Analytical and Simulation Method Validation for Flutter Aeroservoelasticity Studies

Size: px
Start display at page:

Download "Analytical and Simulation Method Validation for Flutter Aeroservoelasticity Studies"

Transcription

1 Vldton for Flutter Aeroservoelstcty Studes Ruxndr Mhel Botez, Professor, PhD, RTO Member Teodor Lucn Grgore, Postdoctorl fellow Adrn Hlut, PhD ETS, Unversty of Québec Lbortory of Actve Controls, Avoncs nd Aeroservoelstcty LARCASE 11 Notre Dme West Montrél, Qué., Cnd, H3C1K3 ABSTRACT Aeroservoelstcty studes re nterctons between three mn dscplnes: erodynmcs, eroelstcty nd servo-controls. In the eroelstcty re, s known tht erodynmc unstedy forces for rnge of frequences nd Mch numbers re clculted by use of methods such s Doublet Lttce Method (DLM) n the subsonc regme or by Constnt Pressure Methods (CPM) n the supersonc regme. These methods re usully mplemented n fnte element eroelstcty softwre such s Nstrn, STARS or ny other smlr type of softwre. For eroelstcty studes, we clculte n erodynmc unstedy force only for the rcrft elstc modes, whle for eroservoelstcty studes, s necessry to clculte these forces for ll rcrft modes: elstc, rgd, elstc nd control, not only for ts elstc modes. In order to clculte erodynmc forces for ll rcrft modes, we need to consder notons of the flght dynmcs theory (Newton s equtons) for the rcrft rgd nd control modes erodynmc forces clcultons, whle the methods mplemented n fnte element eroelstcty softwre wll be consdered for elstc erodynmc forces clcultons. Therefore, the unstedy erodynmc forces correspondng to ll rcrft modes wll be clculted wth two dfferent methods: numercl nd nlytcl. 1. INTRODUCTION Aeroservoelstcty studes re very mportnt n the rcrft ndustry. After n extensve bblogrphcl reserch n the feld, we dd not fnd well-documented formulton for rgd nd control mode erodynmc forces for eroservoelstcty; therefore we hve formulted nd vldted novel method n ths pper. Fnte element eroelstcty softwre such s STARS 1 or Nstrn 2 does not ccurtely clculte the rgd nd control mode erodynmc forces, but they do clculte the elstc mode erodynmc forces. Our new formulton wll clculte nd vldte the erodynmc rgd nd control modes forces on n F/A-18 rcrft by use of the Doublet Lttce Method (subsonc regme) nd the Constnt Pressure Method (supersonc regme). Thus, rgd nd control mode forces clculted wth our new formulton wll replce the rgd nd control modes clculted wth fnte element-bsed eroelstcty softwre. The F/A-18 rcrft structure s modelled 3 by fnte element methods, nd 44 frequences nd mode shpes re clculted for ths rcrft, whch re dvded nto the followng three groups: 6 rgd modes (3 symmetrc nd 3 nt-symmetrc), 28 elstc modes (14 symmetrc nd 14 nt-symmetrc) nd 1 control modes (5 symmetrc nd 5 nt-symmetrc) RTO-MP-AVT

2 The Doublet Lttce Method, DLM, (n subsonc regme) or the Constnt Pressure Method, CPM, (n supersonc regme) re used to clculte the unstedy erodynmc forces Q(k, Mch) for vrous Mch numbers nd reduced frequences. The erodynmc forces correspond to the followng modes: 6 rgd modes (3 modes n trnslton nd 3 modes n rotton), 1 control modes (5 modes for longtudnl nd 5 modes for lterl motons) nd e represent the 28 elstc modes (14 modes n longtudnl moton nd 14 modes n lterl moton). The erodynmc forces for the rgd-to-rgd mode nterctons Q rr (dmensons 6 * 6) nd for the rgd-tocontrol mode nterctons Q rc (dmensons 6 * 1), clculted wth fnte element softwre Nstrn, wll be replced by Q rr nd Q rc vlues clculted wth the two schemes, nlytcl nd numercl, presented n ths pper. 2. ANALYTICAL VERSUS NUMERICAL FORMULATIONS The nlytcl formulton s presented n Sectons 1 to 3, nd the numercl formulton s presented n Secton 4. Detls of the frst smulton scheme wth stblty dervtves n the wnd system of coordntes re explned n the frst secton, whle Secton 2 presents the frst scheme wth stte vrbles ntroduced n the rcrft closed loop. Secton 3 presents the nlytcl formultons for the erodynmc forces for rgd-to-rgd nd rgd-to-control nterctons mode clcultons. 2.1 Frst smulton scheme wth stblty dervtves n the wnd system of coordntes The detled frst scheme s shown n Fgure 1: lef tef l ht rud lef tef l ht rud q α V θ H p r β φ C D C Y C Lft C L C M C N Scb,, q dyn X v Y v Z v L v M v N v q dyn X Y Z L α, β ρv = 2 2 M N ρ V L ρ = ρ(1 H ) T V, V, V x, y, z x y z φ, θψ, DCM V (,, ) u v w p, qr, p, qr, g 1 RL H V α β q α V θ = H p r β φ z Fgure 1: Frst smulton scheme wth the stblty nd control coeffcents clculted n the wnd coordntes system Ths scheme cn be wrtten n ts equvlent form shown n Fgure RTO-MP-AVT-154

3 The detls of Blocks 1 to 9 re next presented. Block 1 descrpton Fgure 2: Smplfcton of the scheme shown n Fgure 1 Two sets of stblty nd control dervtves n the wnd coordnte system re known, provded by NASA DFRC (Dryden Flght Reserch Center) for vrous flght condtons chrcterzed by Mch numbers, lttudes nd ngles of ttck. We express the rcrft behvour wth the second stte spce mtrx equton: x x y = Ans x+ Bnsu = [ Ans Bns ] = [ A_t] u u (1) Where the A_t mtrx hs the dmensons (6*19), nd A ns s the stblty dervtve coeffcents mtrx of dmensons (6 x 9): CL CL CL CL CL CL CL CL CL q α V θ H p r β ϕ CM CM CM CM CM CM CM CM CM q α V θ H p r β ϕ CN CN CN CN CN CN CN CN CN (2) q α V θ H p r β ϕ Ans = CD CD CD CD CD CD CD CD CD q α V θ H p r β ϕ CLft CLft CLft CLft CLft CLft CLft CLft CLft q α V θ H p r β ϕ CY CY CY CY CY CY CY CY C Y q α V θ H p r β ϕ nd the control dervtve coeffcents mtrx B ns hs the dmensons (6 x 1) nd s dvded nto two mtrces correspondng to the longtudnl nd lterl rcrft moton, whch re denoted by B long_ns nd BBlt_ns. Therefore, B ns s wrtten s Bns = Blong _ ns B lt _ ns where B long_ns s (6*6) mtrx contnng the dervtves of the sme coeffcents s the ones of A ns (whch re C L, C M, C N, C D, C Lft, C Y ) wth respect to the longtudnl control surfces long_ail, long_ht, long_rud, long_lef nd long_tef,; B lt_ns s (6*6) mtrx contnng the dervtves of the sme coeffcents s the ones of A ns (whch re C L, C M, C N, C D, C Lft, C Y ) wth respect to the lterl control surfces lt_ail, lt_ht, lt_rud, lt_lef nd lt. The output, stte, nd nput vectors re gven by the followng equtons: RTO-MP-AVT

4 ( ) T L M N D Lft Y y = C C C C C C ( α θ ) T x= q V H p r β φ (4) u = long _ LEF long _ TEF long _ AIL long _ HT long _ RUD... T lt _ LEF lt _ TEF lt _ AIL lt _ HT lt _ RUD The Tylor seres pproxmtons of stblty nd control dervtves t the trm poston C L, C M, C N, C D, C Lft, nd C Y cn be wrtten s follows: (3) (5) C C C C C C C C C q α V θ H p r β φ L L L L L L L L L CL = q+ α+ V+ θ+ H+ p+ r+ β+ φ+ C C C C C L L L L L P _ AIL long _ HT long _ RUD long _ LEF long _ TEF P _ AIL long _ HT long _ RUD long _ LEF long _ TEF C + C C C C L L L L L lt _ AIL lt _ HT lt _ RUD lt _ LEF lt _ TEF lt _ AIL lt _ HT lt _ RUD lt _ LEF lt _ TEF (6) The vrtons of ll stblty coeffcents re wrtten under smlr forms s the ones gven by equtons (6). Block 2 descrpton The vrtons of forces nd moments re wrtten s functon of ther stblty nd control dervtves s follows: Xw S CD Yw S CY Z w S C Lft = (7) Lw S b CL M w S c CM N w S b C N X Y Z nd the moments vrtons on ll where the forces vrtons on the three xes re [ ] three xes re [ L M N ] Block 3 descrpton w w w w w w 2 ρv, nd where S = S = q S. 2 It s well known n ths feld 4 tht n rcrft s system of coordntes (x, y, z ) s relted to the wnd coordnte system (x w, y w, z w ) by the followng two successve rottons of the coordnte system (x w, y w, z w ). 1. A frst rotton wth sdeslp ngle β round the z w xs to obtn the ntermedte coordnte system (x y z ) nd 2. A second rotton wth ttck ngle α round the y xs to obtn the rcrft coordnte system (x, y, z ), whch gves: x cosαcos β cosαsn β snα xw y = sn β cos β y w (8) z snαcos β snαsn β cosα z w dyn 1-4 RTO-MP-AVT-154

5 The X nd Z forces hve opposte sgns (see equtons 9.1), whle the L, M, nd N moments hve the sme sgn (see equtons 9.2) wth respect to the clsscl formulton (equtons (8)), whch s due to ther orenttons, s gven by NASA DFRC. X cosα cos β cosα sn β snα X Y sn β cos β = Y Z snα cos β snα sn β cosα Z L cosαcos β cosαsn β snα L M sn β cos β = M N snαcos β snαsn β cosα N w w w w w w (9.1) (9.2) Equtons (9.1) nd (9.2) re lnerzed round the equlbrum poston (trm) of the F/A-18 rcrft by the smll perturbtons theory, n whch the ndex of ny quntty t equlbrum s denoted by nd the vrton of quntty round ts equlbrum poston s denoted by. The ngles of ttck nd sdeslp ngles re expressed wth ths theory s follows: α = α +α (1) β = β + β The sdeslp ngle t equlbrum β gven by the NASA DFRC s equl to, nd therefore we cn wrte the sdeslp ngle β s functon of ts smll vrton β: cos β = cos( β +β) cosβ 1 (11) sn β = sn( β +β) sn β β The rcrft forces X, Y, Z nd moments L, M, N clculted n the rcrft system nd n the wnd system w re lso wrtten by use of the smll perturbtons theory, such s: X = X + X,, L = L + L,, X w = X w + X w,,, L w = L w + L w (12) The forces X, Y, Z nd the moments L, M, N t equlbrum re zeros n the rcrft system nd n the wnd system w, nd the ngle of ttck α nd sdeslp ngle β vrtons re lso equl to zero. We ntroduce these lst vlues nto equtons (9)-(12), nd we obtn the followng system of equtons: X Xw Y Yw Z Z w = Cm 1 (13) L Lw M M w N N w where C m1 hs the followng form : cosα snα 1 snα cosα C m 1 = (14) cosα snα 1 snα cosα RTO-MP-AVT

6 We replce the force nd moment vrtons n the wnd system of coordntes X w, Y w, Z w, L w, M w, nd N w s functon of stblty coeffcents vrtons gven by equton (7) nto the rght hnd sde of equton (13) nd we obtn: X CD Y CY Z C Lft = Cm (15) L CL M C M N C N where the C m mtrx hs the followng form: S cosα S snα S S snα S cosα Cm = (16) S b cosα S b snα S c S b snα S b cosα Block 4 descrpton The sx degree-of-freedom block refers to the equtons of moton of rgd body n sx degrees of freedom. The theory cn be found n the lterture 4. The Smulnk toolbox s used here s Block 4, nd s composed of fve blocks, 4.1 to 4.5. Blocks 4.1 nd 4.2 descrptons The orgn of the rcrft system of coordntes,, s the rcrft center of grvty. The nertl system of coordntes s fxed to the Erth nd s denoted by. The rcrft equtons of moton re obtned wth Newton s second lw: The sum of the externl forces ctng on n rcrft s equl to the momentum rte of chnge of the momentum of the rcrft over tme (Block 4.1). The sum of the externl moments 4 ctng on n rcrft s equl to the ngulr momentum rte of chnge of the rcrft over tme (Block 4.2). V (,, ) u v w uvw,, Vx, Vy, Vz x, y, z V ( u, v, w) pqr,, C = B A x, y, z V ω T DCM pqr,, φ, θψ, I 1 pqr,, φ, θψ, φ, θψ, φ, θψ, pqr,, I ω ( Iω) Fgure 3: Descrpton of Block 4 detls on sx degree-of-freedom dynmcs 1-6 RTO-MP-AVT-154

7 Block 4.3 descrpton The Cosne Drector Mtrx CDM s clculted from the Euler roll, ptch nd yw ngles φ, θ, nd ψ n Block 4.3, nd s used n Block 4.4. φ, θψ, φ, θ, ψ Fgure 4: Scheme of Block 4.3 cosθ cosψ cosθsnψ snθ CDM = cosψ snθ snφ snψ cosφ snφsnθ snψ + cosψ cosφ cosθ snφ (17) cosφ snθ cosψ + snφsnψ snψ snθ cosφ cosψ snφ cosθ cosφ Block 4.4 descrpton The lner speeds V x, V y nd V z n the nertl system of coordntes re clculted s functon of the lner speeds u, v, nd w n the rcrft systems by three successve rottons: one frst rotton wth the yw ngle ψ round the z xs, second rotton wth the ptch ngle θ round the y xs nd thrd rotton wth the roll ngle φ round the x xs, nd we obtn: Vx u T Vy = CDM v (18) V z w Block 4.5 descrpton Block 4.5 reltes the Euler ngles φ, θ, nd ψ, nd the ngulr speeds p, q, nd r wth the Euler tme dervtves φ, θ, nd ψ by use of the followng equton: φ 1 snφtnθ cosφtnθ p θ = cosφ snφ q (19) ψ snφ cosφ r cosθ cosθ Block 5 descrpton In Block 5, we clculte the vrtons of the rcrft s true rspeed V, of the ngle of ttck α, nd of the sdeslp ngle β. In order to clculte these vrtons, we frst clculte V, α, nd β s functons of lner speeds n trnslton u, v, nd w n the rcrft system of coordntes 4 : V = u + v + w ; α = rctn( w/ u); β = rctn v/ ( u + w ) (2) The theory of smll perturbtons s ppled to the terms V, α, β, u, v, nd w. 5.1 True rspeed vrton V We replce the speeds gven by the perturbton theory n the frst squred equton of the system of equtons (2): ( V + V) = ( u + u) + ( v + v) + ( w + w) 2 (21) At equlbrum we wrte: V = u + v + w (22) The squre products of speed vrtons u 2, v 2, w 2 2, nd V n equton (21) cn be neglected, s they re very smll. Then, we dvde equton (21) by 2V nd we obtn: T RTO-MP-AVT

8 u v w V = u+ v+ w (23) V V V At equlbrum, the components u nd w of the true rspeed V cn be wrtten s functon of the ngle of ttck α s follows: u = V cos α ; w = V snα (24) The reserchers t NASA DFRC consdered n ther clcultons β =, so tht the component v s equl to zero: v = V sn β = (25) We replce equtons (24) nd (25) nto equton (23) nd we obtn: V = ucosα + wsnα (26) 5.2 Angle of ttck vrton α The second equton of system (2) cn lso be wrtten n the followng form: usnα = wcosα (27) At equlbrum, equton (27) cn be expressed s: usnα = wcosα (28) We pply the perturbton theory to the qunttes u, v nd α (for exmple u = u + u, etc.). We further replce these qunttes, equtons (24) nd (28) n equton (27). The products of smll quntty vrtons, such s α u nd α w re neglected. We tke nto ccount the trgonometrc equlty sn 2 α + cos 2 α = 1 nd the trgonometrc functons for smll ngles of ttck vrtons (cos α = 1 nd sn α = α), therefore we obtn the vrton of the ngle of ttck s follows: sn cos α = α u+ α w (29) V V 5.3 Sdeslp ngle vrton β The thrd equton of the system of equtons (2) cn be wrtten, for smll vrtons of β j (nd for β = ), s : v tn β β= (3) 2 2 u + w We express β n the form of the products sum of the β dervtves wth respect to u, v, nd w t equlbrum nd the smll perturbtons of u, v, nd w: β u β β v β = + + w (31) u v w The expressons of β dervtves t equlbrum re clculted by the dervton of equton (45), where v =, V = u + w, nd we obtn: β = v 2u = u u + w v 2 1+ ( ) 2 2 u + w β u + w u + w = = = v + u + w + v = v 1 u w u + w V u + w β = v 2w = w u + w v 2 1+ ( ) 2 2 u + w (32) 1-8 RTO-MP-AVT-154

9 We replce the system of equtons (32) n equton (31) nd we obtn: 1 β = v (33) V Fnlly, V, α, nd β, from equtons (26), (29) nd (33), respectvely, re rerrnged n the form of mtrx system of equtons: cosα snα V u snα cosα α = v (34) V V β w 1 V We dd the system of equtons (34) to the ntl equtons of the Block 4 output vrtons u, v, w, x, y, z, p, q, r, φ, θ, nd ψ, whch become the Block 5 nputs, nd we obtn hgher order mtrx system of equtons: u v q w α x V y θ z (35) =H H = Bm p p q r r β φ φ θ ψ where 1 snα cosα V V cosα snα 1 (36) Bm = V 1 Block 6 descrpton The ntl prmeters of the mtrx system of equtons (35) re gven by NASA DFRC n the stblty nd control dervtve fles for ech flght condton chrcterzed by the Mch number, lttude nd the ngle of ttck: T T q α V θ H p r β φ = α V θ H (37) [ ] _ ns _ ns _ ns _ ns RTO-MP-AVT

10 Block 7 descrpton We clculte the r densty ρ s functon of lttude H, nd we obtn 5 : ρ LH = 1 (38) ρ T where ρ s the r densty t se level, L s the temperture lpse rte, T s the r temperture t se level, H s the lttude, R s the gs constnt nd g s the grvttonl constnt t se level. Block 8 descrpton The dynmc pressure q dyn s clculted 4 s functon of the rcrft s true rspeed V nd the r densty ρ. Block 9 descrpton The control surfce nputs re excted wth vrous sgnls. The control surfces for the F/A-18 rcrft nlyzed here re: the Ledng Edge LE flps lef = LEF, the Trlng Edge TE flps tef = TEF, the lerons l = AIL, the horzontl tl ht = HT, nd the rudder rud = RUD. One sgnl s used t tme on the rcrft control nputs, to gve devton of ± 5 round the equlbrum rcrft poston (trm) for ts longtudnl nd lterl rcrft moton n order to observe the forces nd moments vrton over tme. For the longtudnl moton, sgnl ws gven on the horzontl tl, nd for the lterl moton sgnl ws gven on the lerons. g 1 LR 2.2 STATE VARIABLES INTRODUCTION IN CLOSED LOOP We next develop second formulton from the frst formulton, n order to obtn the vectors of the generlzed coordntes nd ther tme dervtves n closed loop form: (,,,,, ) T T η = x y z φ θ ψ ; η = ( V, V, V, φ, θ, ψ ) (39) x y z The rrngement of stblty coeffcents on lnes 1 to 6 of the mtrces used n the frst formulton s: C, C, C, C, C, C (see equton (7)). In order to obtn the second formulton, t s necessry to L M N D Lft Y rerrnge the order of the stblty coeffcents s follows: CD, CY, CLft, CL, CM, C N. Therefore, the nottons A nt, BBlong_nt, nd B lt_nt re ntroduced for the ntermedte mtrces A, B long, nd B lt, n whch the order of the coeffcents s rerrnged. We show below only the A nt mtrx, whle B long_nt (6*6) mtrx contns the dervtves of the sme coeffcents s the ones of A nt wth respect to the longtudnl control surfces long_ail, long_ht, long_rud, long_lef nd long_tef, nd BBlt_ns s (6*6) mtrx contnng the dervtves of the sme coeffcents s the ones of A nt wth respect to the lterl control surfces lt_ail, lt_ht, lt_rud, lt_lef nd lt_tef. CD CD CD CD CD CD CD CD CD q α V θ H p r β ϕ CY CY CY CY CY CY CY CY CY q α V θ H p r β ϕ CLft CLft CLft CLft CLft CLft CLft CLft CLft (4) q α V θ H p r β Ant = ϕ CL CL CL CL CL CL CL CL C L q α V θ H p r β ϕ CM CM CM CM CM CM CM CM C M q α V θ H p r β ϕ CN CN CN CN CN CN CN CN C N q α V θ H p r β ϕ The ntermedte mtrx A m_nt for the A m mtrx s now wrtten s follows: 1-1 RTO-MP-AVT-154

11 4,1 4,2... 4,19 6,1 6,2... 6,19 5,1 5,2... 5,19 Am _ nt = Ant Blong _ nt Blt _ nt = = Am1_ nt Am 2 _ nt 1,1 1,2... (41) 1,19 2,1 2,2... 2,19 3,1 3,2... 3,19 where s the stblty coeffcents mtrx nd ts nlytcl formulton s gven n equton (42.1). A m1_nt The mtrx s the control coeffcents mtrx [ B B ] nd ts nlytcl form s expressed A m2_nt long _nt lt _nt by equton (42.2). 4,1 4,2... 4,9 6,1 6,2... 6,9 5,1 5,2... 5,9 (42.1) Am1_nt = 1,1 1,2... 1,9 2,1 2,2... 2,9 3,1 3,2... 3,9 4,1 4, ,19 6,1 6, ,19 5,1 5,11... (42.2) 5,19 Am 2_nt = Blong _nt B lt _nt = 1,1 1, ,19 2,1 2, ,19 3,1 3, ,19 Then, the second equton of stte spce system my be wrtten by use of equtons (42.1) nd (42.2) n the rerrnged order, s follows: long _ LEF q long _ TEF α CD long _ AIL V C Y long _ HT θ C (43) Lft long _ RUD = A m1_nt H + A m2_nt C L lt _ LEF p C M lt _ TEF r C N lt _ AIL β lt _ HT φ lt _ RUD We replce the left hnd sde term of equton (35) n the frst term on the rght hnd sde of equton (43) n order to obtn nother set of stte vectors x n the second equton of the stte spce system of equtons, nd we obtn: RTO-MP-AVT

12 u v long _ LEF w long _ TEF C D x long _ AIL C Y y long _ HT (44) C Lft z = H long _ RUD = Am1_ntBm Am2_nt C L p + lt _ LEF C M q lt _ TEF C N r lt _ AIL φ lt _ HT θ lt _ RUD ψ We replce the vector output gven on the left hnd sde of equton (44) n the rght hnd sde term of equton (15) n order to clculte the forces nd moments n the rcrft system of coordntes: u v long _ LEF w long _ TEF X x long _ AIL Y y long _ HT (45) Z z =H long _ RUD = CmAm 1_ntBm CmAm2_nt L p + lt _ LEF M q lt _ TEF N r lt _ AIL φ lt _ HT θ lt _ RUD ψ The followng nottons re ntroduced: C = C A B ; D= C A (46) nd we obtn: m m1_nt m m m2_nt u v w X x Y y Z z = H = C D L p + M q N r φ θ ψ long _ LEF long _ TEF long _ AIL long _ HT long _ RUD lt _ LEF lt _ TEF lt _ AIL lt _ HT lt _ RUD The scheme shown n the next fgure represents the converson of the scheme shown n Fgure 1 by use of equtons (39)-(47), nd hs the 12 stte vectors x gven by equton (39) n the closed loop. We obtned the C nd D mtrces, whch chrcterze the lner system t trm condton. These mtrces re presented n detl next. (47) 1-12 RTO-MP-AVT-154

13 lef tef l ht rud lef tef l ht rud u v w x y z p q r φ θ ψ X ( ) force Y ( ) force Z ( ) force L ( ) moment M ( ) moment N ( ) moment q Scb,, dyn V, V, V x y z x, y, z φ, θψ, DCM V (,, ) u v w p, qr, p, qr, u v w x y z p q r φ θ ψ Fgure 5: Smulton scheme wth 12 stte vectors n closed loop We cn represent the terms of the C nd D mtrces nlytclly. The C mtrx hs the followng nlytcl form: C11 C12 C13 C14 C = CmAm 1Bm = (48) C21 C22 C23 C24 where the C11, C12, C13, C14, C21, C22, C23, nd C24 mtrces re represented under nlytcl forms. The BBm mtrx s expressed by equton (51), the A m1_nt mtrx s gven by equton (42.1), nd ther product s wrtten s follows: snα 4,8 cos α 4,2 + 4,3 cosα 4,2 + 4,3 snα 4,5 4,6 4,1 4,7 4,9 4,4 V V V snα 6,8 cos α 6,2 + 6,3 cosα 6,2 + 6,3 snα 6,5 6,6 6,1 6,7 6,9 6,4 V V V snα 5,8 cos α (49) 5,2 + 5,3 cosα 5,2 + 5,3 snα 5,5 5,6 5,1 5,7 5,9 5,4 V V V Am 1Bm = sn α 1,8 cos α 1,2 + 1,3 cosα 1,2 + 1,3 snα 1,5 1,6 1,1 1,7 1,9 1,4 V V V snα 2,8 cos α 2,2 + 2,3 cosα 2,2 + 2,3 snα 2,5 2,6 2,1 2,7 2,9 2,4 V V V snα 3,8 cosα 3,2 + 3,3 cosα 3,2 + 3,3 snα 3,5 3,6 3,1 3,7 3,9 3,4 V V V The C mtrx s the product of the C m mtrx gven by equton (24) nd the A m1 B m mtrces product gven by equton (49), whle the C mtrx nlytcl elements re found by dentfcton. Due to the pges number lmttons, we gve here only the C11 mtrx elements: 2 4,2 sn 2α 2 5,2 sn α 5,3 sn 2α 4,8 cosα 5,8 snα c1,1 = S 4,3 cos α + ; c1,2 = S 2V V 2 + V V RTO-MP-AVT

14 2 4,2cos α 4,3 sn 2α 5,2 sn 2α 2 c1,3 = S + + 5,3 sn α ; V 2 2V 6,2 snα 6,8 6,2 cos α c2,1 = S + 6,3 cos α ; c2,2 = S ; c2,3 = S + 6,3 sn α V V V 2 4,2 sn α 4,3 sn2α 5,2 sn2α snα 2 c3,1 = S + 5,3 cos α ; c3,2 = S V 2 2V V The D mtrx my be wrtten under the form D [ D D ] 4,8 5,8 cosα V = 1 2 T, where D1 nd D2 re: d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9 d1,1 D1 = d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8 d2,9 d2,1 d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9 d 3,1 d d d d d d d d d d 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,1 = 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,1 D2 d d d d d d d d d d d d d d d d d d d d 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,1 (5) (51.1) (51.2) The mtrx D= [ D1 D2] T = CmAm2_nt s the product of the mtrx gven by equton (16) nd the A gven by equton (42.2). The elements of mtrces D1 nd D2 re clculted by m2_nt dentfcton, nd we show here only the frst elements of D1 mtrx. d = S cosα + sn α ; d = S cosα + snα ( ) ( ) ( cosα sn α ); ( cosα snα ) ( cosα sn α ); ( cosα snα ) ( 16 cosα + 5,16 sn α ); d1,8 = S ( 4,17 cosα + 5,17 snα ) ( cosα sn α ); ( cosα sn ) 1,1 4,1 5,1 1,2 4,11 5,11 d = S + d = S + 1,3 4,12 5,12 1,4 4,13 5,13 d = S + d = S + 1,5 4,14 5,14 1,6 4,15 5,15 d = S 1,7 4, d = S + d = S + α 1,9 4,18 5,18 1,1 4,19 5,19 The C mtrx (only ts C11 elements re shown n equtons (5)) nd the D mtrx (only ts frst elements re shown n equtons (52)) re further replced n equton (47). Therefore, we obtn the two mtrx equtons for the vrtons of forces X, Y et Z nd moments L, M et N n the rcrft system of coordntes: long _ LEF long _ TEF long _ AIL long _ HT X u x p φ (53.1) long _ RUD Y = C11 v + C12 y + C13 q + C14 θ + D1 lt _ LEF Z w z r ψ lt _ TEF lt _ AIL lt _ HT lt _ RUD C m (52) 1-14 RTO-MP-AVT-154

15 L u x p φ M = C21 v + C22 y + C23 q + C24 θ + D2 N w z r ψ long _ LEF long _ TEF long _ AIL long _ HT long _ RUD lt _ LEF lt _ TEF lt _ AIL lt _ HT lt _ RUD (53.2) In equtons (53.1) nd (53.2), there re terms u, v, w, p, q, nd r n the rcrft coordnte system nd terms x, y, z, φ, θ, nd ψ n the nertl coordnte system. We need to obtn these terms n the sme system of coordntes, nd we chose the nertl system of coordntes. Therefore, we convert the lner nd ngulr speeds terms (u, v, w, p, q, nd r) from the rcrft coordntes system, nto the nertl coordnte system. The speeds u, v, nd w n the rcrft system of coordntes re obtned, usng lnerzton, from the lner speeds nd Euler ngles n the nertl system of coordntes. Equton (18) cn be wrtten n the followng form: u cosθcosψ cosθsn ψ snθ Vx v sn sn cos cos sn sn sn sn cos cos sn cos V (54) = φ θ ψ φ ψ φ θ ψ+ φ ψ φ θ y w cos φsnθcos ψ snφsnψ cos φsnθsnψ snφcos ψ cos φcos θv + z The smll perturbtons theory s ppled to the followng qunttes: u, v, w, V x, V y, V z, p, q, nd r. The roll nd yw ngles t equlbrum gven by NASA DFRC re equl to zero, φ, nd ψ. The trgonometrc functon (sne nd cosne) ssumptons for smll ngles φ, θ, nd ψ re lso consdered. The products of smll terms such s φ ψ, θ Vx, θ Vz, φ Vx nd φ Vy re neglected, nd we consder the equlbrum speeds V y nd V z to be zero. We replce these ssumptons n equtons (54) nd we obtn: u Vx φ v = P Vy + P1 θ (55) w V z ψ where: cosθ snθ P = 1 snθ cosθ nd V snθ x =Vx θ V x P1 sn V cosθ x (56) The second type of lnerzton concerns the clcultons of ngulr speeds p, q, nd r n the rcrft system of coordntes from the Euler ngles nd ther dervtves n the nertl system of coordntes. The ngulr speeds p, q, nd r re expressed 4 s functons of Euler ngles φ, θ, nd ψ, respectvely, nd ther tme dervtves φ, θ nd ψ. The smll perturbtons theory s ppled to the Euler ngles φ, θ, nd ψ, ther tme dervtves φ, θ nd ψ nd to the ngulr speeds p, q, nd r. The ntl dt gven by the NASA DFRC lbortores re gven for the ngulr speeds p = q = r =, Euler ngles nd ther tme dervtvesφ = ψ =, θ = α, nd φ = θ = ψ =. The products of smll ngle vrtons such s RTO-MP-AVT

16 φ θ nd other products of such smll ngles cn be neglected. For smll ngle vrtons φ, θ, nd ψ (sn φ = φ, cos φ = 1,...), we cn wrte the followng system of equtons : p φ ψ snθ 1 snθ φ φ q = θ = 1 θ = R θ r cosθψ cosθ ψ ψ (57) where R s the followng mtrx: 1 snθ R = 1 cosθ (58) We next replce the vectors (u v w) T gven by equtons (55) nd (56) nd (p q r) T gven by equtons (57) nd (58) nto the two sets of equtons (53.1) nd (53.2) for the vrtons of forces X, Y, Z nd moments L, M nd N n the rcrft system of coordntes, nd we obtn: X Vx X φ φ Y = C11 P Vy + C12 Y + C13 R θ + ( C14 + C11 P1) θ + D1 Z V z Z ψ ψ l t lt lt long _ LEF long _ TEF long _ AIL long _ HT long _ RUD lt _ LEF lt _ TEF _ AIL _ HT _ RUD (59.1) 1-16 RTO-MP-AVT-154

17 L Vx x φ φ M = C21 P Vy + C22 y + C23 R θ +( C24 + C21 P1) θ + D2 N V z z ψ ψ lt The development of equtons (59.1) nd (59.2) cn be seen n Fgure 6: long _ LEF long _ TEF long _ AIL long _ HT long _ RUD lt _ LEF lt _ TEF lt _ AIL lt _ HT _ RUD (59.2) x y η z φ θ ψ Vx Vy η Vz φ θ ψ lef tef l ht rud lef tef l ht rud X ( ) force Y ( ) force Z ( ) force L ( ) moment M ( ) moment N ( ) moment q Scb,, dyn V, V, V x y z x, y, z φ, θψ, DCM V (,, ) u v w φ, θ, ψ x y z φ θ ψ V x V y V z φ θ ψ η η η η Fgure 6: New scheme ncludng the vrtons of stte vectors nd ther tme dervtves η nd η n closed loop form In Fgure 6, we ntroduce the followng nottons for the stte vector vrtons η nd η : [ x y z ] T ; η = φ θ ψ (6) T η = Vx Vy Vz φ θ ψ 2.3 AERODYNAMIC FORCES FOR RIGID-TO-RIGID AND RIGID-CONTROL INTERACTIONS MODE CALCULATIONS To contnue ths work, we need to clculte the erodynmc forces nd moments vrtons for rgd-torgd Q rr nd rgd-to-control Q rc ntercton modes n the nertl system. Lnerzton of forces nd Euler ngles from the rcrft system of coordntes nto the nertl system s relzed by use of the smll perturbtons theory. The nertl forces vrtons X, Y, nd Z re wrtten s functons of force vrtons n the rcrft RTO-MP-AVT

18 system of coordntes X, Y, nd Z by use of the CDM n form smlr to the one gven by equtons (18). The smll perturbton theores re ppled to the Euler ngles, nd then we obtn two sets of equtons for the forces nd for the moments, under the followng form: X X φ X X Y = F Y + F1 θ = F Y + = F Y Z Z ψ Z Z (61.1) nd for the moments: L L φ L L M = F M + F1 θ = F M + = F M N N ψ N N (61.2) where cosθ snθ F = 1 snθ cosθ (62) The forces nd moments vrtons n the rcrft system of coordntes gven by equtons (59.1) nd (59.2) re replced n equtons (61.1) nd (61.2), n whch vector of zeros of dmensons (3x1) s dded, nd therefore, the forces nd moments re obtned n the nertl system of coordntes : long _ LEF long _ TEF long _ AIL long _ HT X x φ long _ RUD Y = F C12 y + F( C14 + C11 P1) θ + F D1 + lt _ LEF Z z ψ lt _ TEF lt _ AIL lt _ HT lt _ RUD Vx φ + F C11 P Vy + F C13 R θ + Zeros(3x 1) ( ) V z ψ T (63.1) 1-18 RTO-MP-AVT-154

19 long _ LEF long _ TEF long _ AIL long _ HT L x φ long _ RUD M F C22 y F( C24 C21 P1) θ F D2 = lt _ LEF N z ψ lt _ TEF lt _ AIL lt _ HT lt _ RUD Vx φ + F C21 P Vy + F C23 R θ + Zeros(3x1) ( ) V z ψ T (63.2) We rrnge equtons (63.1) nd (63.2) n order to obtn the generlzed coordnte vectors vrtons η nd η gven by equtons (6), nd the control vectors u nd u. RTO-MP-AVT

20 12 ( ) 1 22 ( ) 2 long LEF lon g T E F lo ng A IL lo ng H T long RUD lt L E F l t T E F l t A IL l t H T l t R U D x y z X Y Z F C F C C P F D L F C F C C P F D M N φ θ ψ + = x y z V V V F C P F C R F C P F C R φ θ ψ + + (64) The system of equtons (64) s smulted wth the scheme shown n Fgure RTO-MP-AVT-154

21 x y η z φ θ ψ Vx Vy η Vz φ θ ψ X Y Z L M N X Y Z L M N V, V, V x y z x, y, z φ, θψ, DCM V (,, ) u v w φ, θψ, x y z φ θ ψ V x V y V z φ θ ψ η η η η lef tef l ht rud lef tef l ht rud Scb,, q dyn Fgure 7: Scheme wth force nd moment vrtons n the rcrft system of coordntes from the nertl system of coordntes In order to clculte the erodynmc forces Q rr nd Q rc, we need to wrte the equton of moton for the flexble rcrft structure n terms of generlzed coordntes, n the followng form: M η+dη+kη + Qη = (65) q dyn whch cn be wrtten n smplfed form s: M η +Dη +Kη + y = (66) 1 where the lst term of equton (66) s: y1 = F Qη=[ ] T ero = qdyn X Y Z L M N (67) The erodynmc forces Q hve rel nd mgnry prts, nd for ths reson equton (67) cn lso be expressed s: RTO-MP-AVT

22 jωη y1 = q ( Q + j Q ) η = q Q η + q Q ω dyn R I dyn R dyn I (68) j t From the generlzed coordntes defntonη = Ae ω, where A s the mpltude of moton nd ω s the osclltons frequency, we clculte the generlzed coordntes dervtve wth tme η = j ωae jωt =jωη. The reduced frequency s gven by the followng equton: ωb ωc k = = (69) V 2V We replce ω clculted wth equton (69) nto equton (68) nd we obtn: η c y1 = qdynqrη + qdyn QI = qdynqrη+ qdyn Q Iη (7) ω 2kV The rel prts of erodynmc forces Q R correspond to the stte vectors x nd control vectors u nd the mgnry prts of erodynmc forces Q I correspond to the tme dervtves of stte vectors x nd control vectors u, nd therefore we cn wrte: R R c I c I y1 = qdynqrrη+ qdynqrcu+ qdyn Q rrη+ qdyn Qrcu (71) 2Vk 2Vk Equton (71) my be expressed n the form of the second stte spce equton: R c I η R c I u y1 = qdyn Qrr Qrr + qdyn Qrc Qrc 2Vk η 2Vk u (72) Equton (64) my be wrtten by use of stte vectors η nd ther tme dervtves η nd wth control vectors u nd ther tme dervtves u, s follows: X Y Z FC 12 F ( C14+ C11 P1) FD 1 η FC 11 P FC 13 R η y1 = = L F C22 F ( C24 C21 P1) F D2 + + u F C21 P F C23 R u M N (73) 1-22 RTO-MP-AVT-154

23 Equton (72) cn lso be presented n the followng form: T R R η c I c I η y1 = [ X Y Z L M N ] = ( qdynqrr qdynqrc ) + qdyn Qrr qdyn Qrc u 2Vk 2Vk u (74) The Q nd Q mtrces re represented under nlytcl form (wth 6 rows nd 16 columns). By rr rc dentfcton of the erodynmc forces mtrces gven n equtons (73) nd (74), we clculte the terms of the rel erodynmc forces for rgd-to-rgd mode nterctons erodynmc forces for rgd-to-control mode nterctons R Q rc R Q rr, nd thus we obtn: nd the terms of the rel Q R R F C12 F ( C14 + C11 P1) Qrr _11 Q rr _12 = F C22 F ( C24 C21 P1) = + Q rr _21 Qrr _22 R rr R R (75.1) Q R rc R F D1 Q rc _11 = = R F D2 Q rc _21 (75.2) The elements nlytcl forms: Q, Q, Q, Q, Q, Q R R R R R R rr _11 rr _12 rr _21 rr _22 rc _11 rc _21 of rel erodynmc forces hve the followng qr1,1 qr1,2 qr1,3 qr1,4 qr1,5 qr1,6 R R Qrr _11 = qr2,1 qr2,2 qr2,3 ; Q (76.1) rr _12 = qr2,4 qr2,5 qr2,6 qr3,1 qr3,2 qr 3,3 qr3,4 qr3,5 qr 3,6 qr4,1 qr4,2 qr4,3 qr4,4 qr4,5 qr4,6 R R Qrr _21 = qr5,1 qr5,2 qr5,3 ; Qrr _ 22 = qr5,4 qr5,5 qr5,6 (76.2) qr6,1 qr6,2 qr 6,3 qr6,4 qr6,5 qr 6,6 qr1,7 qr1,8 qr1,9 qr1,1 qr1,11 qr1,12 qr1,13 qr1,14 qr1,15 qr1,16 R Qrc _11 = qr2,7 qr2,8 qr2,9 qr2,1 qr2,11 qr2,12 qr2,13 qr2,14 qr2,15 qr2,16 qr3,7 qr3,8 qr3,9 qr3,1 qr3,11 qr3,12 qr3,13 qr3,14 qr3,15 qr 3,16 (76.3) RTO-MP-AVT

24 qr4,7 qr4,8 qr4,9 qr4,1 qr4,11 qr4,12 qr4,13 qr4,14 qr4,15 qr4,16 R Qrc _ 21 = qr5,7 qr5,8 qr5,9 qr5,1 qr5,11 qr5,12 qr5,13 qr5,14 qr5,15 qr5,16 qr6,7 qr6,8 qr6,9 qr6,1 qr6,11 qr6,12 qr6,13 qr6,14 qr6,15 qr 6,16 (76.4) By dentfcton of the mgnry prts of erodynmc forces nd n equtons (73) nd (74), we cn wrte: I Q rr I Q rc Q I rr I I FC 11 P FC 13 R Qrr _11 Q rr _12 I = = ; rc [ I I Q = FC 21 P FC 23 R Qrr _21 Q rr _22 ] T (77) The elements of the mgnry erodynmc forces I _11, I _12, I _21, I _22, I I Qrr Qrr Qrr Qrr Q rc _ 11 nd Q rc _21 hve the nlytcl forms gven n the followng equtons: q1,1 q1,2 q1,3 q1,4 q1,5 q1,6 I I Qrr _11 = q2,1 q2,2 q2,3 ; Qrr _12 = q2,4 q2,5 q2,6 (78.1) q3,1 q3,2 q 3,3 q3,4 q3,5 q 3,6 q4,1 q4,2 q4,3 q4,4 q4,5 q4,6 I I Qrr _21 = q5,1 q5,2 q5,3 ; Qrr _22 = q5,4 q5,5 q5,6 (78.2) q6,1 q6,2 q 6,3 q6,4 q6,5 q 6,6 We next show the clculton of one sngle term correspondng to the rel prts of the erodynmc forces, snce the sme theory s used to clculte ll of the terms of the rel nd mgnry erodynmc forces. Plese note tht the F mtrx s gven by equtons (62) nd the C12 mtrx s nlytclly gven. Q cosθ snθ c1,4 c1,5 c1,6 qr qr qr = F C12 = 1 c2,4 c2,5 c2,6 = qr qr qr snθ cosθ c3, 4 c3 c 3, 6 qr3, 1 qr3, 2 qr3 1,1 1,2 1,3 R rr _11 2,1 2,2 2,3,5,3 (79) The coeffcents equl to zero re coloured n blue (the frst two columns of C12 re zero) whle the coeffcents not equl to zero re coloured n red. By dentfcton of the R Q rr_11 mtrx elements expressed by equton (79) nd of the C mtrx vlues gven by equtons (5) nd other equtons (not shown, due to the pges number lmtton): 1-24 RTO-MP-AVT-154

25 2,1 2,2 2,3 2,6 6,5 ( ) ( ) qr1,1 = ; qr1,2 = ; qr1,3 = c1,6 cosθ + c3,6 snθ = S 4,5 cos θ α 5,5 sn θ α qr = ; qr = ; qr = c = S ( ) ( ) qr3,1 = ; qr3,2 = ; qr3,3 = c1,6 snθ + c3,6 cos θ = S 4,5 sn θ α 5,5 cos θ α (8) The s coeffcents terms n equtons (8) contn stblty nd control dervtves s seen n equtons (1)-(6). Therefore, we obtn, for ll rgd erodynmc elements Q R, the followng tble, n whch the frst 3 elements on column 4 were gven n equton (8). Q r Q x y η z φ θ ψ Vx Vy η Vz φ θ ψ lef tef l ht rud lef tef l ht rud q ( ) dyn Qr η + Q η X Y Z L M N q Scb,, dyn X Y Z L M N Vx, Vy, Vz x, y, z φ, θψ, DCM V (,, ) u v w φ, θψ, x y z φ θ ψ V x V y V z φ θ ψ η η η η Fgure 8: Smulton scheme for erodynmc force clcultons from generlzed coordntes x y X S C cos( θ α ) C sn ( θ α ) Y z ( d lft ) h S C yh ( ) ( l n ) Z S Cd sn ( θ α) C cos( ) h lft θ α h L S b C cos( θ α ) + C sn ( θ α ) M h S c C mh ( l n ) N S b C sn ( θ α ) + C cos ( θ α ) h h h h RTO-MP-AVT

26 X Y φ θ ψ S Cd α S Cy β snθ Z S ( Clft Clft ) L S b Cl β snθ M S c ( C + C ) N X S b Cn β snθ x Y Z L M N θ mθ α mα Tble 1 Rel erodynmc forces Q R y S C dv Cyβ S V S C lftv x x lβ z Cd α S V C S S b C V S c C mv x nβ x lftα V x S c C V x S b C V S Cd S Cy β S Cy S Clft S b Cl β S b Cl S c Cm S b Cn β S b Cn mα X Y Z L M N φ θ ψ S C d p S C yp S C dq S snθ C d p S ( Cy snθ + C cos ) p y θ r S C lft p S b C lp S C lftq S snθ C lft p S b C snθ + C cosθ ( l ) p lr S c C mp S b C np S c C mq S c C snθ S b ( Cn snθ + C cos ) p n θ r m p Tble 2 Imgnry erodynmc forces Q I 1-26 RTO-MP-AVT-154

27 The frst smulton scheme (Fgure 1) represents system tht uses the stblty nd control dervtves n the wnd system of coordntes nd n whch the forces nd moments re clculted n the rcrft system of coordntes. The second smulton scheme (Fgure 8) represents n equvlent scheme smlr to the frst, n whch the sttes n the nertl system of coordntes re used n the closed loop. 2.4 NUMERICAL LINEARIZATION SCHEME The formultons lredy developed n Sectons 1-3 wll be vldted for prtculr cses where the sme types of stblty nd control dervtves re gven n the wnd system of coordntes. A problem ppers f we dd, subtrct or chnge dervtve or ts ntl vlue n the formultons, becuse then ll the formultons chnge. Therefore, we need to develop utomtc smulton formultons. We develop Mtlb lgorthm n whch ll of the bove chnges n coordntes nd lnerztons re utomtclly relzed. We use the dlnmod Mtlb functon whch gves, n the stte spce form, the lnerzed form of system bult n Smulnk, round specfed trm pont condton. The smulton scheme presented n Fgure 9 s equvlent to the scheme presented n Fgure 1 nd tkes nto consderton the stblty dervtves gven n the wnd coordnte system. u F w M w Trnsformton of wnd coord s system to rcrft coord s system F M Prmeters 6 dof 5 4 Fgure 9: Smulton rcrft scheme wth stblty nd control dervtves gven n the wnd coordntes system In Block 1 of Fgure 9, the forces nd moments F w nd M w re clculted from the stblty nd control dervtves gven n the wnd system of coordntes. To smulte rcrft behvor, we convert these forces nd moments, determned n block 1, to forces nd moments n the rcrft coordnte system shown n block 3, usng block 2 for the trnsformton from the wnd coordnte system to the rcrft coordnte system. The rcrft lner nd ngulr speeds re the block 4 outputs nd re clculted from the forces nd moments n the rcrft coordnte system by use of the 6 degrees-of-freedom equtons of moton. Prmeters specfc to the rcrft n the wnd system of coordntes, such s the ngle of ttck, sdeslp ngle, nd true rspeed re further clculted n block 5 nd used s nputs to block 1 n the rcrft tme smulton. The scheme presented n Fgure 9 round the trm pont specfed n the smulton s then lnerzed by use of the dlnmod commnd n Mtlb, where the lner reltonshp between the nputs u nd the outputs y s obtned under stte spce form, n whch the stte vectors re x = ( uvwpqr,,,,,, φθψ,,, x, y, z). The components of the stte vectors x re the lner speeds u, v, nd w, the rtes p, q, nd r, the ngles φ, θ nd ψ nd the three postons x, y nd z. The scheme presented n Fgure 9 cn further be lso represented under stte spce form n Fgure 1. RTO-MP-AVT

28 u x = Ax + Bu y = Cx + Du y = F, M Fgure 1: Equvlence wth the scheme shown n Fgure 9 Then, the stte vrbles x re clculted wth the frst stte spce system equtons nd re further used n the second equton of the stte spce system to clculte the outputs y. In ths cse, we fnd the next scheme, equvlent to tht shown n Fgure 1, n whch the block 4 outputs, from the 6 degrees of freedom (dof) equtons of moton (see Fgure 9), re used. As the schemes shown n Fgures 9 nd 11 re compred, t s obvous tht blocks 1, 2, nd 4 re contned n the C nd D mtrces. The rcrft model thus obtned gves the vrtons of forces nd moments clculted n the rcrft coordnte system dependent on the nputs u nd stte vectors x. The mtrces Qrr nd Qrc, correspondng to rgd-to-rgd nd to rgd-to-control mode nterctons, respectvely, re determned for erodynmc forces n ths wy. The sttes multplyng these mtrces, nd the forces nd moments, re clculted n the nertl system of coordntes. The scheme shown n Fgure 11 s redesgned by ddng frst block whch chnges the outputs y nto y nd second block whch chnges the sttes x nto the sttes x. Ths new scheme s presented n Fgure 12. u y = Cx + Du y = F, M 6 dof Fgure 11: Equvlent schemes wth the Fgure 2 u y y = C x + D u y to y y = F, M x to x 6 dof Fgure 12: Smulton scheme wth forces nd moments clculted n the nertl system of coordntes The chnges to the coordntes mplemented n the dded blocks depend on the trgonometrc functons of Euler ngles, more specfclly the nputs re relted to the outputs by nonlner functons. The two blocks 1-28 RTO-MP-AVT-154

29 re then further lnerzed, whch requres tht the Mtlb commnd dlnmod be ppled to the two blocks. For the block x to x, lner reltonshp s obtned: x = Dx (81) 1 whch represents smplfed form of stte spce system where mtrces A, B, nd D 1 re zeros, s ths block hs no sttes. The lnerzton of block y to y gves: y = D y (82) 2 By usng the blocks shown n Fgure 12, nd equtons (81) nd (82), we wrte: ( ) ( ) y D y D Cx Du D CDx Du D CDx D Du = 2 = 2 + = = (83) Identfyng the mtrces gven by equton (83) wth those gven by the stte spce equtons: C = D CD; D= D D (84) The C nd D mtrces re obtned from the lnerzton presented n Fgure 9, nd the D 1 nd D 2 mtrces re obtned by the lnerzton of two blocks shown n Fgure 12. We clculte the C nd D mtrces wth equtons (84): C = D CD ; D = D D (85) nd the stte vector x s: T (,,,,,,,,,,, ) [ T x = x y z φ θψ x y z φθψ = η η] (86) r r We cn wrte the erodynmc force equtons for the rgd modes n the followng form, smlr to equton (71): R c I R c I qdyn Qrrηr + Qrrη r = qdynqrr qdyn Q rr x = C x 2Vk 2Vk (87) The rel nd mgnry prts of the erodynmc forces correspondng to the rgd modes re obtned by dentfcton from equton (87): R 1 I 2Vk Q = rr C ( 1:6,1:6 ); Qrr C ( 1:6,7:12 q = ) cq (88) dyn dyn RTO-MP-AVT

30 u = η c. The rel nd mgnry prts of the erodynmc forces correspondng to the nterctons of rgd modes wth the control modes re determned wth the followng equtons: The control vector u s [ ] T R 1 I Qrc = D ; Qrc = (89) q dyn The lgorthm s presented n the followng three steps: 1. We pply the Mtlb commnd dlnmod to ech of the 3 blocks n order to obtn C, D, D 1 nd D 2 mtrces; 2. Equtons (88) nd (89) re used to clculte the mtrces Q rr nd Q rc nd 3. The ntl mtrces clculted wth the Doublet Lttce method, DLM, or wth the Constnt Pressure Method, CPM, clculted by fnte element softwre, re replced wth the mtrces obtned wth our lgorthm. For vldton purposes, the lgorthm represents the numercl mplementton (shown n Secton 4) of nlytcl mplementton presented n Sectons 1-3. A comprson between the obtned vlues wth the nlytcl formulton nd the numercl formulton presented here s gven n the followng tbles. x y z x y z x y z x y z Tble 3 Rel prt of Q rr mtrx obtned by nlytcl lnerzton x y z x y z x -7.45E y z -4.38E x y -6.16E z Tble 4 Rel prt of Q rr mtrx obtned by numercl lnerzton 1-3 RTO-MP-AVT-154

31 x y z x y z x y z x y z Tble 5 Imgnry prt of Q rr mtrx obtned by nlytcl lnerzton x y z x y z x y z x y z Tble 6 Imgnry prt of Q rr mtrx obtned by numercl lnerzton We cn see tht the obtned results re the sme. Developng the numercl lgorthm llowed us to verfy the prtl nd fnl results for 9 flght test condtons 6. CONCLUSIONS In ths pper, we used two pproches: nlytcl (Sectons 1 to 3) nd numercl (Secton 4) to vldte the erodynmc force formultons correspondng to rgd-to-rgd nd rgd-to-control ntercton modes for eroservoelstcty studes -- only from knowng the stblty nd control dervtves n the wnd system of coordntes. These dervtves re dependent on flght regme condtons: Mch number, lttude nd ngle of ttck. In fct, the erodynmc forces correspondng to rgd nd control ntercton modes clculted wth fnte element softwre re replced wth erodynmc forces clculted usng both formultons presented here. Wth nother rcrft, nd thus wth dfferent set of stblty nd control dervtves, we wll use the numercl pproch combned wth the theoretcl pproch to vldte the new formultons. The numercl pproch wll lkely be much fster thn the theoretcl development, becuse successve lnerztons my tke qute long tme. The theoretcl pproch my become much more useful n the future. The nlytcl pproch developed n Sectons 1-3 llows us to obtn the nlytcl formuls for ll the stblty nd control dervtves n the nertl system from those clculted n the wnd system of coordntes. Lnerztons t the trm condton re performed t ech clculton step. The second pproch conssts of numercl lnerzton of the smulton scheme n the wnd reference system of coordntes. Vlues of stblty nd control dervtves obtned wth ths method nd those clculted nlytclly wth the frst method re the sme, therefore, we conclude tht the expressons RTO-MP-AVT

32 found for the erodynmc forces correspondng to rgd nd control modes re vldted. A comprson ws done between the flutter frequences nd dmpng vlues for eroelstcty studes (where only the elstc-elstc erodynmc forces Q ee were consdered) wth the flutter frequences nd dmpng vlues for eroservoelstcty studes (where ll the erodynmc force mtrx ws consdered). Thus, the common flutter frequences nd dmpng vlues were obtned for both eroelstcty nd eroservoelstcty studes. Addtonl flutter modes were obtned for the eroservoelstcty mtrx where rgd nd control modes dynmcs were ntroduced. Ths comprson ws nother wy to vldte our formulton, but ws not presented here n detls. ACKNOWLEDGEMENTS Mny thnks re due to Mr Mrty Brenner from NASA Dryden Flght Reserch Center for hs contnuous ssstnce nd collborton n ths work. Fnncl support ws gven n ths project by the NSERC (Nturl Scences nd Engneerng Reserch Councl of Cnd) nd by MDEIE (Mnstère du Développement économque, de l Innovton et de l Exportton). REFERENCES 1. Gupt, K.K., 1997, STARS An Integrted, Multdscplnry, Fnte-Element, Structurl, Fluds, Aeroelstc, nd Aeroservoelstc Anlyss Computer Progrm, NASA TM-4795, pp Rodden, W.P., Hrder, R.L., Bellnger, E.D., 1979, Aeroelstc Addton to Nstrn, NASA CR Lnd, R., Brenner, M., Robust Aeroservoelstc Stblty Anlyss, Sprnger-Verlg London Ltd., Nelson, R.C., Flght dynmcs nd Automtc Control, McGrw Hll Inc., USA, Shevell, R.S., Fundmentls of Flght, Prentce Hll, Upper Sddle Rver, New Jersey 7458, RTO-MP-AVT-154

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION NUEICAL ODELLING OF A CILIU USING AN INTEGAL EQUATION IHAI EBICAN, DANIEL IOAN Key words: Cl, Numercl nlyss, Electromgnetc feld, gnetton. The pper presents fst nd ccurte method to model the mgnetc behvour

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Identification of Robot Arm s Joints Time-Varying Stiffness Under Loads

Identification of Robot Arm s Joints Time-Varying Stiffness Under Loads TELKOMNIKA, Vol.10, No.8, December 2012, pp. 2081~2087 e-issn: 2087-278X ccredted by DGHE (DIKTI), Decree No: 51/Dkt/Kep/2010 2081 Identfcton of Robot Arm s Jonts Tme-Vryng Stffness Under Lods Ru Xu 1,

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping consder n the cse o nternl resonnce nd externl resonnce Ω nd smll dmpng recll rom "Two_Degs_Frdm_.ppt" tht θ + μ θ + θ = θφ + cos Ω t + τ where = k α α nd φ + μ φ + φ = θ + cos Ω t where = α τ s constnt

More information

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD U.P.B. Sc. Bull., Seres C, Vol. 77, Iss., 25 ISSN 226-5 ANAOG CIRCUIT SIMUATION BY STATE VARIABE METHOD Rodc VOICUESCU, Mh IORDACHE 22 An nlog crcut smulton method, bsed on the stte euton pproch, s presented.

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numercl Anlss Dr Muhrrem Mercmek INTEPOLATION ELM Numercl Anlss Some of the contents re dopted from Lurene V. Fusett, Appled Numercl Anlss usng MATLAB. Prentce Hll Inc., 999 ELM Numercl Anlss Dr Muhrrem

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

Strong Gravity and the BKL Conjecture

Strong Gravity and the BKL Conjecture Introducton Strong Grvty nd the BKL Conecture Dvd Slon Penn Stte October 16, 2007 Dvd Slon Strong Grvty nd the BKL Conecture Introducton Outlne The BKL Conecture Ashtekr Vrbles Ksner Sngulrty 1 Introducton

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F E F E + Q! 0

More information

Torsion, Thermal Effects and Indeterminacy

Torsion, Thermal Effects and Indeterminacy ENDS Note Set 7 F007bn orson, herml Effects nd Indetermncy Deformton n orsonlly Loded Members Ax-symmetrc cross sectons subjected to xl moment or torque wll remn plne nd undstorted. At secton, nternl torque

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures

13 Design of Revetments, Seawalls and Bulkheads Forces & Earth Pressures 13 Desgn of Revetments, Sewlls nd Bulkheds Forces & Erth ressures Ref: Shore rotecton Mnul, USACE, 1984 EM 1110--1614, Desgn of Revetments, Sewlls nd Bulkheds, USACE, 1995 Brekwters, Jettes, Bulkheds nd

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES

DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES N. Kngsb 1 nd N. Jy 2 1,2 Deprtment of Instrumentton Engneerng,Annml Unversty, Annmlngr, 608002, Ind ABSTRACT In ths study the

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Mechanical resonance theory and applications

Mechanical resonance theory and applications Mechncl resonnce theor nd lctons Introducton In nture, resonnce occurs n vrous stutons In hscs, resonnce s the tendenc of sstem to oscllte wth greter mltude t some frequences thn t others htt://enwkedorg/wk/resonnce

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

State Estimation in TPN and PPN Guidance Laws by Using Unscented and Extended Kalman Filters

State Estimation in TPN and PPN Guidance Laws by Using Unscented and Extended Kalman Filters Stte Estmton n PN nd PPN Gudnce Lws by Usng Unscented nd Extended Klmn Flters S.H. oospour*, S. oospour**, mostf.sdollh*** Fculty of Electrcl nd Computer Engneerng, Unversty of brz, brz, Irn, *s.h.moospour@gml.com

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

Investigation phase in case of Bragg coupling

Investigation phase in case of Bragg coupling Journl of Th-Qr Unversty No.3 Vol.4 December/008 Investgton phse n cse of Brgg couplng Hder K. Mouhmd Deprtment of Physcs, College of Scence, Th-Qr, Unv. Mouhmd H. Abdullh Deprtment of Physcs, College

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.) nnouncements Imge Formton nd Cmers (cont.) ssgnment : Cmer & Lenses, gd Trnsformtons, nd Homogrph wll be posted lter tod. CSE 5 Lecture 5 CS5, Fll CS5, Fll CS5, Fll The course rt : The phscs of mgng rt

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Workspace Analysis of a Novel Parallel Robot Named 3-R2H2S with Three Freedoms

Workspace Analysis of a Novel Parallel Robot Named 3-R2H2S with Three Freedoms Reserch Journl of Appled Scences, Engneerng nd Technology 6(0: 3847-3851, 013 ISS: 040-7459; e-iss: 040-7467 Mxwell Scentfc Orgnzton, 013 Submtted: Jnury 17, 013 Accepted: Februry, 013 Publshed: ovember

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45 Three hours UNIVERSITY OF MANHESTER SHOOL OF OMPUTER SIENE Prllel Progrms nd ther Performnce Dte: Wednesdy 16th Jnury 2013 Tme: 09:45-12:45 Plese nswer ny TWO Questons from the FOUR Questons provded. Ths

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Roll Control System Design Using Auto Tuning LQR Technique Abdulla I. Abdulla, Ibrahim K. Mohammed, Abdulhamed M. Jasim

Roll Control System Design Using Auto Tuning LQR Technique Abdulla I. Abdulla, Ibrahim K. Mohammed, Abdulhamed M. Jasim ISS: 2277-3754 ISO 9:28 Certfed Volume 7, Issue, July 27 Roll Control System Desgn Usng Auto unng LQR echnque Abdull I. Abdull, Ibrhm K. Mohmmed, Abdulhmed M. Jsm Abstrct he m of ths study s to desgn n

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD AMION-JACOBI REAMEN OF AGRANGIAN WI FERMIONIC AND SCAAR FIED W. I. ESRAIM 1, N. I. FARAA Dertment of Physcs, Islmc Unversty of Gz, P.O. Box 18, Gz, Plestne 1 wbrhm 7@hotml.com nfrht@ugz.edu.s Receved November,

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

13.4. Integration by Parts. Introduction. Prerequisites. Learning Outcomes

13.4. Integration by Parts. Introduction. Prerequisites. Learning Outcomes Integrtion by Prts 13.4 Introduction Integrtion by Prts is technique for integrting products of functions. In this Section you will lern to recognise when it is pproprite to use the technique nd hve the

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus ES 111 Mthemticl Methods in the Erth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry nd bsic clculus Trigonometry When is it useful? Everywhere! Anything involving coordinte systems

More information

Symmetries and Conservation Laws in Classical Mechanics

Symmetries and Conservation Laws in Classical Mechanics Symmetres nd Conservton Lws n Clsscl Mechncs Wllm Andrew Astll September 30, 0 Abstrct Ths pper wll provde detled explorton nd explnton of symmetres n clsscl mechncs nd how these symmetres relte to conservton

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information