December 2005 MATH 217 UBC ID: Page 2 of 11 pages [12] 1. Consider the surface S : cos(πx) x 2 y + e xz + yz =4.

Size: px
Start display at page:

Download "December 2005 MATH 217 UBC ID: Page 2 of 11 pages [12] 1. Consider the surface S : cos(πx) x 2 y + e xz + yz =4."

Transcription

1 ecember 005 MATH 7 UB I: Page of pages ]. onsider the surface : cos(πx) x y + e xz + yz =4. (a) Find the plane tangent to at (0,, ). (b) uppose (0.0, 0.96,z) lies on. Give an approximate value for z. (c) uppose a>0 is very small. Then the circular cylinder x +(y ) = a cuts a tiny disk from the surface. Approximately what is the area of this disk? (a) Let G(x, y, z) =cos(πx) x y + e xz + yz. ThenG(x, y, z) =4on, so a normal to at (0,, ) is n = G(0,, ) = π sin(πx) xy + ze xz, x + z, xe xz + y (0,,) =,,. Thus the plane tangent to at (0,, ) is 0=n x 0,y,z =x +(y ) + (z ), or z = x (y ). (b) The point (0.0, 0.96,z) lies on the tangent plane just found when z = ] x (y ) = (0.0) ( 0.04) =.0..0,y=0.96 This is a good approximation to the z-coordinate on the surface as well. (Accurate approx: z =.0658.) (c) Let be the area of the patch of described in the question, and let A = πa be the area of the disk produced by projecting the patch into the xy-plane. Then A d da = G G/ z =, so A =πa. (0,,) ontinued on page

2 ecember 005 MATH 7 UB I: Page of pages ]. how that each critical point of this function gives a local minimum: f(x, y) = (x y x ) + (x ). First-Order Analysis: For f(x, y) = (x y x ) + (x ),wehave f x =(x y x )xy ] + (x )x] =x y x y xy +x x +, f y =(x y x )x ]=x 4 y x x, Find critical points (P s) starting with 0 = f y (x, y) =x (x y x ). Two cases arise: (i) ase x =0: Heref x (0,y) = for all y, so there are no P s with x =0. (ii) ase x y x = 0. In this case f x =0iff0=(x )x], i.e., x =0orx =. We already know there are no P s when x = 0, so we retain only the case x =. This gives y = x + above, and two solutions: x = = (x, y) =(, 0), x =+ = (x, y) =(, ). Further Investigation (option ): alculation shows that f(, 0) = 0 and f(, ) = 0. vidently f(x, y) 0 for all (x, y), so both critical points found above are global minimizers for f. Of course, that makes them local minimizers as well. Further Investigation (option ): tart with the second derivatives of f. f xx = 6x y 6xy y +6x, f xy = 4x y x x, f yx = 4x y x x, f yy = x 4. ] ] fxx f P (, 0): Here H(, 0) = xy 5 =. f yx f yy The determinant and diagonal entries are all ] positive, ] so this P gives a local minimum. fxx f P (, ): Here H(, ) = xy =. f yx f yy Again the determinant and diagonal entries are all positive, so this P gives a local minimum. ontinued on page 4

3 ecember 005 MATH 7 UB I: Page 4 of pages ]. Find the centroid (x, y, z) of the solid inside the cylinder x + y = 4, above the plane z =0,and below the paraboloid z =+x + y. Name the given solid. learly has rotational symmetry around the z-axis, so x =0=y. Also, has a simple projection along the z-axis onto the disk = { (x, y) :x + y 4 }. The projection fibre associated with point (x, y) runs from z min =0toz max =+x + y. Using polar coordinates in leads to this iteration, valid for any scalar field f on : If] = fdv = In particular, the volume of is given by = ] +x +y f(x, y, z) dz da(x, y) z=0 π +r θ=0 r=0 z=0 f(r cos θ, r sin θ, z) dz r dr dθ. I] = π +r θ=0 r=0 z=0 dz r dr dθ = π θ=0 r=0 r (r + r ) dr dθ =π + r4 4 ] r=0 =π + 4] = π and the moment of across the plane z =0isgivenby Iz] = = π θ=0 r=0 π θ=0 r=0 +r z=0 zdzrdrdθ ( + r ) rdrdθ r +r + r 5 =π r=0 = π +8+ ] = π r dr = π ( ) 6. + r4 4 + r6 6 ] r=0 Hence z = zdv dv = π(6/) π = 8. ontinued on page 5

4 ecember 005 MATH 7 UB I: Page 5 of pages ] 4. Let I = y/ y dx dy. x + y (a) Rewrite I as an iterated integral in polar coordinates. (b) valuate I. Hints: sec(at) dt = a ln sec(at)+tan(at), csc(at) dt = a ln csc(t) cot(t). The outer limits on I show that the domain lies in the horizontal strip y ; the inner limits show that it lies between the lines x = y and x = y/. Thus I = da(x, y), x + y where is a quadrilateral in the upper half-plane. Two sides of are provided by lines through the origin: these have polar equations θ = π/ andθ =π/4. The horizontal sides of are y =, i.e., r = =csc(θ), and y =, i.e., r = sin(θ) sin(θ) =csc(θ). These sides define r min and r max for use in the polar iteration of I: π/4 cscθ π/4 I = θ=π/ r=csc θ r rdrdθ= csc θ csc θ] dθ = ln csc(θ) cot(θ) θ=π/ =ln + ln / / ( ) ( ) =ln + ] =ln + 6. π/4 θ=π/ ontinued on page 6

5 ecember 005 MATH 7 UB I: Page 6 of pages ] 5. Let be a simple closed curve in the plane x +y + z =, oriented counterclockwise when viewed from high on the z-axis. (a) how that I() def = ydx+zdy xdz depends only on the area of the region enclosed by and not on the position or shape of. (b) Let be the triangular path from (, 0, 0) to (0,, 0) to (0, 0, ) to (, 0, 0). Find I() by calculating a cross product and using part (a). Observe that I() = F dr for F = y, z, x, and notice that i j k F = / x / y / z = i (0 ) j ( 0) + k (0 ) =,,. y z x Thus, by tokes s Theorem, every capping surface for obeys I() = ( F) N d =,, N d. Let be the plane region inside. Then the unit normal to is the same at every point, namely, N = n n =,, + + =,,. (This comes from reading a normal n =,, from the coefficients in the plane equation, and making sure it points upward for compatibility with the given orientation of.) onsequently I() =,,,, d = ( 6) d = Area(). As announced, this value depends only on the area inside and not on its position or shape. The triangular path in (b) lies in the given plane, and it encloses an area we can find using the cross product: Area() = u v, where u =(,, 0), v =(, 0, ). Thus i j k I() = Area() =( ) 0 =,, =. 0 ontinued on page 7

6 ecember 005 MATH 7 UB I: Page 7 of pages ] 6. Let be the surface cut from the parabolic cylinder z = y by the planes x =0,x =,andz =0. valuate y z I = 4y + d and I y z = 4y + d. The projection of along the z-axis into the xy-plane fills the rectangle =0, ], ]. ince every point of obeys 0 = G(x, y, z) def = y + z, area elements on are related to area elements in via d = G(x, y, z) G/ z Thus, for any constant p>0, y p z I p = 4y + d = da(x, y) = 0, y, da(x, y) = +4y da(x, y). y p ( y ) ( +4y da(x, y) = y 4y + p y +p) da(x, y). The region has reflection symmetry across the line y =0,soI p = 0 whenever p is an odd integer: thus When p is even, we get I p > 0: in particular, I = y= I =0. ( y y 4) dy dx = y y5 5 ] y= = 5 ] = ontinued on page 8

7 ecember 005 MATH 7 UB I: Page 8 of pages ( ) ( ) ( ) def e ] 7. For each a>0, evaluate I a = e x x ln(y) dx + y + sin(z) dy + y cos(z) dz, given a a : x = a cos(t), y = a, z = a sin(t), 0 t π. Recognize I a = F dr for F = e x ln(y), ex + sin(z), ycos(z). a y (The curve a is not closed, so it is unsafe to guess I a = 0.) ould F be conservative? Investigate i j k F = / x / y / z e x ln(y) e x /y +sin(z) y cos(z) = i (cos(z) cos(z)) j (0 0) + k (ex /y e x /y) =0. ince F passes the screening test at every point of the half-space where y>0, there must be some scalar field φ that satisfies F = φ there, i.e., () φ x = ex ln(y), () φ y = ex y + sin(z), φ () z = y cos(z). From (), φ = e x ln(y)+(y, z) forsome independent of x. This implies φ y = e x /y + y, and substitution in () gives e x y + y(y, z) =φ y = ex y + sin(z), so y(y, z) = sin(z), so (y, z) =y sin(z)+(z) for some independent of y and x. Thus φ = e x ln(y) +y sin(z) +(z) andφ z = y cos(z) + (z). ubstitution in () gives for some constant K. We arrive at y cos(z)+ (z) =y cos(z), so (z) =0, so (z) =K F = φ for φ(x, y, z) =e x ln(y)+y sin(z)+k. Any real K will work; we choose K = 0 and conclude that I a = φ dr = φ(r(π)) φ(r(0)) = φ( a, a, 0) φ(a, a, 0) = e a ln(a) e a ln(a) = ( e a e a) ln(a). a Alternative (irect): The given parametrization, x, y, z = a cos(t), a, asin(t), implies dx, dy, dz = a sin(t) dt, 0 dt, a cos(t) dt = a sin(t), 0, acos(t) dt. Making these substitutions gives I a = I a () + I a () + I a (),where π π I a () = e x ln(y) dx = ln(a) e a cos(t) ( a sin(t)) dt = ln(a) e a cos(t) a I () a = I () a = a ( ) e x y + sin(z) dy = a (y cos(z)) dz = a π 0 π t=0 ( e a cos(t) t=0 ) + sin(a sin(t)) 0 dt =0, t=0 a cos(a sin(t))(a cos(t)) dt = a sin(a sin(t)) =ln(a) e a e a], (The substitutions u = a cos(t) andw = a sin(t) helped evaluate I a () and I a ().) onsequently I a = I a () = ln(a) e a e a]. π t=0 =0. ontinued on page 9

8 ecember 005 MATH 7 UB I: Page 9 of pages ] 8. A particle travels from (, ) to (, ) along the curve y = x,thenbackto(, ) along the curve y = x 4 +, under the influence of the force Find the work done, i.e., W = F =(y + e x ln(y)) i +(e x /y) j. F dr, for the curve described above. Match W = (y + e x ln(y)) dx +(e x /y) dy with the left side in Green s Theorem by choosing P = y + e x ln(y), Q = ex y. Then if is the plane region inside the particle s path, ( Q W = x P ) ( ]) e x da(x, y) = y y + ex y A single integral is enough to find this area (using even symmetry): W = x= ( ( x ) ( + x 4 ) ) dx = 0 da(x, y) = da(x, y) = Area(). ( x x 4) dx = ] = Alternative (onservative Reduction): plit F = yei+ φ with φ(x, y) =e x ln(y). ince the path is a closed curve, W = ydx+ φ dr = ydx+0. Parametrizing gives (using even symmetry) ] ] W = ( x ) dx + (x 4 +)dx = x x x 5 + x= x= 5 + x = ++ ] = Alternative (irect): Parametrize both branches of directly, writing W = I + I.HereI is the line integral along,wherey = x implies dy = xdx,andx runs from right to left: I = ( x )+e x ln( x ) ] ( ) e x dx + ( xdx) = x= x= ( x )+ d ( e x ln( x ) ) dx dx = 6+ (e e ) ln(). x= x ] = 6+ e x ln( x ) imilarly, I is the line integral along,wherey = x 4 + implies dy =4x dx, so I = (x 4 +)+e x ln(x 4 +) ] ( ) e x dx + x= x 4 (4x dx) + = (x 4 +)+ d ( e x ln(x 4 +) ) ] dx =+ dx 5 + e x ln(x 4 +) ] x= =+ 5 +(e e ) ln(). ancellation occurs, leaving W = I + I = = ] x= ontinued on page 0

9 ecember 005 MATH 7 UB I: Page 0 of pages ] 9. Let denote the part of the surface z = e x selected by the simultaneous inequalities y 0, x, y x, and let F = x y xy, xy xy, z( + x + y 4xy). Let Φ be the upward flux of F through. (a) xpress Φ as a double integral over a suitable region in xy-space. (b) Use the ivergence Theorem to express Φ as a different double integral over. uggestion: Imagine as the top surface of a solid, whose bottom is z = 0 and whose sides are vertical planes. (c) valuate Φ. Let be the triangle in the xy-plane where y 0, x, y x. (a) The surface has a simple projection along the z-axis into. ince 0 = G(x, y, z) def = z e x at each point of, the vector area element on is related to the plane area element in by G(x, y, z) d = da(x, y) = xe x, 0, da(x, y). G/ z (Notice that this is directed upwards.) It follows that Φ= F d = F xe x, 0, da(x, y) ( ) = x(x y xy)e x + e x ( + x + y 4xy) da(x, y) = e ( x x y x y ++x + y 4xy ) da(x, y). (b) Notice that F =(xy y)+(xy x)+( +x + y 4xy) =. Thus, by the divergence theorem, the outward flux of F through any closed surface equals the volume inside that surface: F d = FdV = dv =Vol(). Use this observation on the solid defined by { = (x, y, z) :(x, y), 0 z e x}. The solid has as its top surface, and four other sides made from patches of various planes. On the bottom, z =0,wehave N = k so F N = 0 at every point. o there is no flux through the bottom. On the side where y =0,wehave N = j, sof N = 0 at every point. There is no flux through this side. On the side where x =,wehave N = i, sof N = 0 at every point. There is no flux through this side. On the vertical plane where y = x, wehave N =(j i)/ so F N = ( x y xy]+xy xy] ) = ( x x ]+x x ] ) =0. There is no flux through this side. Thus all the flux of F through comes through its top surface,! o e x Φ= dv = dz da = e x da. (c) The double integral from part (b) is much more convenient than the one from part (a). x ] e x Φ= e x dy dx = xe x dx = = e. y=0 z=0 The nd

10 This examination has pages including this cover The University of British olumbia essional xamination ecember 005 Mathematics 7 Multivariable and Vector alculus losed book examination Time: hours Name ignature tudent Number pecial Instructions: alculators may NOT be used. A formula sheet has been provided. If you need more space than is provided for a question, use the back of the previous page. Rules governing examinations. All candidates should be prepared to produce their library/am cards upon request.. Read and observe the following rules: No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. andidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions. AUTION - andidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action. (a) Making use of any books, papers or memoranda, other than those authorized by the examiners. (b) peaking or communicating with other candidates. (c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.. moking is not permitted during examinations Total 08

The level curve has equation 2 = (1 + cos(4θ))/r. Solving for r gives the polar form:

The level curve has equation 2 = (1 + cos(4θ))/r. Solving for r gives the polar form: 19 Nov 4 MATH 63 UB ID: Page of 5 pages 5] 1. An antenna at the origin emits a signal whose strength at the point with polar coordinates r, θ] is f(r, θ) 1+cos(4θ), r >, π r 4

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

The University of British Columbia Final Examination - December 16, Mathematics 317 Instructor: Katherine Stange

The University of British Columbia Final Examination - December 16, Mathematics 317 Instructor: Katherine Stange The University of British Columbia Final Examination - December 16, 2010 Mathematics 317 Instructor: Katherine Stange Closed book examination Time: 3 hours Name Signature Student Number Special Instructions:

More information

Final Exam Math 317 April 18th, 2015

Final Exam Math 317 April 18th, 2015 Math 317 Final Exam April 18th, 2015 Final Exam Math 317 April 18th, 2015 Last Name: First Name: Student # : Instructor s Name : Instructions: No memory aids allowed. No calculators allowed. No communication

More information

The University of British Columbia Final Examination - December 17, 2015 Mathematics 200 All Sections

The University of British Columbia Final Examination - December 17, 2015 Mathematics 200 All Sections The University of British Columbia Final Examination - December 17, 2015 Mathematics 200 All Sections Closed book examination Time: 2.5 hours Last Name First Signature Student Number Special Instructions:

More information

Special Instructions:

Special Instructions: Be sure that this examination has 20 pages including this cover The University of British Columbia Sessional Examinations - December 2016 Mathematics 257/316 Partial Differential Equations Closed book

More information

Final Exam Review Sheet : Comments and Selected Solutions

Final Exam Review Sheet : Comments and Selected Solutions MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections

THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections Closed book examination Time: 50 minutes Last Name First Signature Student Number Special Instructions:

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, Advanced Calculus for Engineers McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

The University of British Columbia. Mathematics 300 Final Examination. Thursday, April 13, Instructor: Reichstein

The University of British Columbia. Mathematics 300 Final Examination. Thursday, April 13, Instructor: Reichstein The University of British Columbia. Mathematics 300 Final Examination. Thursday, April 13, 2017. Instructor: Reichstein Name: Student number: Signature: Rules governing examinations Each examination candidate

More information

The University of British Columbia Final Examination - April 11, 2012 Mathematics 105, 2011W T2 All Sections. Special Instructions:

The University of British Columbia Final Examination - April 11, 2012 Mathematics 105, 2011W T2 All Sections. Special Instructions: The University of British Columbia Final Examination - April 11, 2012 Mathematics 105, 2011W T2 All Sections Closed book examination Time: 2.5 hours Last Name First SID Section number Instructor name Special

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Direction of maximum decrease = P

Direction of maximum decrease = P APPM 35 FINAL EXAM PING 15 INTUTION: Electronic devices, books, and crib sheets are not permitted. Write your name and your instructor s name on the front of your bluebook. Work all problems. how your

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018 APPM 2 Final Exam 28 points Monday December 7, 7:am am, 28 ON THE FONT OF YOU BLUEBOOK write: () your name, (2) your student ID number, () lecture section/time (4) your instructor s name, and () a grading

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains red balls, 10 green balls and 1 yellow balls. You randomly select balls, without replacement. (a What ( is( the probability

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains 5 red balls, 10 green balls and 15 yellow balls. You randomly select 5 balls, without replacement. What is the probability that

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Math 321 Final Exam 8:30am, Tuesday, April 20, 2010 Duration: 150 minutes

Math 321 Final Exam 8:30am, Tuesday, April 20, 2010 Duration: 150 minutes Math 321 Final Exam 8:30am, Tuesday, April 20, 2010 Duration: 150 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 17 pages, including this cover sheet.

More information

Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 2007 Practice Problem Solutions Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

The Divergence Theorem

The Divergence Theorem Math 1a The Divergence Theorem 1. Parameterize the boundary of each of the following with positive orientation. (a) The solid x + 4y + 9z 36. (b) The solid x + y z 9. (c) The solid consisting of all points

More information

The University of British Columbia Final Examination - April, 2007 Mathematics 257/316

The University of British Columbia Final Examination - April, 2007 Mathematics 257/316 The University of British Columbia Final Examination - April, 2007 Mathematics 257/316 Closed book examination Time: 2.5 hours Instructor Name: Last Name:, First: Signature Student Number Special Instructions:

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

MATH 261 FINAL EXAM PRACTICE PROBLEMS

MATH 261 FINAL EXAM PRACTICE PROBLEMS MATH 261 FINAL EXAM PRACTICE PROBLEMS These practice problems are pulled from the final exams in previous semesters. The 2-hour final exam typically has 8-9 problems on it, with 4-5 coming from the post-exam

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

Line and Surface Integrals. Stokes and Divergence Theorems

Line and Surface Integrals. Stokes and Divergence Theorems Math Methods 1 Lia Vas Line and urface Integrals. tokes and Divergence Theorems Review of urves. Intuitively, we think of a curve as a path traced by a moving particle in space. Thus, a curve is a function

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

MATH 2400 Final Exam Review Solutions

MATH 2400 Final Exam Review Solutions MATH Final Eam eview olutions. Find an equation for the collection of points that are equidistant to A, 5, ) and B6,, ). AP BP + ) + y 5) + z ) 6) y ) + z + ) + + + y y + 5 + z 6z + 9 + 6 + y y + + z +

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

Mathematics 253/101,102,103,105 Page 1 of 17 Student-No.:

Mathematics 253/101,102,103,105 Page 1 of 17 Student-No.: Mathematics 253/101,102,103,105 Page 1 of 17 Student-No.: Final Examination December 6, 2014 Duration: 2.5 hours This test has 8 questions on 17 pages, for a total of 80 points. Read all the questions

More information

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy. APPM 35 FINAL EXAM FALL 13 INSTUTIONS: Electronic devices, books, and crib sheets are not permitted. Write your name and your instructor s name on the front of your bluebook. Work all problems. Show your

More information

The University of British Columbia Final Examination - April 20, 2009 Mathematics 152 All Sections. Closed book examination. No calculators.

The University of British Columbia Final Examination - April 20, 2009 Mathematics 152 All Sections. Closed book examination. No calculators. The University of British Columbia Final Examination - April 20, 2009 Mathematics 152 All Sections Closed book examination. No calculators. Time: 2.5 hours Last Name First Signature Student Number Section

More information

Problem Points S C O R E

Problem Points S C O R E MATH 34F Final Exam March 19, 13 Name Student I # Your exam should consist of this cover sheet, followed by 7 problems. Check that you have a complete exam. Unless otherwise indicated, show all your work

More information

MATH 317 Fall 2016 Assignment 5

MATH 317 Fall 2016 Assignment 5 MATH 37 Fall 26 Assignment 5 6.3, 6.4. ( 6.3) etermine whether F(x, y) e x sin y îı + e x cos y ĵj is a conservative vector field. If it is, find a function f such that F f. enote F (P, Q). We have Q x

More information

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0.

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0. MATH 64: FINAL EXAM olutions Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j ( t π). olution: We assume a > b >. A = 1 π (xy yx )dt = 3ab π

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name.

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name. The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours LAST Name First Name Signature Student Number MATH 104 or MATH 184 (Circle one) Section Number:

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

Vector Integrals. Scott N. Walck. October 13, 2016

Vector Integrals. Scott N. Walck. October 13, 2016 Vector Integrals cott N. Walck October 13, 16 Contents 1 A Table of Vector Integrals Applications of the Integrals.1 calar Line Integral.........................1.1 Finding Total Charge of a Line Charge..........1.

More information

December 2014 MATH 340 Name Page 2 of 10 pages

December 2014 MATH 340 Name Page 2 of 10 pages December 2014 MATH 340 Name Page 2 of 10 pages Marks [8] 1. Find the value of Alice announces a pure strategy and Betty announces a pure strategy for the matrix game [ ] 1 4 A =. 5 2 Find the value of

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

The University of British Columbia Final Examination - December 6, 2014 Mathematics 104/184 All Sections

The University of British Columbia Final Examination - December 6, 2014 Mathematics 104/184 All Sections The University of British Columbia Final Examination - December 6, 2014 Mathematics 104/184 All Sections Closed book examination Time: 2.5 hours Last Name First Signature MATH 104 or MATH 184 (Circle one)

More information

Vector Calculus Gateway Exam

Vector Calculus Gateway Exam Vector alculus Gateway Exam 3 Minutes; No alculators; No Notes Work Justifying Answers equired (see below) core (out of 6) Deduction Grade 5 6 No 1% trong Effort. 4 No core Please invest more time and

More information

April 2003 Mathematics 340 Name Page 2 of 12 pages

April 2003 Mathematics 340 Name Page 2 of 12 pages April 2003 Mathematics 340 Name Page 2 of 12 pages Marks [8] 1. Consider the following tableau for a standard primal linear programming problem. z x 1 x 2 x 3 s 1 s 2 rhs 1 0 p 0 5 3 14 = z 0 1 q 0 1 0

More information

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I = Homework 1 elected olutions Math 19 November 9, 18 18.1 5) olution: In this function P = x y and Q =, therefore Q x P = x. We obtain the following integral: ( Q I = x ydx = x P ) da = x da. onverting to

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (PLANE & CYLINDRICAL POLAR COORDINATES) PLANE POLAR COORDINATES Question 1 The finite region on the x-y plane satisfies 1 x + y 4, y 0. Find, in terms of π, the value of I. I

More information

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

53. Flux Integrals. Here, R is the region over which the double integral is evaluated. 53. Flux Integrals Let be an orientable surface within 3. An orientable surface, roughly speaking, is one with two distinct sides. At any point on an orientable surface, there exists two normal vectors,

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Mathematics Page 1 of 9 Student-No.:

Mathematics Page 1 of 9 Student-No.: Mathematics 5-95 Page of 9 Student-No.: Midterm Duration: 8 minutes This test has 7 questions on 9 pages, for a total of 7 points. Question 7 is a bonus question. Read all the questions carefully before

More information

4 Partial Differentiation

4 Partial Differentiation 4 Partial Differentiation Many equations in engineering, physics and mathematics tie together more than two variables. For example Ohm s Law (V = IR) and the equation for an ideal gas, PV = nrt, which

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

The University of British Columbia

The University of British Columbia The University of British Columbia Math 200 Multivariable Calculus 2013, December 16 Surname: First Name: Student ID: Section number: Instructor s Name: Instructions Explain your reasoning thoroughly,

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4 LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

ES.182A Topic 45 Notes Jeremy Orloff

ES.182A Topic 45 Notes Jeremy Orloff E.8A Topic 45 Notes Jeremy Orloff 45 More surface integrals; divergence theorem Note: Much of these notes are taken directly from the upplementary Notes V0 by Arthur Mattuck. 45. Closed urfaces A closed

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x MA 5 Fall 8 Eam # Review Solutions. Find the maimum of f, y y restricted to the curve + + y. Give both the coordinates of the point and the value of f. f, y y g, y + + y f < y, > g < +, y > solve y λ +

More information

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4 LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

Name (please print) π cos(θ) + sin(θ)dθ

Name (please print) π cos(θ) + sin(θ)dθ Mathematics 2443-3 Final Eamination Form A December 2, 27 Instructions: Give brief, clear answers. I. Evaluate by changing to polar coordinates: 2 + y 2 2 and above the -ais. + y d 2(2 2 )/3. π 2 (r cos(θ)

More information