEuTe Wrinkling of Cu film on polymer substrate Buckling instability in CNT Ripples on irradiated nanorods Shell structure of hen s egg

21 Deformation instabilities in irradiated Si Self-organized vacancy loops in Cu irradiated by protons SAQD in InAs BCC void lattice in Mo BCC void lattice in Nb

22 Methods: numerical: ab initio, molecular dynamics, Monte-Carlo, celular automata, stochastic methods microscopic: quantum mechanics, statistical mechanics, many body theory, mesoscopic: ODE, PDE, bifurcation theory, dynamical systems, nonlinear dynamics, master equations, numerical analysis, macroscopic: continuum mechanics, feature size models, finite elements calculations, Perils and benefits of self-organization in nanoscience: In the making of new materials and devices: self-assembly of elementary components to generate new phases, structures and patterns for specific applications through instabilities -> desire to use self-organization to control microstructure, In the breaking of materials: materials utilization occurence of deformation instabilities, plastic instabilities, fracture instabilities, defect self-organization, etc. -> desire to use self-organization to control the lifetime of the material

23 Bibliography M.C. Cross and P. Hohenberg, Rev.Mod.Phys. 65, (1993) D. Walgraef, Spatio-Temporal Pattern Formation, Springer Verlag (1996) Lui Lam, Nonlinear Physics for Beginners, World Scientific (1998) I. R. Epstein, J.Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos, Oxford University Press (1998) R. de Borst, E. van der Giessen, Material Instabilities in Solids, Wiley (1998) J. Moloney, A.C. Newell, Nonlinear Optics, Westview Press (2004) N.M. Ghoniem and D. Walgraef, Instabilities and Self-Organization in Materials, Vol. 1. Fundamentals of nanoscience, Oxford University Press (2008). [draft available in resources ] N.M. Ghoniem and D. Walgraef, Instabilities and Self-Organization in Materials, Vol. 2. Applications in materials design and nanotechnology, Oxford University Press (2008). [draft available in resources ] H. Greenside and M.C. Cross, Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press (2009) and references therein

Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems Self-Organization in Nonequilibrium Systems From Dissipative Structures to Order through Fluctuations G. Nicolis Universite Libre de Bruxelles Belgium I. Prigogine Universite Libre de Bruxelles Belgium

More information

Spatio-Temporal Chaos in Pattern-Forming Systems: Defects and Bursts

Spatio-Temporal Chaos in Pattern-Forming Systems: Defects and Bursts Spatio-Temporal Chaos in Pattern-Forming Systems: Defects and Bursts with Santiago Madruga, MPIPKS Dresden Werner Pesch, U. Bayreuth Yuan-Nan Young, New Jersey Inst. Techn. DPG Frühjahrstagung 31.3.2006

More information

Spatiotemporal Chaos in Rayleigh-Bénard Convection

Spatiotemporal Chaos in Rayleigh-Bénard Convection Spatiotemporal Chaos in Rayleigh-Bénard Convection Michael Cross California Institute of Technology Beijing Normal University June 2006 Janet Scheel, Keng-Hwee Chiam, Mark Paul Henry Greenside, Anand Jayaraman

More information

PHYSFLU - Physics of Fluids

PHYSFLU - Physics of Fluids Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

Pattern Formation and Chaos

Pattern Formation and Chaos Developments in Experimental Pattern Formation - Isaac Newton Institute, 2005 1 Pattern Formation and Chaos Insights from Large Scale Numerical Simulations of Rayleigh-Bénard Convection Collaborators:

More information

Localized structures as spatial hosts for unstable modes

Localized structures as spatial hosts for unstable modes April 2007 EPL, 78 (2007 14002 doi: 10.1209/0295-5075/78/14002 www.epljournal.org A. Lampert 1 and E. Meron 1,2 1 Department of Physics, Ben-Gurion University - Beer-Sheva 84105, Israel 2 Department of

More information

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Michael Cross California Institute of Technology Beijing Normal University May 2006 Michael Cross (Caltech, BNU) Pattern Formation

More information

Complex Patterns in a Simple System

Complex Patterns in a Simple System Complex Patterns in a Simple System arxiv:patt-sol/9304003v1 17 Apr 1993 John E. Pearson Center for Nonlinear Studies Los Alamos National Laboratory February 4, 2008 Abstract Numerical simulations of a

More information

A Theory of Spatiotemporal Chaos: What s it mean, and how close are we?

A Theory of Spatiotemporal Chaos: What s it mean, and how close are we? A Theory of Spatiotemporal Chaos: What s it mean, and how close are we? Michael Dennin UC Irvine Department of Physics and Astronomy Funded by: NSF DMR9975497 Sloan Foundation Research Corporation Outline

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

Complex Ginzburg-Landau Equation Lecture I

Complex Ginzburg-Landau Equation Lecture I Complex Ginzburg-Landau Equation Lecture I Igor Aranson & Lorenz Kramer, Reviews of Modern Physics, The World of the Complex Ginzburg-Landau Equation, v 74, p 99 (2002) Tentative plan Lecture 1. General

More information

Im(v2) Im(v3) Re(v2)

Im(v2) Im(v3) Re(v2) . (a)..1. Im(v1) Im(v2) Im(v3)....... Re(v1) Re(v2).1.1.1 Re(v3) (b) y x Figure 24: (a) Temporal evolution of v 1, v 2 and v 3 for Fluorinert/silicone oil, Case (b) of Table, and 2 =,3:2. (b) Spatial evolution

More information

Pattern Formation and Spatiotemporal Chaos

Pattern Formation and Spatiotemporal Chaos Pattern Formation and Spatiotemporal Chaos - Chennai, 2004 1 Pattern Formation and Spatiotemporal Chaos Insights from Large Scale Numerical Simulations of Rayleigh-Bénard convection Collaborators: Mark

More information

FRACTAL CONCEPT S IN SURFACE GROWT H

FRACTAL CONCEPT S IN SURFACE GROWT H FRACTAL CONCEPT S IN SURFACE GROWT H Albert-Läszlö Barabäs i H. Eugene Stanley Preface Notation guide x v xi x PART 1 Introduction 1 1 Interfaces in nature 1 1.1 Interface motion in disordered media 3

More information

INTRODUCTION. Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1999, No 4, pp

INTRODUCTION. Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1999, No 4, pp Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1999, No 4, pp.113-118 WHY PATTERNS APPEAR SPONTANEOUSLY IN DISSIPATIVE SYSTEMS? K. Staliûnas Physikalisch-Technische Bundesanstalt, D-38023 Braunschweig,

More information

Spontaneous pattern formation in Turing systems

Spontaneous pattern formation in Turing systems Facultat de Física, Universitat de Barcelona, Diagonal 6, 88 Barcelona, Spain. Abstract: We give a general description of pattern forming systems and describe the linear stability analysis that allows

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

LINEAR STABILITY ANALYSIS AND DIRECT NUMERICAL SIMUALATION OF DOUBLE-LAYER RAYLEIGH-BÉNARD CONVECTION

LINEAR STABILITY ANALYSIS AND DIRECT NUMERICAL SIMUALATION OF DOUBLE-LAYER RAYLEIGH-BÉNARD CONVECTION LINEAR STABILITY ANALYSIS AND DIRECT NUMERICAL SIMUALATION OF DOUBLE-LAYER RAYLEIGH-BÉNARD CONVECTION É. FONTANA 1, E. MANCUSI 1,2, A. A. ULSON DE SOUZA 1, S. M. A. GUELLI U. SOUZA 1 1 Universidade Federal

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

CHEMICAL OSCILLATIONS IN HOMOGENEOUS SYSTEMS 1. ESSENTIAL THERMODYNAMIC AND KINETIC CONDITIONS FOR THE OCCURRENCE OF OSCILLATIONS

CHEMICAL OSCILLATIONS IN HOMOGENEOUS SYSTEMS 1. ESSENTIAL THERMODYNAMIC AND KINETIC CONDITIONS FOR THE OCCURRENCE OF OSCILLATIONS CHEMICAL OSCILLATIONS IN HOMOGENEOUS SYSTEMS 1. ESSENTIAL THERMODYNAMIC AND KINETIC CONDITIONS FOR THE OCCURRENCE OF OSCILLATIONS Rodica Vîlcu and Daniela Bala abstract: This manuscript reviews the understanding

More information

Zig-zag chaos - a new spatiotemporal pattern in nonlinear dynamics

Zig-zag chaos - a new spatiotemporal pattern in nonlinear dynamics Zig-zag chaos - a new spatiotemporal pattern in nonlinear dynamics Iuliana Oprea 1, 2 1 Faculty of Mathematics, University of Bucharest, Romania 2 Department of Mathematics, Colorado State University,

More information

Quasipatterns in surface wave experiments

Quasipatterns in surface wave experiments Quasipatterns in surface wave experiments Alastair Rucklidge Department of Applied Mathematics University of Leeds, Leeds LS2 9JT, UK With support from EPSRC A.M. Rucklidge and W.J. Rucklidge, Convergence

More information

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION

EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLOW FROM THE INTERPRETATION OF THE SCHRÖDINGER WAVE FUNCTION Vladimir V. KULISH & José L. LAGE School of Mechanical & Aerospace Engineering,

More information

CHEM 515: Chemical Kinetics and Dynamics

CHEM 515: Chemical Kinetics and Dynamics Alejandro J. Garza S01163018 Department of Chemistry, Rice University, Houston, TX email: ajg7@rice.edu, ext. 2657 Submitted December 12, 2011 Abstract Spontaneous antispiral wave formation was observed

More information

Module 3: "Thin Film Hydrodynamics" Lecture 12: "" The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template

Module 3: Thin Film Hydrodynamics Lecture 12:  The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template The Lecture Contains: Linear Stability Analysis Some well known instabilities file:///e /courses/colloid_interface_science/lecture12/12_1.htm[6/16/2012 1:39:16 PM] Linear Stability Analysis This analysis

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

Review of Pattern Formation and Dynamics in Nonequilibrium Systems, by M. Cross and H. Greenside, Cambridge University Press (2009)

Review of Pattern Formation and Dynamics in Nonequilibrium Systems, by M. Cross and H. Greenside, Cambridge University Press (2009) Review of Pattern Formation and Dynamics in Nonequilibrium Systems, by M. Cross and H. Greenside, Cambridge University Press (2009) reviewed by Edgar Knobloch, University of California at Berkeley February

More information

Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing

Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing PHYSICAL REVIEW E 69, 066141 (2004) Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing Catalina Mayol, Raúl Toral, and Claudio R. Mirasso Department de Física, Universitat

More information

Mathematical Models in the Applied Sciences

Mathematical Models in the Applied Sciences Mathematical Models in the Applied Sciences A.C. FOWLER University of Oxford CAMBRIDGE UNIVERSITY PRESS 1 1.1 1.2 1.3 1.4 Preface Part one: Mathematical modeling What is a model? The procedure of modeling

More information

Time-periodic forcing of Turing patterns in the Brusselator model

Time-periodic forcing of Turing patterns in the Brusselator model Time-periodic forcing of Turing patterns in the Brusselator model B. Peña and C. Pérez García Instituto de Física. Universidad de Navarra, Irunlarrea, 1. 31008-Pamplona, Spain Abstract Experiments on temporal

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Experiments with Rayleigh-Bénard convection

Experiments with Rayleigh-Bénard convection Experiments with Rayleigh-Bénard convection Guenter Ahlers Department of Physics and IQUEST, University of California Santa Barbara CA 93106 USA e-mail: guenter@physics.ucsb.edu Summary. After a brief

More information

Complexity of Two-Phase Flow in Porous Media

Complexity of Two-Phase Flow in Porous Media 1 Complexity of Two-Phase Flow in Porous Media Rennes September 16, 2009 Eyvind Aker Morten Grøva Henning Arendt Knudsen Thomas Ramstad Bo-Sture Skagerstam Glenn Tørå Alex Hansen 2 Declining oil production,

More information

7. Well-Stirred Reactors IV

7. Well-Stirred Reactors IV 7. Well-Stirred Reactors IV The Belousov-Zhabotinsky Reaction: Models and Experiments Oregonator [based on the FKN mechanism; Field, R. J. & Noyes, R. M.: Oscillations in chemical systems. IV. Limit cycle

More information

Computing 3D Bifurcation Diagrams

Computing 3D Bifurcation Diagrams Computing 3D Bifurcation Diagrams Dirk Stiefs a Ezio Venturino b and U. Feudel a a ICBM, Carl von Ossietzky Universität, PF 2503, 26111 Oldenburg, Germany b Dipartimento di Matematica,via Carlo Alberto

More information

ENGN2210 CONTINUUM MECHANICS

ENGN2210 CONTINUUM MECHANICS School of Engineering Brown University ENGN2210 CONTINUUM MECHANICS Allan Bower Fall 2016 What is continuum mechanics? Boeing Dreamliner Chevy Volt What is continuum mechanics? A continuum idealized form

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Pattern formation in nonequilibrium physics

Pattern formation in nonequilibrium physics Haverford College Haverford Scholarship Faculty Publications Physics 1999 Pattern formation in nonequilibrium physics Jerry P. Gollub Haverford College, jgollub@haverford.edu J. S. Langer Follow this and

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Self-Organization for all-optical processing What is at stake? Cavity solitons have a double concern

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Screening Exam Topics

Screening Exam Topics Screening Exam Topics Academic Year 2015-2016 The Screening Exam aims to achieve three objectives: (i) To determine if the student has a deep understanding of the basic knowledge of at least two areas

More information

Rayleigh-Bénard convection in a homeotropically aligned nematic liquid crystal

Rayleigh-Bénard convection in a homeotropically aligned nematic liquid crystal PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Rayleigh-Bénard convection in a homeotropically aligned nematic liquid crystal Leif Thomas, 1 Werner Pesch, 2 and Guenter Ahlers 1 1 Department of Physics

More information

Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical

Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical ANZIAM J. 53 (EMAC211) pp.c511 C524, 212 C511 Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical M. R. Alharthi 1 T. R. Marchant 2 M. I.

More information

Morphological evolution of single-crystal ultrathin solid films

Morphological evolution of single-crystal ultrathin solid films Western Kentucky University From the SelectedWorks of Mikhail Khenner March 29, 2010 Morphological evolution of single-crystal ultrathin solid films Mikhail Khenner, Western Kentucky University Available

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech Mirror:

More information

Can weakly nonlinear theory explain Faraday wave patterns near onset?

Can weakly nonlinear theory explain Faraday wave patterns near onset? Under consideration for publication in J. Fluid Mech. 1 Can weakly nonlinear theory explain Faraday wave patterns near onset? A. C. S K E L D O N 1, and A. M. R U C K L I D G E 2 1 Department of Mathematics,

More information

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection International Journal of Fluid Mechanics & Thermal Sciences 17; 3(4): 41-45 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.1734.1 ISSN: 469-815 (Print); ISSN: 469-8113 (Online) ombined

More information

arxiv:patt-sol/ v1 26 May 1998

arxiv:patt-sol/ v1 26 May 1998 EUROPHYSICS LETTERS Europhys. Lett., (), pp. () Phase instabilities in hexagonal patterns ( ) arxiv:patt-sol/9805007v1 26 May 1998 B. Echebarria and C. Pérez-García Departamento de Física y Matemática

More information

3D computer simulation of Rayleigh-Benard instability in a square box

3D computer simulation of Rayleigh-Benard instability in a square box 3D computer simulation of Rayleigh-Benard instability in a square box V.V. KOLMYCHKOV, O.S. MAZHOROVA, YU.P. POPOV, O.V.SHCHERITSA Keldysh Institute of Applied Mathematics RAS,4,Miusskaya sq., Moscow,

More information

Nonlinear Dynamics of Wrinkle Growth and

Nonlinear Dynamics of Wrinkle Growth and Nonlinear Dynamics of Wrinkle Growth and Pattern Formation in Stressed Elastic Thin Films Se Hyuk Im and Rui Huang Center for Mechanics of Solids, Structures and Materials Department of Aerospace Engineering

More information

Behaviour of simple population models under ecological processes

Behaviour of simple population models under ecological processes J. Biosci., Vol. 19, Number 2, June 1994, pp 247 254. Printed in India. Behaviour of simple population models under ecological processes SOMDATTA SINHA* and S PARTHASARATHY Centre for Cellular and Molecular

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Non Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

Non Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol November 2007 EPL, 80 (2007) 34002 doi: 10.1209/0295-5075/80/34002 www.epljournal.org Non Oberbeck-Boussinesq effects in two-dimensional yleigh-bénard convection in glycerol K. Sugiyama 1, E. Calzavarini

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

9 Fluid dynamics and Rayleigh-Bénard convection

9 Fluid dynamics and Rayleigh-Bénard convection 9 Fluid dynamics and Rayleigh-Bénard convection In these lectures we derive (mostly) the equations of viscous fluid dynamics. We then show how they may be generalized to the problem of Rayleigh- Bénard

More information

A Rayleigh Bénard Convective Instability Study Using Energy Conserving Dissipative Particle Dynamics

A Rayleigh Bénard Convective Instability Study Using Energy Conserving Dissipative Particle Dynamics A Rayleigh énard Convective Instability Study Using Energy Conserving Dissipative Particle Dynamics Anuj Chaudhri a & Jennifer R. Lukes b Department of Mechanical Engineering and Applied Mechanics, University

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Theoretical Aspects of Pattern Formation University of Surrey

Theoretical Aspects of Pattern Formation University of Surrey Theoretical Aspects of Pattern Formation University of Surrey 19-23 September 2005 Isaac Newton Institute Programme Monday 19 September 12:30-14:30 Registration and Lunch at the Wates House 14:30-15:30

More information

Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells

Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 2 8 JULY 2004 Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells Desiderio A. Vasquez Department of Physics, Indiana

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Minimum principles for characterizing the trajectories and microstructural evolution of dissipative systems

Minimum principles for characterizing the trajectories and microstructural evolution of dissipative systems Minimum principles for characterizing the trajectories and microstructural evolution of dissipative systems M. Ortiz California Institute of Technology In collaboration with: S. Conti, C. Larsen, A. Mielke,

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Collective and Stochastic Effects in Arrays of Submicron Oscillators

Collective and Stochastic Effects in Arrays of Submicron Oscillators DYNAMICS DAYS: Long Beach, 2005 1 Collective and Stochastic Effects in Arrays of Submicron Oscillators Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL, Malibu), Oleg Kogan (Caltech), Yaron Bromberg (Tel Aviv),

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

arxiv:chao-dyn/ v1 12 Feb 1996

arxiv:chao-dyn/ v1 12 Feb 1996 Spiral Waves in Chaotic Systems Andrei Goryachev and Raymond Kapral Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada arxiv:chao-dyn/96014v1 12

More information

Hydrodynamics. l. mahadevan harvard university

Hydrodynamics. l. mahadevan harvard university Thermodynamics / statistical mechanics : Hydrodynamics N>>1; large number of interacting particles! Hydrodynamics : L >> l; T >> t; long wavelength, slow time - average over (some) microscopic length and

More information

INTERFACIAL PHENOMENA GRADING SCHEME

INTERFACIAL PHENOMENA GRADING SCHEME 18.357 INTERFACIAL PHENOMENA Professor John W. M. Bush Fall 2010 Office 2-346 MW 2-3:30 Phone: 253-4387 (office) Room 2-135 email: bush@math.mit.edu Office hours: after class, available upon request GRADING

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

Convection Patterns. Physics 221A, Spring 2017 Lectures: P. H. Diamond Notes: Jiacong Li

Convection Patterns. Physics 221A, Spring 2017 Lectures: P. H. Diamond Notes: Jiacong Li Convection Patterns Physics 1A, Spring 017 Lectures: P. H. Diamond Notes: Jiacong Li 1 Introduction In previous lectures, we have studied the basics of dynamics, which include dimensions of (strange) attractors,

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Georgia Institute of Technology. Nonlinear Dynamics & Chaos Physics 4267/6268. Faraday Waves. One Dimensional Study

Georgia Institute of Technology. Nonlinear Dynamics & Chaos Physics 4267/6268. Faraday Waves. One Dimensional Study Georgia Institute of Technology Nonlinear Dynamics & Chaos Physics 4267/6268 Faraday Waves One Dimensional Study Juan Orphee, Paul Cardenas, Michael Lane, Dec 8, 2011 Presentation Outline 1) Introduction

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as:

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as: Symbolic Calculation of Free Convection for Porous Material of Quadratic Heat Generation in a Circular Cavity Kamyar Mansour Amirkabir University of technology, Tehran, Iran, 15875-4413 mansour@aut.ac.ir

More information

Mean flow in hexagonal convection: stability and nonlinear dynamics

Mean flow in hexagonal convection: stability and nonlinear dynamics Physica D 163 (2002) 166 183 Mean flow in hexagonal convection: stability and nonlinear dynamics Yuan-Nan Young, Hermann Riecke Department of Engineering Sciences and Applied Mathematics, Northwestern

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Competition of Spatial and Temporal Instabilities under Time Delay near Codimension-Two Turing Hopf Bifurcations

Competition of Spatial and Temporal Instabilities under Time Delay near Codimension-Two Turing Hopf Bifurcations Commun. Theor. Phys. 56 (2011) 339 344 Vol. 56, No. 2, August 15, 2011 Competition of Spatial and Temporal Instabilities under Time Delay near Codimension-Two Turing Hopf Bifurcations WANG Hui-Juan ( )

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Navier-Stokes Equation: Principle of Conservation of Momentum

Navier-Stokes Equation: Principle of Conservation of Momentum Navier-tokes Equation: Principle of Conservation of Momentum R. hankar ubramanian Department of Chemical and Biomolecular Engineering Clarkson University Newton formulated the principle of conservation

More information

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS Letters International Journal of Bifurcation and Chaos, Vol. 8, No. 8 (1998) 1733 1738 c World Scientific Publishing Company DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS I. P.

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Fundamentals of Bio-architecture SUMMARY

Fundamentals of Bio-architecture SUMMARY Fundamentals of Bio-architecture SUMMARY Melik Demirel, PhD *Pictures and tables in this lecture notes are copied from Internet sources for educational use only. Can order increase without breaking 2 nd

More information

Symmetry Properties of Confined Convective States

Symmetry Properties of Confined Convective States Symmetry Properties of Confined Convective States John Guckenheimer Cornell University 1 Introduction This paper is a commentary on the experimental observation observations of Bensimon et al. [1] of convection

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Spatiotemporal Dynamics

Spatiotemporal Dynamics KITP, October 2003: Rayleigh-Bénard Convection 1 Spatiotemporal Dynamics Mark Paul, Keng-Hwee Chiam, Janet Scheel and Michael Cross (Caltech) Henry Greenside and Anand Jayaraman (Duke) Paul Fischer (ANL)

More information

Mathematical modeling of complex systems Part 1. Overview

Mathematical modeling of complex systems Part 1. Overview 1 Mathematical modeling of complex systems Part 1. Overview P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information